1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * Copyright (c) 2018 Joyent, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/smp.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/proc.h> 42 #include <sys/sysctl.h> 43 44 #include <vm/vm.h> 45 #include <vm/pmap.h> 46 47 #include <machine/psl.h> 48 #include <machine/cpufunc.h> 49 #include <machine/md_var.h> 50 #include <machine/reg.h> 51 #include <machine/segments.h> 52 #include <machine/smp.h> 53 #include <machine/specialreg.h> 54 #include <machine/vmparam.h> 55 56 #include <machine/vmm.h> 57 #include <machine/vmm_dev.h> 58 #include <machine/vmm_instruction_emul.h> 59 #include "vmm_lapic.h" 60 #include "vmm_host.h" 61 #include "vmm_ioport.h" 62 #include "vmm_ktr.h" 63 #include "vmm_stat.h" 64 #include "vatpic.h" 65 #include "vlapic.h" 66 #include "vlapic_priv.h" 67 68 #include "ept.h" 69 #include "vmx_cpufunc.h" 70 #include "vmx.h" 71 #include "vmx_msr.h" 72 #include "x86.h" 73 #include "vmx_controls.h" 74 75 #define PINBASED_CTLS_ONE_SETTING \ 76 (PINBASED_EXTINT_EXITING | \ 77 PINBASED_NMI_EXITING | \ 78 PINBASED_VIRTUAL_NMI) 79 #define PINBASED_CTLS_ZERO_SETTING 0 80 81 #define PROCBASED_CTLS_WINDOW_SETTING \ 82 (PROCBASED_INT_WINDOW_EXITING | \ 83 PROCBASED_NMI_WINDOW_EXITING) 84 85 #define PROCBASED_CTLS_ONE_SETTING \ 86 (PROCBASED_SECONDARY_CONTROLS | \ 87 PROCBASED_MWAIT_EXITING | \ 88 PROCBASED_MONITOR_EXITING | \ 89 PROCBASED_IO_EXITING | \ 90 PROCBASED_MSR_BITMAPS | \ 91 PROCBASED_CTLS_WINDOW_SETTING | \ 92 PROCBASED_CR8_LOAD_EXITING | \ 93 PROCBASED_CR8_STORE_EXITING) 94 #define PROCBASED_CTLS_ZERO_SETTING \ 95 (PROCBASED_CR3_LOAD_EXITING | \ 96 PROCBASED_CR3_STORE_EXITING | \ 97 PROCBASED_IO_BITMAPS) 98 99 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 100 #define PROCBASED_CTLS2_ZERO_SETTING 0 101 102 #define VM_EXIT_CTLS_ONE_SETTING \ 103 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 104 VM_EXIT_HOST_LMA | \ 105 VM_EXIT_SAVE_EFER | \ 106 VM_EXIT_LOAD_EFER | \ 107 VM_EXIT_ACKNOWLEDGE_INTERRUPT) 108 109 #define VM_EXIT_CTLS_ZERO_SETTING 0 110 111 #define VM_ENTRY_CTLS_ONE_SETTING \ 112 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 113 VM_ENTRY_LOAD_EFER) 114 115 #define VM_ENTRY_CTLS_ZERO_SETTING \ 116 (VM_ENTRY_INTO_SMM | \ 117 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 118 119 #define HANDLED 1 120 #define UNHANDLED 0 121 122 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 123 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 124 125 SYSCTL_DECL(_hw_vmm); 126 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 127 NULL); 128 129 int vmxon_enabled[MAXCPU]; 130 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 131 132 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 133 static uint32_t exit_ctls, entry_ctls; 134 135 static uint64_t cr0_ones_mask, cr0_zeros_mask; 136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 137 &cr0_ones_mask, 0, NULL); 138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 139 &cr0_zeros_mask, 0, NULL); 140 141 static uint64_t cr4_ones_mask, cr4_zeros_mask; 142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 143 &cr4_ones_mask, 0, NULL); 144 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 145 &cr4_zeros_mask, 0, NULL); 146 147 static int vmx_initialized; 148 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 149 &vmx_initialized, 0, "Intel VMX initialized"); 150 151 /* 152 * Optional capabilities 153 */ 154 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, 155 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 156 NULL); 157 158 static int cap_halt_exit; 159 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 160 "HLT triggers a VM-exit"); 161 162 static int cap_pause_exit; 163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 164 0, "PAUSE triggers a VM-exit"); 165 166 static int cap_unrestricted_guest; 167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 168 &cap_unrestricted_guest, 0, "Unrestricted guests"); 169 170 static int cap_monitor_trap; 171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 172 &cap_monitor_trap, 0, "Monitor trap flag"); 173 174 static int cap_invpcid; 175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 176 0, "Guests are allowed to use INVPCID"); 177 178 static int tpr_shadowing; 179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD, 180 &tpr_shadowing, 0, "TPR shadowing support"); 181 182 static int virtual_interrupt_delivery; 183 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 184 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 185 186 static int posted_interrupts; 187 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 188 &posted_interrupts, 0, "APICv posted interrupt support"); 189 190 static int pirvec = -1; 191 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 192 &pirvec, 0, "APICv posted interrupt vector"); 193 194 static struct unrhdr *vpid_unr; 195 static u_int vpid_alloc_failed; 196 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 197 &vpid_alloc_failed, 0, NULL); 198 199 int guest_l1d_flush; 200 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD, 201 &guest_l1d_flush, 0, NULL); 202 int guest_l1d_flush_sw; 203 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD, 204 &guest_l1d_flush_sw, 0, NULL); 205 206 static struct msr_entry msr_load_list[1] __aligned(16); 207 208 /* 209 * The definitions of SDT probes for VMX. 210 */ 211 212 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry, 213 "struct vmx *", "int", "struct vm_exit *"); 214 215 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch, 216 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *"); 217 218 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess, 219 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 220 221 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr, 222 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 223 224 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr, 225 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t"); 226 227 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt, 228 "struct vmx *", "int", "struct vm_exit *"); 229 230 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap, 231 "struct vmx *", "int", "struct vm_exit *"); 232 233 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause, 234 "struct vmx *", "int", "struct vm_exit *"); 235 236 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow, 237 "struct vmx *", "int", "struct vm_exit *"); 238 239 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt, 240 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 241 242 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow, 243 "struct vmx *", "int", "struct vm_exit *"); 244 245 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout, 246 "struct vmx *", "int", "struct vm_exit *"); 247 248 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid, 249 "struct vmx *", "int", "struct vm_exit *"); 250 251 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception, 252 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int"); 253 254 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault, 255 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t"); 256 257 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault, 258 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 259 260 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi, 261 "struct vmx *", "int", "struct vm_exit *"); 262 263 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess, 264 "struct vmx *", "int", "struct vm_exit *"); 265 266 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite, 267 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *"); 268 269 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv, 270 "struct vmx *", "int", "struct vm_exit *"); 271 272 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor, 273 "struct vmx *", "int", "struct vm_exit *"); 274 275 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait, 276 "struct vmx *", "int", "struct vm_exit *"); 277 278 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn, 279 "struct vmx *", "int", "struct vm_exit *"); 280 281 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown, 282 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 283 284 SDT_PROBE_DEFINE4(vmm, vmx, exit, return, 285 "struct vmx *", "int", "struct vm_exit *", "int"); 286 287 /* 288 * Use the last page below 4GB as the APIC access address. This address is 289 * occupied by the boot firmware so it is guaranteed that it will not conflict 290 * with a page in system memory. 291 */ 292 #define APIC_ACCESS_ADDRESS 0xFFFFF000 293 294 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 295 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); 296 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 297 static void vmx_inject_pir(struct vlapic *vlapic); 298 299 #ifdef KTR 300 static const char * 301 exit_reason_to_str(int reason) 302 { 303 static char reasonbuf[32]; 304 305 switch (reason) { 306 case EXIT_REASON_EXCEPTION: 307 return "exception"; 308 case EXIT_REASON_EXT_INTR: 309 return "extint"; 310 case EXIT_REASON_TRIPLE_FAULT: 311 return "triplefault"; 312 case EXIT_REASON_INIT: 313 return "init"; 314 case EXIT_REASON_SIPI: 315 return "sipi"; 316 case EXIT_REASON_IO_SMI: 317 return "iosmi"; 318 case EXIT_REASON_SMI: 319 return "smi"; 320 case EXIT_REASON_INTR_WINDOW: 321 return "intrwindow"; 322 case EXIT_REASON_NMI_WINDOW: 323 return "nmiwindow"; 324 case EXIT_REASON_TASK_SWITCH: 325 return "taskswitch"; 326 case EXIT_REASON_CPUID: 327 return "cpuid"; 328 case EXIT_REASON_GETSEC: 329 return "getsec"; 330 case EXIT_REASON_HLT: 331 return "hlt"; 332 case EXIT_REASON_INVD: 333 return "invd"; 334 case EXIT_REASON_INVLPG: 335 return "invlpg"; 336 case EXIT_REASON_RDPMC: 337 return "rdpmc"; 338 case EXIT_REASON_RDTSC: 339 return "rdtsc"; 340 case EXIT_REASON_RSM: 341 return "rsm"; 342 case EXIT_REASON_VMCALL: 343 return "vmcall"; 344 case EXIT_REASON_VMCLEAR: 345 return "vmclear"; 346 case EXIT_REASON_VMLAUNCH: 347 return "vmlaunch"; 348 case EXIT_REASON_VMPTRLD: 349 return "vmptrld"; 350 case EXIT_REASON_VMPTRST: 351 return "vmptrst"; 352 case EXIT_REASON_VMREAD: 353 return "vmread"; 354 case EXIT_REASON_VMRESUME: 355 return "vmresume"; 356 case EXIT_REASON_VMWRITE: 357 return "vmwrite"; 358 case EXIT_REASON_VMXOFF: 359 return "vmxoff"; 360 case EXIT_REASON_VMXON: 361 return "vmxon"; 362 case EXIT_REASON_CR_ACCESS: 363 return "craccess"; 364 case EXIT_REASON_DR_ACCESS: 365 return "draccess"; 366 case EXIT_REASON_INOUT: 367 return "inout"; 368 case EXIT_REASON_RDMSR: 369 return "rdmsr"; 370 case EXIT_REASON_WRMSR: 371 return "wrmsr"; 372 case EXIT_REASON_INVAL_VMCS: 373 return "invalvmcs"; 374 case EXIT_REASON_INVAL_MSR: 375 return "invalmsr"; 376 case EXIT_REASON_MWAIT: 377 return "mwait"; 378 case EXIT_REASON_MTF: 379 return "mtf"; 380 case EXIT_REASON_MONITOR: 381 return "monitor"; 382 case EXIT_REASON_PAUSE: 383 return "pause"; 384 case EXIT_REASON_MCE_DURING_ENTRY: 385 return "mce-during-entry"; 386 case EXIT_REASON_TPR: 387 return "tpr"; 388 case EXIT_REASON_APIC_ACCESS: 389 return "apic-access"; 390 case EXIT_REASON_GDTR_IDTR: 391 return "gdtridtr"; 392 case EXIT_REASON_LDTR_TR: 393 return "ldtrtr"; 394 case EXIT_REASON_EPT_FAULT: 395 return "eptfault"; 396 case EXIT_REASON_EPT_MISCONFIG: 397 return "eptmisconfig"; 398 case EXIT_REASON_INVEPT: 399 return "invept"; 400 case EXIT_REASON_RDTSCP: 401 return "rdtscp"; 402 case EXIT_REASON_VMX_PREEMPT: 403 return "vmxpreempt"; 404 case EXIT_REASON_INVVPID: 405 return "invvpid"; 406 case EXIT_REASON_WBINVD: 407 return "wbinvd"; 408 case EXIT_REASON_XSETBV: 409 return "xsetbv"; 410 case EXIT_REASON_APIC_WRITE: 411 return "apic-write"; 412 default: 413 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 414 return (reasonbuf); 415 } 416 } 417 #endif /* KTR */ 418 419 static int 420 vmx_allow_x2apic_msrs(struct vmx *vmx) 421 { 422 int i, error; 423 424 error = 0; 425 426 /* 427 * Allow readonly access to the following x2APIC MSRs from the guest. 428 */ 429 error += guest_msr_ro(vmx, MSR_APIC_ID); 430 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 431 error += guest_msr_ro(vmx, MSR_APIC_LDR); 432 error += guest_msr_ro(vmx, MSR_APIC_SVR); 433 434 for (i = 0; i < 8; i++) 435 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 436 437 for (i = 0; i < 8; i++) 438 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 439 440 for (i = 0; i < 8; i++) 441 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 442 443 error += guest_msr_ro(vmx, MSR_APIC_ESR); 444 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 445 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 446 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 447 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 448 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 449 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 450 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 451 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 452 error += guest_msr_ro(vmx, MSR_APIC_ICR); 453 454 /* 455 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 456 * 457 * These registers get special treatment described in the section 458 * "Virtualizing MSR-Based APIC Accesses". 459 */ 460 error += guest_msr_rw(vmx, MSR_APIC_TPR); 461 error += guest_msr_rw(vmx, MSR_APIC_EOI); 462 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 463 464 return (error); 465 } 466 467 u_long 468 vmx_fix_cr0(u_long cr0) 469 { 470 471 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 472 } 473 474 u_long 475 vmx_fix_cr4(u_long cr4) 476 { 477 478 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 479 } 480 481 static void 482 vpid_free(int vpid) 483 { 484 if (vpid < 0 || vpid > 0xffff) 485 panic("vpid_free: invalid vpid %d", vpid); 486 487 /* 488 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 489 * the unit number allocator. 490 */ 491 492 if (vpid > VM_MAXCPU) 493 free_unr(vpid_unr, vpid); 494 } 495 496 static void 497 vpid_alloc(uint16_t *vpid, int num) 498 { 499 int i, x; 500 501 if (num <= 0 || num > VM_MAXCPU) 502 panic("invalid number of vpids requested: %d", num); 503 504 /* 505 * If the "enable vpid" execution control is not enabled then the 506 * VPID is required to be 0 for all vcpus. 507 */ 508 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 509 for (i = 0; i < num; i++) 510 vpid[i] = 0; 511 return; 512 } 513 514 /* 515 * Allocate a unique VPID for each vcpu from the unit number allocator. 516 */ 517 for (i = 0; i < num; i++) { 518 x = alloc_unr(vpid_unr); 519 if (x == -1) 520 break; 521 else 522 vpid[i] = x; 523 } 524 525 if (i < num) { 526 atomic_add_int(&vpid_alloc_failed, 1); 527 528 /* 529 * If the unit number allocator does not have enough unique 530 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 531 * 532 * These VPIDs are not be unique across VMs but this does not 533 * affect correctness because the combined mappings are also 534 * tagged with the EP4TA which is unique for each VM. 535 * 536 * It is still sub-optimal because the invvpid will invalidate 537 * combined mappings for a particular VPID across all EP4TAs. 538 */ 539 while (i-- > 0) 540 vpid_free(vpid[i]); 541 542 for (i = 0; i < num; i++) 543 vpid[i] = i + 1; 544 } 545 } 546 547 static void 548 vpid_init(void) 549 { 550 /* 551 * VPID 0 is required when the "enable VPID" execution control is 552 * disabled. 553 * 554 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 555 * unit number allocator does not have sufficient unique VPIDs to 556 * satisfy the allocation. 557 * 558 * The remaining VPIDs are managed by the unit number allocator. 559 */ 560 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 561 } 562 563 static void 564 vmx_disable(void *arg __unused) 565 { 566 struct invvpid_desc invvpid_desc = { 0 }; 567 struct invept_desc invept_desc = { 0 }; 568 569 if (vmxon_enabled[curcpu]) { 570 /* 571 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 572 * 573 * VMXON or VMXOFF are not required to invalidate any TLB 574 * caching structures. This prevents potential retention of 575 * cached information in the TLB between distinct VMX episodes. 576 */ 577 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 578 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 579 vmxoff(); 580 } 581 load_cr4(rcr4() & ~CR4_VMXE); 582 } 583 584 static int 585 vmx_cleanup(void) 586 { 587 588 if (pirvec >= 0) 589 lapic_ipi_free(pirvec); 590 591 if (vpid_unr != NULL) { 592 delete_unrhdr(vpid_unr); 593 vpid_unr = NULL; 594 } 595 596 if (nmi_flush_l1d_sw == 1) 597 nmi_flush_l1d_sw = 0; 598 599 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 600 601 return (0); 602 } 603 604 static void 605 vmx_enable(void *arg __unused) 606 { 607 int error; 608 uint64_t feature_control; 609 610 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 611 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 612 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 613 wrmsr(MSR_IA32_FEATURE_CONTROL, 614 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 615 IA32_FEATURE_CONTROL_LOCK); 616 } 617 618 load_cr4(rcr4() | CR4_VMXE); 619 620 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 621 error = vmxon(vmxon_region[curcpu]); 622 if (error == 0) 623 vmxon_enabled[curcpu] = 1; 624 } 625 626 static void 627 vmx_restore(void) 628 { 629 630 if (vmxon_enabled[curcpu]) 631 vmxon(vmxon_region[curcpu]); 632 } 633 634 static int 635 vmx_init(int ipinum) 636 { 637 int error; 638 uint64_t basic, fixed0, fixed1, feature_control; 639 uint32_t tmp, procbased2_vid_bits; 640 641 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 642 if (!(cpu_feature2 & CPUID2_VMX)) { 643 printf("vmx_init: processor does not support VMX operation\n"); 644 return (ENXIO); 645 } 646 647 /* 648 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 649 * are set (bits 0 and 2 respectively). 650 */ 651 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 652 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 653 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 654 printf("vmx_init: VMX operation disabled by BIOS\n"); 655 return (ENXIO); 656 } 657 658 /* 659 * Verify capabilities MSR_VMX_BASIC: 660 * - bit 54 indicates support for INS/OUTS decoding 661 */ 662 basic = rdmsr(MSR_VMX_BASIC); 663 if ((basic & (1UL << 54)) == 0) { 664 printf("vmx_init: processor does not support desired basic " 665 "capabilities\n"); 666 return (EINVAL); 667 } 668 669 /* Check support for primary processor-based VM-execution controls */ 670 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 671 MSR_VMX_TRUE_PROCBASED_CTLS, 672 PROCBASED_CTLS_ONE_SETTING, 673 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 674 if (error) { 675 printf("vmx_init: processor does not support desired primary " 676 "processor-based controls\n"); 677 return (error); 678 } 679 680 /* Clear the processor-based ctl bits that are set on demand */ 681 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 682 683 /* Check support for secondary processor-based VM-execution controls */ 684 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 685 MSR_VMX_PROCBASED_CTLS2, 686 PROCBASED_CTLS2_ONE_SETTING, 687 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 688 if (error) { 689 printf("vmx_init: processor does not support desired secondary " 690 "processor-based controls\n"); 691 return (error); 692 } 693 694 /* Check support for VPID */ 695 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 696 PROCBASED2_ENABLE_VPID, 0, &tmp); 697 if (error == 0) 698 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 699 700 /* Check support for pin-based VM-execution controls */ 701 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 702 MSR_VMX_TRUE_PINBASED_CTLS, 703 PINBASED_CTLS_ONE_SETTING, 704 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 705 if (error) { 706 printf("vmx_init: processor does not support desired " 707 "pin-based controls\n"); 708 return (error); 709 } 710 711 /* Check support for VM-exit controls */ 712 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 713 VM_EXIT_CTLS_ONE_SETTING, 714 VM_EXIT_CTLS_ZERO_SETTING, 715 &exit_ctls); 716 if (error) { 717 printf("vmx_init: processor does not support desired " 718 "exit controls\n"); 719 return (error); 720 } 721 722 /* Check support for VM-entry controls */ 723 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 724 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 725 &entry_ctls); 726 if (error) { 727 printf("vmx_init: processor does not support desired " 728 "entry controls\n"); 729 return (error); 730 } 731 732 /* 733 * Check support for optional features by testing them 734 * as individual bits 735 */ 736 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 737 MSR_VMX_TRUE_PROCBASED_CTLS, 738 PROCBASED_HLT_EXITING, 0, 739 &tmp) == 0); 740 741 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 742 MSR_VMX_PROCBASED_CTLS, 743 PROCBASED_MTF, 0, 744 &tmp) == 0); 745 746 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 747 MSR_VMX_TRUE_PROCBASED_CTLS, 748 PROCBASED_PAUSE_EXITING, 0, 749 &tmp) == 0); 750 751 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 752 MSR_VMX_PROCBASED_CTLS2, 753 PROCBASED2_UNRESTRICTED_GUEST, 0, 754 &tmp) == 0); 755 756 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 757 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 758 &tmp) == 0); 759 760 /* 761 * Check support for TPR shadow. 762 */ 763 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 764 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 765 &tmp); 766 if (error == 0) { 767 tpr_shadowing = 1; 768 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing", 769 &tpr_shadowing); 770 } 771 772 if (tpr_shadowing) { 773 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 774 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 775 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 776 } 777 778 /* 779 * Check support for virtual interrupt delivery. 780 */ 781 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 782 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 783 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 784 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 785 786 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 787 procbased2_vid_bits, 0, &tmp); 788 if (error == 0 && tpr_shadowing) { 789 virtual_interrupt_delivery = 1; 790 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 791 &virtual_interrupt_delivery); 792 } 793 794 if (virtual_interrupt_delivery) { 795 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 796 procbased_ctls2 |= procbased2_vid_bits; 797 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 798 799 /* 800 * Check for Posted Interrupts only if Virtual Interrupt 801 * Delivery is enabled. 802 */ 803 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 804 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 805 &tmp); 806 if (error == 0) { 807 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 808 &IDTVEC(justreturn)); 809 if (pirvec < 0) { 810 if (bootverbose) { 811 printf("vmx_init: unable to allocate " 812 "posted interrupt vector\n"); 813 } 814 } else { 815 posted_interrupts = 1; 816 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 817 &posted_interrupts); 818 } 819 } 820 } 821 822 if (posted_interrupts) 823 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 824 825 /* Initialize EPT */ 826 error = ept_init(ipinum); 827 if (error) { 828 printf("vmx_init: ept initialization failed (%d)\n", error); 829 return (error); 830 } 831 832 guest_l1d_flush = (cpu_ia32_arch_caps & 833 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0; 834 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush); 835 836 /* 837 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when 838 * available. Otherwise fall back to the software flush 839 * method which loads enough data from the kernel text to 840 * flush existing L1D content, both on VMX entry and on NMI 841 * return. 842 */ 843 if (guest_l1d_flush) { 844 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) { 845 guest_l1d_flush_sw = 1; 846 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw", 847 &guest_l1d_flush_sw); 848 } 849 if (guest_l1d_flush_sw) { 850 if (nmi_flush_l1d_sw <= 1) 851 nmi_flush_l1d_sw = 1; 852 } else { 853 msr_load_list[0].index = MSR_IA32_FLUSH_CMD; 854 msr_load_list[0].val = IA32_FLUSH_CMD_L1D; 855 } 856 } 857 858 /* 859 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 860 */ 861 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 862 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 863 cr0_ones_mask = fixed0 & fixed1; 864 cr0_zeros_mask = ~fixed0 & ~fixed1; 865 866 /* 867 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 868 * if unrestricted guest execution is allowed. 869 */ 870 if (cap_unrestricted_guest) 871 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 872 873 /* 874 * Do not allow the guest to set CR0_NW or CR0_CD. 875 */ 876 cr0_zeros_mask |= (CR0_NW | CR0_CD); 877 878 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 879 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 880 cr4_ones_mask = fixed0 & fixed1; 881 cr4_zeros_mask = ~fixed0 & ~fixed1; 882 883 vpid_init(); 884 885 vmx_msr_init(); 886 887 /* enable VMX operation */ 888 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 889 890 vmx_initialized = 1; 891 892 return (0); 893 } 894 895 static void 896 vmx_trigger_hostintr(int vector) 897 { 898 uintptr_t func; 899 struct gate_descriptor *gd; 900 901 gd = &idt[vector]; 902 903 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 904 "invalid vector %d", vector)); 905 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 906 vector)); 907 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 908 "has invalid type %d", vector, gd->gd_type)); 909 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 910 "has invalid dpl %d", vector, gd->gd_dpl)); 911 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 912 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 913 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 914 "IST %d", vector, gd->gd_ist)); 915 916 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 917 vmx_call_isr(func); 918 } 919 920 static int 921 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 922 { 923 int error, mask_ident, shadow_ident; 924 uint64_t mask_value; 925 926 if (which != 0 && which != 4) 927 panic("vmx_setup_cr_shadow: unknown cr%d", which); 928 929 if (which == 0) { 930 mask_ident = VMCS_CR0_MASK; 931 mask_value = cr0_ones_mask | cr0_zeros_mask; 932 shadow_ident = VMCS_CR0_SHADOW; 933 } else { 934 mask_ident = VMCS_CR4_MASK; 935 mask_value = cr4_ones_mask | cr4_zeros_mask; 936 shadow_ident = VMCS_CR4_SHADOW; 937 } 938 939 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 940 if (error) 941 return (error); 942 943 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 944 if (error) 945 return (error); 946 947 return (0); 948 } 949 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 950 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 951 952 static void * 953 vmx_vminit(struct vm *vm, pmap_t pmap) 954 { 955 uint16_t vpid[VM_MAXCPU]; 956 int i, error; 957 struct vmx *vmx; 958 struct vmcs *vmcs; 959 uint32_t exc_bitmap; 960 uint16_t maxcpus; 961 962 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 963 if ((uintptr_t)vmx & PAGE_MASK) { 964 panic("malloc of struct vmx not aligned on %d byte boundary", 965 PAGE_SIZE); 966 } 967 vmx->vm = vm; 968 969 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 970 971 /* 972 * Clean up EPTP-tagged guest physical and combined mappings 973 * 974 * VMX transitions are not required to invalidate any guest physical 975 * mappings. So, it may be possible for stale guest physical mappings 976 * to be present in the processor TLBs. 977 * 978 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 979 */ 980 ept_invalidate_mappings(vmx->eptp); 981 982 msr_bitmap_initialize(vmx->msr_bitmap); 983 984 /* 985 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 986 * The guest FSBASE and GSBASE are saved and restored during 987 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 988 * always restored from the vmcs host state area on vm-exit. 989 * 990 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 991 * how they are saved/restored so can be directly accessed by the 992 * guest. 993 * 994 * MSR_EFER is saved and restored in the guest VMCS area on a 995 * VM exit and entry respectively. It is also restored from the 996 * host VMCS area on a VM exit. 997 * 998 * The TSC MSR is exposed read-only. Writes are disallowed as 999 * that will impact the host TSC. If the guest does a write 1000 * the "use TSC offsetting" execution control is enabled and the 1001 * difference between the host TSC and the guest TSC is written 1002 * into the TSC offset in the VMCS. 1003 */ 1004 if (guest_msr_rw(vmx, MSR_GSBASE) || 1005 guest_msr_rw(vmx, MSR_FSBASE) || 1006 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 1007 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 1008 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 1009 guest_msr_rw(vmx, MSR_EFER) || 1010 guest_msr_ro(vmx, MSR_TSC)) 1011 panic("vmx_vminit: error setting guest msr access"); 1012 1013 vpid_alloc(vpid, VM_MAXCPU); 1014 1015 if (virtual_interrupt_delivery) { 1016 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 1017 APIC_ACCESS_ADDRESS); 1018 /* XXX this should really return an error to the caller */ 1019 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 1020 } 1021 1022 maxcpus = vm_get_maxcpus(vm); 1023 for (i = 0; i < maxcpus; i++) { 1024 vmcs = &vmx->vmcs[i]; 1025 vmcs->identifier = vmx_revision(); 1026 error = vmclear(vmcs); 1027 if (error != 0) { 1028 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 1029 error, i); 1030 } 1031 1032 vmx_msr_guest_init(vmx, i); 1033 1034 error = vmcs_init(vmcs); 1035 KASSERT(error == 0, ("vmcs_init error %d", error)); 1036 1037 VMPTRLD(vmcs); 1038 error = 0; 1039 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 1040 error += vmwrite(VMCS_EPTP, vmx->eptp); 1041 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 1042 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 1043 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 1044 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 1045 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 1046 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 1047 error += vmwrite(VMCS_VPID, vpid[i]); 1048 1049 if (guest_l1d_flush && !guest_l1d_flush_sw) { 1050 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract( 1051 (vm_offset_t)&msr_load_list[0])); 1052 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT, 1053 nitems(msr_load_list)); 1054 vmcs_write(VMCS_EXIT_MSR_STORE, 0); 1055 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0); 1056 } 1057 1058 /* exception bitmap */ 1059 if (vcpu_trace_exceptions(vm, i)) 1060 exc_bitmap = 0xffffffff; 1061 else 1062 exc_bitmap = 1 << IDT_MC; 1063 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 1064 1065 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1; 1066 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1); 1067 1068 if (tpr_shadowing) { 1069 error += vmwrite(VMCS_VIRTUAL_APIC, 1070 vtophys(&vmx->apic_page[i])); 1071 } 1072 1073 if (virtual_interrupt_delivery) { 1074 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 1075 error += vmwrite(VMCS_EOI_EXIT0, 0); 1076 error += vmwrite(VMCS_EOI_EXIT1, 0); 1077 error += vmwrite(VMCS_EOI_EXIT2, 0); 1078 error += vmwrite(VMCS_EOI_EXIT3, 0); 1079 } 1080 if (posted_interrupts) { 1081 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 1082 error += vmwrite(VMCS_PIR_DESC, 1083 vtophys(&vmx->pir_desc[i])); 1084 } 1085 VMCLEAR(vmcs); 1086 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); 1087 1088 vmx->cap[i].set = 0; 1089 vmx->cap[i].proc_ctls = procbased_ctls; 1090 vmx->cap[i].proc_ctls2 = procbased_ctls2; 1091 vmx->cap[i].exc_bitmap = exc_bitmap; 1092 1093 vmx->state[i].nextrip = ~0; 1094 vmx->state[i].lastcpu = NOCPU; 1095 vmx->state[i].vpid = vpid[i]; 1096 1097 /* 1098 * Set up the CR0/4 shadows, and init the read shadow 1099 * to the power-on register value from the Intel Sys Arch. 1100 * CR0 - 0x60000010 1101 * CR4 - 0 1102 */ 1103 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 1104 if (error != 0) 1105 panic("vmx_setup_cr0_shadow %d", error); 1106 1107 error = vmx_setup_cr4_shadow(vmcs, 0); 1108 if (error != 0) 1109 panic("vmx_setup_cr4_shadow %d", error); 1110 1111 vmx->ctx[i].pmap = pmap; 1112 } 1113 1114 return (vmx); 1115 } 1116 1117 static int 1118 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 1119 { 1120 int handled, func; 1121 1122 func = vmxctx->guest_rax; 1123 1124 handled = x86_emulate_cpuid(vm, vcpu, 1125 (uint32_t*)(&vmxctx->guest_rax), 1126 (uint32_t*)(&vmxctx->guest_rbx), 1127 (uint32_t*)(&vmxctx->guest_rcx), 1128 (uint32_t*)(&vmxctx->guest_rdx)); 1129 return (handled); 1130 } 1131 1132 static __inline void 1133 vmx_run_trace(struct vmx *vmx, int vcpu) 1134 { 1135 #ifdef KTR 1136 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 1137 #endif 1138 } 1139 1140 static __inline void 1141 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 1142 int handled) 1143 { 1144 #ifdef KTR 1145 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 1146 handled ? "handled" : "unhandled", 1147 exit_reason_to_str(exit_reason), rip); 1148 #endif 1149 } 1150 1151 static __inline void 1152 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 1153 { 1154 #ifdef KTR 1155 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 1156 #endif 1157 } 1158 1159 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1160 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1161 1162 /* 1163 * Invalidate guest mappings identified by its vpid from the TLB. 1164 */ 1165 static __inline void 1166 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) 1167 { 1168 struct vmxstate *vmxstate; 1169 struct invvpid_desc invvpid_desc; 1170 1171 vmxstate = &vmx->state[vcpu]; 1172 if (vmxstate->vpid == 0) 1173 return; 1174 1175 if (!running) { 1176 /* 1177 * Set the 'lastcpu' to an invalid host cpu. 1178 * 1179 * This will invalidate TLB entries tagged with the vcpu's 1180 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1181 */ 1182 vmxstate->lastcpu = NOCPU; 1183 return; 1184 } 1185 1186 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1187 "critical section", __func__, vcpu)); 1188 1189 /* 1190 * Invalidate all mappings tagged with 'vpid' 1191 * 1192 * We do this because this vcpu was executing on a different host 1193 * cpu when it last ran. We do not track whether it invalidated 1194 * mappings associated with its 'vpid' during that run. So we must 1195 * assume that the mappings associated with 'vpid' on 'curcpu' are 1196 * stale and invalidate them. 1197 * 1198 * Note that we incur this penalty only when the scheduler chooses to 1199 * move the thread associated with this vcpu between host cpus. 1200 * 1201 * Note also that this will invalidate mappings tagged with 'vpid' 1202 * for "all" EP4TAs. 1203 */ 1204 if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { 1205 invvpid_desc._res1 = 0; 1206 invvpid_desc._res2 = 0; 1207 invvpid_desc.vpid = vmxstate->vpid; 1208 invvpid_desc.linear_addr = 0; 1209 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1210 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); 1211 } else { 1212 /* 1213 * The invvpid can be skipped if an invept is going to 1214 * be performed before entering the guest. The invept 1215 * will invalidate combined mappings tagged with 1216 * 'vmx->eptp' for all vpids. 1217 */ 1218 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); 1219 } 1220 } 1221 1222 static void 1223 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) 1224 { 1225 struct vmxstate *vmxstate; 1226 1227 vmxstate = &vmx->state[vcpu]; 1228 if (vmxstate->lastcpu == curcpu) 1229 return; 1230 1231 vmxstate->lastcpu = curcpu; 1232 1233 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 1234 1235 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1236 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1237 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1238 vmx_invvpid(vmx, vcpu, pmap, 1); 1239 } 1240 1241 /* 1242 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1243 */ 1244 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1245 1246 static void __inline 1247 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1248 { 1249 1250 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1251 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1252 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1253 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1254 } 1255 } 1256 1257 static void __inline 1258 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1259 { 1260 1261 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1262 ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); 1263 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1264 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1265 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1266 } 1267 1268 static void __inline 1269 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1270 { 1271 1272 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1273 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1274 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1275 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1276 } 1277 } 1278 1279 static void __inline 1280 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1281 { 1282 1283 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1284 ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); 1285 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1286 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1287 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1288 } 1289 1290 int 1291 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset) 1292 { 1293 int error; 1294 1295 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) { 1296 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET; 1297 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1298 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting"); 1299 } 1300 1301 error = vmwrite(VMCS_TSC_OFFSET, offset); 1302 1303 return (error); 1304 } 1305 1306 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1307 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1308 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1309 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1310 1311 static void 1312 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1313 { 1314 uint32_t gi, info; 1315 1316 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1317 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1318 "interruptibility-state %#x", gi)); 1319 1320 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1321 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1322 "VM-entry interruption information %#x", info)); 1323 1324 /* 1325 * Inject the virtual NMI. The vector must be the NMI IDT entry 1326 * or the VMCS entry check will fail. 1327 */ 1328 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1329 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1330 1331 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1332 1333 /* Clear the request */ 1334 vm_nmi_clear(vmx->vm, vcpu); 1335 } 1336 1337 static void 1338 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic, 1339 uint64_t guestrip) 1340 { 1341 int vector, need_nmi_exiting, extint_pending; 1342 uint64_t rflags, entryinfo; 1343 uint32_t gi, info; 1344 1345 if (vmx->state[vcpu].nextrip != guestrip) { 1346 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1347 if (gi & HWINTR_BLOCKING) { 1348 VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking " 1349 "cleared due to rip change: %#lx/%#lx", 1350 vmx->state[vcpu].nextrip, guestrip); 1351 gi &= ~HWINTR_BLOCKING; 1352 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1353 } 1354 } 1355 1356 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { 1357 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1358 "intinfo is not valid: %#lx", __func__, entryinfo)); 1359 1360 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1361 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1362 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1363 1364 info = entryinfo; 1365 vector = info & 0xff; 1366 if (vector == IDT_BP || vector == IDT_OF) { 1367 /* 1368 * VT-x requires #BP and #OF to be injected as software 1369 * exceptions. 1370 */ 1371 info &= ~VMCS_INTR_T_MASK; 1372 info |= VMCS_INTR_T_SWEXCEPTION; 1373 } 1374 1375 if (info & VMCS_INTR_DEL_ERRCODE) 1376 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1377 1378 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1379 } 1380 1381 if (vm_nmi_pending(vmx->vm, vcpu)) { 1382 /* 1383 * If there are no conditions blocking NMI injection then 1384 * inject it directly here otherwise enable "NMI window 1385 * exiting" to inject it as soon as we can. 1386 * 1387 * We also check for STI_BLOCKING because some implementations 1388 * don't allow NMI injection in this case. If we are running 1389 * on a processor that doesn't have this restriction it will 1390 * immediately exit and the NMI will be injected in the 1391 * "NMI window exiting" handler. 1392 */ 1393 need_nmi_exiting = 1; 1394 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1395 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1396 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1397 if ((info & VMCS_INTR_VALID) == 0) { 1398 vmx_inject_nmi(vmx, vcpu); 1399 need_nmi_exiting = 0; 1400 } else { 1401 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " 1402 "due to VM-entry intr info %#x", info); 1403 } 1404 } else { 1405 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " 1406 "Guest Interruptibility-state %#x", gi); 1407 } 1408 1409 if (need_nmi_exiting) 1410 vmx_set_nmi_window_exiting(vmx, vcpu); 1411 } 1412 1413 extint_pending = vm_extint_pending(vmx->vm, vcpu); 1414 1415 if (!extint_pending && virtual_interrupt_delivery) { 1416 vmx_inject_pir(vlapic); 1417 return; 1418 } 1419 1420 /* 1421 * If interrupt-window exiting is already in effect then don't bother 1422 * checking for pending interrupts. This is just an optimization and 1423 * not needed for correctness. 1424 */ 1425 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1426 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " 1427 "pending int_window_exiting"); 1428 return; 1429 } 1430 1431 if (!extint_pending) { 1432 /* Ask the local apic for a vector to inject */ 1433 if (!vlapic_pending_intr(vlapic, &vector)) 1434 return; 1435 1436 /* 1437 * From the Intel SDM, Volume 3, Section "Maskable 1438 * Hardware Interrupts": 1439 * - maskable interrupt vectors [16,255] can be delivered 1440 * through the local APIC. 1441 */ 1442 KASSERT(vector >= 16 && vector <= 255, 1443 ("invalid vector %d from local APIC", vector)); 1444 } else { 1445 /* Ask the legacy pic for a vector to inject */ 1446 vatpic_pending_intr(vmx->vm, &vector); 1447 1448 /* 1449 * From the Intel SDM, Volume 3, Section "Maskable 1450 * Hardware Interrupts": 1451 * - maskable interrupt vectors [0,255] can be delivered 1452 * through the INTR pin. 1453 */ 1454 KASSERT(vector >= 0 && vector <= 255, 1455 ("invalid vector %d from INTR", vector)); 1456 } 1457 1458 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1459 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1460 if ((rflags & PSL_I) == 0) { 1461 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1462 "rflags %#lx", vector, rflags); 1463 goto cantinject; 1464 } 1465 1466 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1467 if (gi & HWINTR_BLOCKING) { 1468 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1469 "Guest Interruptibility-state %#x", vector, gi); 1470 goto cantinject; 1471 } 1472 1473 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1474 if (info & VMCS_INTR_VALID) { 1475 /* 1476 * This is expected and could happen for multiple reasons: 1477 * - A vectoring VM-entry was aborted due to astpending 1478 * - A VM-exit happened during event injection. 1479 * - An exception was injected above. 1480 * - An NMI was injected above or after "NMI window exiting" 1481 */ 1482 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1483 "VM-entry intr info %#x", vector, info); 1484 goto cantinject; 1485 } 1486 1487 /* Inject the interrupt */ 1488 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1489 info |= vector; 1490 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1491 1492 if (!extint_pending) { 1493 /* Update the Local APIC ISR */ 1494 vlapic_intr_accepted(vlapic, vector); 1495 } else { 1496 vm_extint_clear(vmx->vm, vcpu); 1497 vatpic_intr_accepted(vmx->vm, vector); 1498 1499 /* 1500 * After we accepted the current ExtINT the PIC may 1501 * have posted another one. If that is the case, set 1502 * the Interrupt Window Exiting execution control so 1503 * we can inject that one too. 1504 * 1505 * Also, interrupt window exiting allows us to inject any 1506 * pending APIC vector that was preempted by the ExtINT 1507 * as soon as possible. This applies both for the software 1508 * emulated vlapic and the hardware assisted virtual APIC. 1509 */ 1510 vmx_set_int_window_exiting(vmx, vcpu); 1511 } 1512 1513 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1514 1515 return; 1516 1517 cantinject: 1518 /* 1519 * Set the Interrupt Window Exiting execution control so we can inject 1520 * the interrupt as soon as blocking condition goes away. 1521 */ 1522 vmx_set_int_window_exiting(vmx, vcpu); 1523 } 1524 1525 /* 1526 * If the Virtual NMIs execution control is '1' then the logical processor 1527 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1528 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1529 * virtual-NMI blocking. 1530 * 1531 * This unblocking occurs even if the IRET causes a fault. In this case the 1532 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1533 */ 1534 static void 1535 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) 1536 { 1537 uint32_t gi; 1538 1539 VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); 1540 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1541 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1542 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1543 } 1544 1545 static void 1546 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) 1547 { 1548 uint32_t gi; 1549 1550 VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); 1551 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1552 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1553 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1554 } 1555 1556 static void 1557 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) 1558 { 1559 uint32_t gi; 1560 1561 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1562 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1563 ("NMI blocking is not in effect %#x", gi)); 1564 } 1565 1566 static int 1567 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1568 { 1569 struct vmxctx *vmxctx; 1570 uint64_t xcrval; 1571 const struct xsave_limits *limits; 1572 1573 vmxctx = &vmx->ctx[vcpu]; 1574 limits = vmm_get_xsave_limits(); 1575 1576 /* 1577 * Note that the processor raises a GP# fault on its own if 1578 * xsetbv is executed for CPL != 0, so we do not have to 1579 * emulate that fault here. 1580 */ 1581 1582 /* Only xcr0 is supported. */ 1583 if (vmxctx->guest_rcx != 0) { 1584 vm_inject_gp(vmx->vm, vcpu); 1585 return (HANDLED); 1586 } 1587 1588 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1589 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1590 vm_inject_ud(vmx->vm, vcpu); 1591 return (HANDLED); 1592 } 1593 1594 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1595 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1596 vm_inject_gp(vmx->vm, vcpu); 1597 return (HANDLED); 1598 } 1599 1600 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1601 vm_inject_gp(vmx->vm, vcpu); 1602 return (HANDLED); 1603 } 1604 1605 /* AVX (YMM_Hi128) requires SSE. */ 1606 if (xcrval & XFEATURE_ENABLED_AVX && 1607 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1608 vm_inject_gp(vmx->vm, vcpu); 1609 return (HANDLED); 1610 } 1611 1612 /* 1613 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1614 * ZMM_Hi256, and Hi16_ZMM. 1615 */ 1616 if (xcrval & XFEATURE_AVX512 && 1617 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1618 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1619 vm_inject_gp(vmx->vm, vcpu); 1620 return (HANDLED); 1621 } 1622 1623 /* 1624 * Intel MPX requires both bound register state flags to be 1625 * set. 1626 */ 1627 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1628 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1629 vm_inject_gp(vmx->vm, vcpu); 1630 return (HANDLED); 1631 } 1632 1633 /* 1634 * This runs "inside" vmrun() with the guest's FPU state, so 1635 * modifying xcr0 directly modifies the guest's xcr0, not the 1636 * host's. 1637 */ 1638 load_xcr(0, xcrval); 1639 return (HANDLED); 1640 } 1641 1642 static uint64_t 1643 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) 1644 { 1645 const struct vmxctx *vmxctx; 1646 1647 vmxctx = &vmx->ctx[vcpu]; 1648 1649 switch (ident) { 1650 case 0: 1651 return (vmxctx->guest_rax); 1652 case 1: 1653 return (vmxctx->guest_rcx); 1654 case 2: 1655 return (vmxctx->guest_rdx); 1656 case 3: 1657 return (vmxctx->guest_rbx); 1658 case 4: 1659 return (vmcs_read(VMCS_GUEST_RSP)); 1660 case 5: 1661 return (vmxctx->guest_rbp); 1662 case 6: 1663 return (vmxctx->guest_rsi); 1664 case 7: 1665 return (vmxctx->guest_rdi); 1666 case 8: 1667 return (vmxctx->guest_r8); 1668 case 9: 1669 return (vmxctx->guest_r9); 1670 case 10: 1671 return (vmxctx->guest_r10); 1672 case 11: 1673 return (vmxctx->guest_r11); 1674 case 12: 1675 return (vmxctx->guest_r12); 1676 case 13: 1677 return (vmxctx->guest_r13); 1678 case 14: 1679 return (vmxctx->guest_r14); 1680 case 15: 1681 return (vmxctx->guest_r15); 1682 default: 1683 panic("invalid vmx register %d", ident); 1684 } 1685 } 1686 1687 static void 1688 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) 1689 { 1690 struct vmxctx *vmxctx; 1691 1692 vmxctx = &vmx->ctx[vcpu]; 1693 1694 switch (ident) { 1695 case 0: 1696 vmxctx->guest_rax = regval; 1697 break; 1698 case 1: 1699 vmxctx->guest_rcx = regval; 1700 break; 1701 case 2: 1702 vmxctx->guest_rdx = regval; 1703 break; 1704 case 3: 1705 vmxctx->guest_rbx = regval; 1706 break; 1707 case 4: 1708 vmcs_write(VMCS_GUEST_RSP, regval); 1709 break; 1710 case 5: 1711 vmxctx->guest_rbp = regval; 1712 break; 1713 case 6: 1714 vmxctx->guest_rsi = regval; 1715 break; 1716 case 7: 1717 vmxctx->guest_rdi = regval; 1718 break; 1719 case 8: 1720 vmxctx->guest_r8 = regval; 1721 break; 1722 case 9: 1723 vmxctx->guest_r9 = regval; 1724 break; 1725 case 10: 1726 vmxctx->guest_r10 = regval; 1727 break; 1728 case 11: 1729 vmxctx->guest_r11 = regval; 1730 break; 1731 case 12: 1732 vmxctx->guest_r12 = regval; 1733 break; 1734 case 13: 1735 vmxctx->guest_r13 = regval; 1736 break; 1737 case 14: 1738 vmxctx->guest_r14 = regval; 1739 break; 1740 case 15: 1741 vmxctx->guest_r15 = regval; 1742 break; 1743 default: 1744 panic("invalid vmx register %d", ident); 1745 } 1746 } 1747 1748 static int 1749 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1750 { 1751 uint64_t crval, regval; 1752 1753 /* We only handle mov to %cr0 at this time */ 1754 if ((exitqual & 0xf0) != 0x00) 1755 return (UNHANDLED); 1756 1757 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1758 1759 vmcs_write(VMCS_CR0_SHADOW, regval); 1760 1761 crval = regval | cr0_ones_mask; 1762 crval &= ~cr0_zeros_mask; 1763 vmcs_write(VMCS_GUEST_CR0, crval); 1764 1765 if (regval & CR0_PG) { 1766 uint64_t efer, entry_ctls; 1767 1768 /* 1769 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1770 * the "IA-32e mode guest" bit in VM-entry control must be 1771 * equal. 1772 */ 1773 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1774 if (efer & EFER_LME) { 1775 efer |= EFER_LMA; 1776 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1777 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1778 entry_ctls |= VM_ENTRY_GUEST_LMA; 1779 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1780 } 1781 } 1782 1783 return (HANDLED); 1784 } 1785 1786 static int 1787 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1788 { 1789 uint64_t crval, regval; 1790 1791 /* We only handle mov to %cr4 at this time */ 1792 if ((exitqual & 0xf0) != 0x00) 1793 return (UNHANDLED); 1794 1795 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1796 1797 vmcs_write(VMCS_CR4_SHADOW, regval); 1798 1799 crval = regval | cr4_ones_mask; 1800 crval &= ~cr4_zeros_mask; 1801 vmcs_write(VMCS_GUEST_CR4, crval); 1802 1803 return (HANDLED); 1804 } 1805 1806 static int 1807 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1808 { 1809 struct vlapic *vlapic; 1810 uint64_t cr8; 1811 int regnum; 1812 1813 /* We only handle mov %cr8 to/from a register at this time. */ 1814 if ((exitqual & 0xe0) != 0x00) { 1815 return (UNHANDLED); 1816 } 1817 1818 vlapic = vm_lapic(vmx->vm, vcpu); 1819 regnum = (exitqual >> 8) & 0xf; 1820 if (exitqual & 0x10) { 1821 cr8 = vlapic_get_cr8(vlapic); 1822 vmx_set_guest_reg(vmx, vcpu, regnum, cr8); 1823 } else { 1824 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); 1825 vlapic_set_cr8(vlapic, cr8); 1826 } 1827 1828 return (HANDLED); 1829 } 1830 1831 /* 1832 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1833 */ 1834 static int 1835 vmx_cpl(void) 1836 { 1837 uint32_t ssar; 1838 1839 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1840 return ((ssar >> 5) & 0x3); 1841 } 1842 1843 static enum vm_cpu_mode 1844 vmx_cpu_mode(void) 1845 { 1846 uint32_t csar; 1847 1848 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1849 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1850 if (csar & 0x2000) 1851 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1852 else 1853 return (CPU_MODE_COMPATIBILITY); 1854 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1855 return (CPU_MODE_PROTECTED); 1856 } else { 1857 return (CPU_MODE_REAL); 1858 } 1859 } 1860 1861 static enum vm_paging_mode 1862 vmx_paging_mode(void) 1863 { 1864 1865 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1866 return (PAGING_MODE_FLAT); 1867 if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) 1868 return (PAGING_MODE_32); 1869 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) 1870 return (PAGING_MODE_64); 1871 else 1872 return (PAGING_MODE_PAE); 1873 } 1874 1875 static uint64_t 1876 inout_str_index(struct vmx *vmx, int vcpuid, int in) 1877 { 1878 uint64_t val; 1879 int error; 1880 enum vm_reg_name reg; 1881 1882 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1883 error = vmx_getreg(vmx, vcpuid, reg, &val); 1884 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1885 return (val); 1886 } 1887 1888 static uint64_t 1889 inout_str_count(struct vmx *vmx, int vcpuid, int rep) 1890 { 1891 uint64_t val; 1892 int error; 1893 1894 if (rep) { 1895 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); 1896 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1897 } else { 1898 val = 1; 1899 } 1900 return (val); 1901 } 1902 1903 static int 1904 inout_str_addrsize(uint32_t inst_info) 1905 { 1906 uint32_t size; 1907 1908 size = (inst_info >> 7) & 0x7; 1909 switch (size) { 1910 case 0: 1911 return (2); /* 16 bit */ 1912 case 1: 1913 return (4); /* 32 bit */ 1914 case 2: 1915 return (8); /* 64 bit */ 1916 default: 1917 panic("%s: invalid size encoding %d", __func__, size); 1918 } 1919 } 1920 1921 static void 1922 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, 1923 struct vm_inout_str *vis) 1924 { 1925 int error, s; 1926 1927 if (in) { 1928 vis->seg_name = VM_REG_GUEST_ES; 1929 } else { 1930 s = (inst_info >> 15) & 0x7; 1931 vis->seg_name = vm_segment_name(s); 1932 } 1933 1934 error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); 1935 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 1936 } 1937 1938 static void 1939 vmx_paging_info(struct vm_guest_paging *paging) 1940 { 1941 paging->cr3 = vmcs_guest_cr3(); 1942 paging->cpl = vmx_cpl(); 1943 paging->cpu_mode = vmx_cpu_mode(); 1944 paging->paging_mode = vmx_paging_mode(); 1945 } 1946 1947 static void 1948 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 1949 { 1950 struct vm_guest_paging *paging; 1951 uint32_t csar; 1952 1953 paging = &vmexit->u.inst_emul.paging; 1954 1955 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1956 vmexit->inst_length = 0; 1957 vmexit->u.inst_emul.gpa = gpa; 1958 vmexit->u.inst_emul.gla = gla; 1959 vmx_paging_info(paging); 1960 switch (paging->cpu_mode) { 1961 case CPU_MODE_REAL: 1962 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1963 vmexit->u.inst_emul.cs_d = 0; 1964 break; 1965 case CPU_MODE_PROTECTED: 1966 case CPU_MODE_COMPATIBILITY: 1967 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1968 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1969 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 1970 break; 1971 default: 1972 vmexit->u.inst_emul.cs_base = 0; 1973 vmexit->u.inst_emul.cs_d = 0; 1974 break; 1975 } 1976 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 1977 } 1978 1979 static int 1980 ept_fault_type(uint64_t ept_qual) 1981 { 1982 int fault_type; 1983 1984 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1985 fault_type = VM_PROT_WRITE; 1986 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1987 fault_type = VM_PROT_EXECUTE; 1988 else 1989 fault_type= VM_PROT_READ; 1990 1991 return (fault_type); 1992 } 1993 1994 static bool 1995 ept_emulation_fault(uint64_t ept_qual) 1996 { 1997 int read, write; 1998 1999 /* EPT fault on an instruction fetch doesn't make sense here */ 2000 if (ept_qual & EPT_VIOLATION_INST_FETCH) 2001 return (false); 2002 2003 /* EPT fault must be a read fault or a write fault */ 2004 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 2005 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 2006 if ((read | write) == 0) 2007 return (false); 2008 2009 /* 2010 * The EPT violation must have been caused by accessing a 2011 * guest-physical address that is a translation of a guest-linear 2012 * address. 2013 */ 2014 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 2015 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 2016 return (false); 2017 } 2018 2019 return (true); 2020 } 2021 2022 static __inline int 2023 apic_access_virtualization(struct vmx *vmx, int vcpuid) 2024 { 2025 uint32_t proc_ctls2; 2026 2027 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2028 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 2029 } 2030 2031 static __inline int 2032 x2apic_virtualization(struct vmx *vmx, int vcpuid) 2033 { 2034 uint32_t proc_ctls2; 2035 2036 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2037 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 2038 } 2039 2040 static int 2041 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, 2042 uint64_t qual) 2043 { 2044 int error, handled, offset; 2045 uint32_t *apic_regs, vector; 2046 bool retu; 2047 2048 handled = HANDLED; 2049 offset = APIC_WRITE_OFFSET(qual); 2050 2051 if (!apic_access_virtualization(vmx, vcpuid)) { 2052 /* 2053 * In general there should not be any APIC write VM-exits 2054 * unless APIC-access virtualization is enabled. 2055 * 2056 * However self-IPI virtualization can legitimately trigger 2057 * an APIC-write VM-exit so treat it specially. 2058 */ 2059 if (x2apic_virtualization(vmx, vcpuid) && 2060 offset == APIC_OFFSET_SELF_IPI) { 2061 apic_regs = (uint32_t *)(vlapic->apic_page); 2062 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 2063 vlapic_self_ipi_handler(vlapic, vector); 2064 return (HANDLED); 2065 } else 2066 return (UNHANDLED); 2067 } 2068 2069 switch (offset) { 2070 case APIC_OFFSET_ID: 2071 vlapic_id_write_handler(vlapic); 2072 break; 2073 case APIC_OFFSET_LDR: 2074 vlapic_ldr_write_handler(vlapic); 2075 break; 2076 case APIC_OFFSET_DFR: 2077 vlapic_dfr_write_handler(vlapic); 2078 break; 2079 case APIC_OFFSET_SVR: 2080 vlapic_svr_write_handler(vlapic); 2081 break; 2082 case APIC_OFFSET_ESR: 2083 vlapic_esr_write_handler(vlapic); 2084 break; 2085 case APIC_OFFSET_ICR_LOW: 2086 retu = false; 2087 error = vlapic_icrlo_write_handler(vlapic, &retu); 2088 if (error != 0 || retu) 2089 handled = UNHANDLED; 2090 break; 2091 case APIC_OFFSET_CMCI_LVT: 2092 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 2093 vlapic_lvt_write_handler(vlapic, offset); 2094 break; 2095 case APIC_OFFSET_TIMER_ICR: 2096 vlapic_icrtmr_write_handler(vlapic); 2097 break; 2098 case APIC_OFFSET_TIMER_DCR: 2099 vlapic_dcr_write_handler(vlapic); 2100 break; 2101 default: 2102 handled = UNHANDLED; 2103 break; 2104 } 2105 return (handled); 2106 } 2107 2108 static bool 2109 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) 2110 { 2111 2112 if (apic_access_virtualization(vmx, vcpuid) && 2113 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 2114 return (true); 2115 else 2116 return (false); 2117 } 2118 2119 static int 2120 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2121 { 2122 uint64_t qual; 2123 int access_type, offset, allowed; 2124 2125 if (!apic_access_virtualization(vmx, vcpuid)) 2126 return (UNHANDLED); 2127 2128 qual = vmexit->u.vmx.exit_qualification; 2129 access_type = APIC_ACCESS_TYPE(qual); 2130 offset = APIC_ACCESS_OFFSET(qual); 2131 2132 allowed = 0; 2133 if (access_type == 0) { 2134 /* 2135 * Read data access to the following registers is expected. 2136 */ 2137 switch (offset) { 2138 case APIC_OFFSET_APR: 2139 case APIC_OFFSET_PPR: 2140 case APIC_OFFSET_RRR: 2141 case APIC_OFFSET_CMCI_LVT: 2142 case APIC_OFFSET_TIMER_CCR: 2143 allowed = 1; 2144 break; 2145 default: 2146 break; 2147 } 2148 } else if (access_type == 1) { 2149 /* 2150 * Write data access to the following registers is expected. 2151 */ 2152 switch (offset) { 2153 case APIC_OFFSET_VER: 2154 case APIC_OFFSET_APR: 2155 case APIC_OFFSET_PPR: 2156 case APIC_OFFSET_RRR: 2157 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 2158 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 2159 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 2160 case APIC_OFFSET_CMCI_LVT: 2161 case APIC_OFFSET_TIMER_CCR: 2162 allowed = 1; 2163 break; 2164 default: 2165 break; 2166 } 2167 } 2168 2169 if (allowed) { 2170 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 2171 VIE_INVALID_GLA); 2172 } 2173 2174 /* 2175 * Regardless of whether the APIC-access is allowed this handler 2176 * always returns UNHANDLED: 2177 * - if the access is allowed then it is handled by emulating the 2178 * instruction that caused the VM-exit (outside the critical section) 2179 * - if the access is not allowed then it will be converted to an 2180 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 2181 */ 2182 return (UNHANDLED); 2183 } 2184 2185 static enum task_switch_reason 2186 vmx_task_switch_reason(uint64_t qual) 2187 { 2188 int reason; 2189 2190 reason = (qual >> 30) & 0x3; 2191 switch (reason) { 2192 case 0: 2193 return (TSR_CALL); 2194 case 1: 2195 return (TSR_IRET); 2196 case 2: 2197 return (TSR_JMP); 2198 case 3: 2199 return (TSR_IDT_GATE); 2200 default: 2201 panic("%s: invalid reason %d", __func__, reason); 2202 } 2203 } 2204 2205 static int 2206 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) 2207 { 2208 int error; 2209 2210 if (lapic_msr(num)) 2211 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); 2212 else 2213 error = vmx_wrmsr(vmx, vcpuid, num, val, retu); 2214 2215 return (error); 2216 } 2217 2218 static int 2219 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) 2220 { 2221 struct vmxctx *vmxctx; 2222 uint64_t result; 2223 uint32_t eax, edx; 2224 int error; 2225 2226 if (lapic_msr(num)) 2227 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); 2228 else 2229 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); 2230 2231 if (error == 0) { 2232 eax = result; 2233 vmxctx = &vmx->ctx[vcpuid]; 2234 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2235 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2236 2237 edx = result >> 32; 2238 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2239 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2240 } 2241 2242 return (error); 2243 } 2244 2245 static int 2246 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 2247 { 2248 int error, errcode, errcode_valid, handled, in; 2249 struct vmxctx *vmxctx; 2250 struct vlapic *vlapic; 2251 struct vm_inout_str *vis; 2252 struct vm_task_switch *ts; 2253 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2254 uint32_t intr_type, intr_vec, reason; 2255 uint64_t exitintinfo, qual, gpa; 2256 bool retu; 2257 2258 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2259 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2260 2261 handled = UNHANDLED; 2262 vmxctx = &vmx->ctx[vcpu]; 2263 2264 qual = vmexit->u.vmx.exit_qualification; 2265 reason = vmexit->u.vmx.exit_reason; 2266 vmexit->exitcode = VM_EXITCODE_BOGUS; 2267 2268 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 2269 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit); 2270 2271 /* 2272 * VM-entry failures during or after loading guest state. 2273 * 2274 * These VM-exits are uncommon but must be handled specially 2275 * as most VM-exit fields are not populated as usual. 2276 */ 2277 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2278 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); 2279 __asm __volatile("int $18"); 2280 return (1); 2281 } 2282 2283 /* 2284 * VM exits that can be triggered during event delivery need to 2285 * be handled specially by re-injecting the event if the IDT 2286 * vectoring information field's valid bit is set. 2287 * 2288 * See "Information for VM Exits During Event Delivery" in Intel SDM 2289 * for details. 2290 */ 2291 idtvec_info = vmcs_idt_vectoring_info(); 2292 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2293 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2294 exitintinfo = idtvec_info; 2295 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2296 idtvec_err = vmcs_idt_vectoring_err(); 2297 exitintinfo |= (uint64_t)idtvec_err << 32; 2298 } 2299 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); 2300 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2301 __func__, error)); 2302 2303 /* 2304 * If 'virtual NMIs' are being used and the VM-exit 2305 * happened while injecting an NMI during the previous 2306 * VM-entry, then clear "blocking by NMI" in the 2307 * Guest Interruptibility-State so the NMI can be 2308 * reinjected on the subsequent VM-entry. 2309 * 2310 * However, if the NMI was being delivered through a task 2311 * gate, then the new task must start execution with NMIs 2312 * blocked so don't clear NMI blocking in this case. 2313 */ 2314 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2315 if (intr_type == VMCS_INTR_T_NMI) { 2316 if (reason != EXIT_REASON_TASK_SWITCH) 2317 vmx_clear_nmi_blocking(vmx, vcpu); 2318 else 2319 vmx_assert_nmi_blocking(vmx, vcpu); 2320 } 2321 2322 /* 2323 * Update VM-entry instruction length if the event being 2324 * delivered was a software interrupt or software exception. 2325 */ 2326 if (intr_type == VMCS_INTR_T_SWINTR || 2327 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2328 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2329 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2330 } 2331 } 2332 2333 switch (reason) { 2334 case EXIT_REASON_TASK_SWITCH: 2335 ts = &vmexit->u.task_switch; 2336 ts->tsssel = qual & 0xffff; 2337 ts->reason = vmx_task_switch_reason(qual); 2338 ts->ext = 0; 2339 ts->errcode_valid = 0; 2340 vmx_paging_info(&ts->paging); 2341 /* 2342 * If the task switch was due to a CALL, JMP, IRET, software 2343 * interrupt (INT n) or software exception (INT3, INTO), 2344 * then the saved %rip references the instruction that caused 2345 * the task switch. The instruction length field in the VMCS 2346 * is valid in this case. 2347 * 2348 * In all other cases (e.g., NMI, hardware exception) the 2349 * saved %rip is one that would have been saved in the old TSS 2350 * had the task switch completed normally so the instruction 2351 * length field is not needed in this case and is explicitly 2352 * set to 0. 2353 */ 2354 if (ts->reason == TSR_IDT_GATE) { 2355 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2356 ("invalid idtvec_info %#x for IDT task switch", 2357 idtvec_info)); 2358 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2359 if (intr_type != VMCS_INTR_T_SWINTR && 2360 intr_type != VMCS_INTR_T_SWEXCEPTION && 2361 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2362 /* Task switch triggered by external event */ 2363 ts->ext = 1; 2364 vmexit->inst_length = 0; 2365 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2366 ts->errcode_valid = 1; 2367 ts->errcode = vmcs_idt_vectoring_err(); 2368 } 2369 } 2370 } 2371 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2372 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts); 2373 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " 2374 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2375 ts->ext ? "external" : "internal", 2376 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2377 break; 2378 case EXIT_REASON_CR_ACCESS: 2379 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 2380 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual); 2381 switch (qual & 0xf) { 2382 case 0: 2383 handled = vmx_emulate_cr0_access(vmx, vcpu, qual); 2384 break; 2385 case 4: 2386 handled = vmx_emulate_cr4_access(vmx, vcpu, qual); 2387 break; 2388 case 8: 2389 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2390 break; 2391 } 2392 break; 2393 case EXIT_REASON_RDMSR: 2394 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 2395 retu = false; 2396 ecx = vmxctx->guest_rcx; 2397 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); 2398 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx); 2399 error = emulate_rdmsr(vmx, vcpu, ecx, &retu); 2400 if (error) { 2401 vmexit->exitcode = VM_EXITCODE_RDMSR; 2402 vmexit->u.msr.code = ecx; 2403 } else if (!retu) { 2404 handled = HANDLED; 2405 } else { 2406 /* Return to userspace with a valid exitcode */ 2407 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2408 ("emulate_rdmsr retu with bogus exitcode")); 2409 } 2410 break; 2411 case EXIT_REASON_WRMSR: 2412 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 2413 retu = false; 2414 eax = vmxctx->guest_rax; 2415 ecx = vmxctx->guest_rcx; 2416 edx = vmxctx->guest_rdx; 2417 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", 2418 ecx, (uint64_t)edx << 32 | eax); 2419 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx, 2420 (uint64_t)edx << 32 | eax); 2421 error = emulate_wrmsr(vmx, vcpu, ecx, 2422 (uint64_t)edx << 32 | eax, &retu); 2423 if (error) { 2424 vmexit->exitcode = VM_EXITCODE_WRMSR; 2425 vmexit->u.msr.code = ecx; 2426 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2427 } else if (!retu) { 2428 handled = HANDLED; 2429 } else { 2430 /* Return to userspace with a valid exitcode */ 2431 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2432 ("emulate_wrmsr retu with bogus exitcode")); 2433 } 2434 break; 2435 case EXIT_REASON_HLT: 2436 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 2437 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit); 2438 vmexit->exitcode = VM_EXITCODE_HLT; 2439 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2440 if (virtual_interrupt_delivery) 2441 vmexit->u.hlt.intr_status = 2442 vmcs_read(VMCS_GUEST_INTR_STATUS); 2443 else 2444 vmexit->u.hlt.intr_status = 0; 2445 break; 2446 case EXIT_REASON_MTF: 2447 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 2448 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit); 2449 vmexit->exitcode = VM_EXITCODE_MTRAP; 2450 vmexit->inst_length = 0; 2451 break; 2452 case EXIT_REASON_PAUSE: 2453 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 2454 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit); 2455 vmexit->exitcode = VM_EXITCODE_PAUSE; 2456 break; 2457 case EXIT_REASON_INTR_WINDOW: 2458 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 2459 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit); 2460 vmx_clear_int_window_exiting(vmx, vcpu); 2461 return (1); 2462 case EXIT_REASON_EXT_INTR: 2463 /* 2464 * External interrupts serve only to cause VM exits and allow 2465 * the host interrupt handler to run. 2466 * 2467 * If this external interrupt triggers a virtual interrupt 2468 * to a VM, then that state will be recorded by the 2469 * host interrupt handler in the VM's softc. We will inject 2470 * this virtual interrupt during the subsequent VM enter. 2471 */ 2472 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2473 SDT_PROBE4(vmm, vmx, exit, interrupt, 2474 vmx, vcpu, vmexit, intr_info); 2475 2476 /* 2477 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2478 * This appears to be a bug in VMware Fusion? 2479 */ 2480 if (!(intr_info & VMCS_INTR_VALID)) 2481 return (1); 2482 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2483 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2484 ("VM exit interruption info invalid: %#x", intr_info)); 2485 vmx_trigger_hostintr(intr_info & 0xff); 2486 2487 /* 2488 * This is special. We want to treat this as an 'handled' 2489 * VM-exit but not increment the instruction pointer. 2490 */ 2491 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 2492 return (1); 2493 case EXIT_REASON_NMI_WINDOW: 2494 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit); 2495 /* Exit to allow the pending virtual NMI to be injected */ 2496 if (vm_nmi_pending(vmx->vm, vcpu)) 2497 vmx_inject_nmi(vmx, vcpu); 2498 vmx_clear_nmi_window_exiting(vmx, vcpu); 2499 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 2500 return (1); 2501 case EXIT_REASON_INOUT: 2502 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 2503 vmexit->exitcode = VM_EXITCODE_INOUT; 2504 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2505 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2506 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2507 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2508 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2509 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2510 if (vmexit->u.inout.string) { 2511 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2512 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2513 vis = &vmexit->u.inout_str; 2514 vmx_paging_info(&vis->paging); 2515 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2516 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2517 vis->index = inout_str_index(vmx, vcpu, in); 2518 vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); 2519 vis->addrsize = inout_str_addrsize(inst_info); 2520 inout_str_seginfo(vmx, vcpu, inst_info, in, vis); 2521 } 2522 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit); 2523 break; 2524 case EXIT_REASON_CPUID: 2525 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 2526 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit); 2527 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 2528 break; 2529 case EXIT_REASON_EXCEPTION: 2530 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); 2531 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2532 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2533 ("VM exit interruption info invalid: %#x", intr_info)); 2534 2535 intr_vec = intr_info & 0xff; 2536 intr_type = intr_info & VMCS_INTR_T_MASK; 2537 2538 /* 2539 * If Virtual NMIs control is 1 and the VM-exit is due to a 2540 * fault encountered during the execution of IRET then we must 2541 * restore the state of "virtual-NMI blocking" before resuming 2542 * the guest. 2543 * 2544 * See "Resuming Guest Software after Handling an Exception". 2545 * See "Information for VM Exits Due to Vectored Events". 2546 */ 2547 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2548 (intr_vec != IDT_DF) && 2549 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2550 vmx_restore_nmi_blocking(vmx, vcpu); 2551 2552 /* 2553 * The NMI has already been handled in vmx_exit_handle_nmi(). 2554 */ 2555 if (intr_type == VMCS_INTR_T_NMI) 2556 return (1); 2557 2558 /* 2559 * Call the machine check handler by hand. Also don't reflect 2560 * the machine check back into the guest. 2561 */ 2562 if (intr_vec == IDT_MC) { 2563 VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); 2564 __asm __volatile("int $18"); 2565 return (1); 2566 } 2567 2568 /* 2569 * If the hypervisor has requested user exits for 2570 * debug exceptions, bounce them out to userland. 2571 */ 2572 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP && 2573 (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) { 2574 vmexit->exitcode = VM_EXITCODE_BPT; 2575 vmexit->u.bpt.inst_length = vmexit->inst_length; 2576 vmexit->inst_length = 0; 2577 break; 2578 } 2579 2580 if (intr_vec == IDT_PF) { 2581 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2582 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2583 __func__, error)); 2584 } 2585 2586 /* 2587 * Software exceptions exhibit trap-like behavior. This in 2588 * turn requires populating the VM-entry instruction length 2589 * so that the %rip in the trap frame is past the INT3/INTO 2590 * instruction. 2591 */ 2592 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2593 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2594 2595 /* Reflect all other exceptions back into the guest */ 2596 errcode_valid = errcode = 0; 2597 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2598 errcode_valid = 1; 2599 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2600 } 2601 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " 2602 "the guest", intr_vec, errcode); 2603 SDT_PROBE5(vmm, vmx, exit, exception, 2604 vmx, vcpu, vmexit, intr_vec, errcode); 2605 error = vm_inject_exception(vmx->vm, vcpu, intr_vec, 2606 errcode_valid, errcode, 0); 2607 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2608 __func__, error)); 2609 return (1); 2610 2611 case EXIT_REASON_EPT_FAULT: 2612 /* 2613 * If 'gpa' lies within the address space allocated to 2614 * memory then this must be a nested page fault otherwise 2615 * this must be an instruction that accesses MMIO space. 2616 */ 2617 gpa = vmcs_gpa(); 2618 if (vm_mem_allocated(vmx->vm, vcpu, gpa) || 2619 apic_access_fault(vmx, vcpu, gpa)) { 2620 vmexit->exitcode = VM_EXITCODE_PAGING; 2621 vmexit->inst_length = 0; 2622 vmexit->u.paging.gpa = gpa; 2623 vmexit->u.paging.fault_type = ept_fault_type(qual); 2624 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 2625 SDT_PROBE5(vmm, vmx, exit, nestedfault, 2626 vmx, vcpu, vmexit, gpa, qual); 2627 } else if (ept_emulation_fault(qual)) { 2628 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2629 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); 2630 SDT_PROBE4(vmm, vmx, exit, mmiofault, 2631 vmx, vcpu, vmexit, gpa); 2632 } 2633 /* 2634 * If Virtual NMIs control is 1 and the VM-exit is due to an 2635 * EPT fault during the execution of IRET then we must restore 2636 * the state of "virtual-NMI blocking" before resuming. 2637 * 2638 * See description of "NMI unblocking due to IRET" in 2639 * "Exit Qualification for EPT Violations". 2640 */ 2641 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2642 (qual & EXIT_QUAL_NMIUDTI) != 0) 2643 vmx_restore_nmi_blocking(vmx, vcpu); 2644 break; 2645 case EXIT_REASON_VIRTUALIZED_EOI: 2646 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2647 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2648 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit); 2649 vmexit->inst_length = 0; /* trap-like */ 2650 break; 2651 case EXIT_REASON_APIC_ACCESS: 2652 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit); 2653 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 2654 break; 2655 case EXIT_REASON_APIC_WRITE: 2656 /* 2657 * APIC-write VM exit is trap-like so the %rip is already 2658 * pointing to the next instruction. 2659 */ 2660 vmexit->inst_length = 0; 2661 vlapic = vm_lapic(vmx->vm, vcpu); 2662 SDT_PROBE4(vmm, vmx, exit, apicwrite, 2663 vmx, vcpu, vmexit, vlapic); 2664 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); 2665 break; 2666 case EXIT_REASON_XSETBV: 2667 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit); 2668 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2669 break; 2670 case EXIT_REASON_MONITOR: 2671 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit); 2672 vmexit->exitcode = VM_EXITCODE_MONITOR; 2673 break; 2674 case EXIT_REASON_MWAIT: 2675 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit); 2676 vmexit->exitcode = VM_EXITCODE_MWAIT; 2677 break; 2678 case EXIT_REASON_TPR: 2679 vlapic = vm_lapic(vmx->vm, vcpu); 2680 vlapic_sync_tpr(vlapic); 2681 vmexit->inst_length = 0; 2682 handled = HANDLED; 2683 break; 2684 case EXIT_REASON_VMCALL: 2685 case EXIT_REASON_VMCLEAR: 2686 case EXIT_REASON_VMLAUNCH: 2687 case EXIT_REASON_VMPTRLD: 2688 case EXIT_REASON_VMPTRST: 2689 case EXIT_REASON_VMREAD: 2690 case EXIT_REASON_VMRESUME: 2691 case EXIT_REASON_VMWRITE: 2692 case EXIT_REASON_VMXOFF: 2693 case EXIT_REASON_VMXON: 2694 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit); 2695 vmexit->exitcode = VM_EXITCODE_VMINSN; 2696 break; 2697 default: 2698 SDT_PROBE4(vmm, vmx, exit, unknown, 2699 vmx, vcpu, vmexit, reason); 2700 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 2701 break; 2702 } 2703 2704 if (handled) { 2705 /* 2706 * It is possible that control is returned to userland 2707 * even though we were able to handle the VM exit in the 2708 * kernel. 2709 * 2710 * In such a case we want to make sure that the userland 2711 * restarts guest execution at the instruction *after* 2712 * the one we just processed. Therefore we update the 2713 * guest rip in the VMCS and in 'vmexit'. 2714 */ 2715 vmexit->rip += vmexit->inst_length; 2716 vmexit->inst_length = 0; 2717 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2718 } else { 2719 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2720 /* 2721 * If this VM exit was not claimed by anybody then 2722 * treat it as a generic VMX exit. 2723 */ 2724 vmexit->exitcode = VM_EXITCODE_VMX; 2725 vmexit->u.vmx.status = VM_SUCCESS; 2726 vmexit->u.vmx.inst_type = 0; 2727 vmexit->u.vmx.inst_error = 0; 2728 } else { 2729 /* 2730 * The exitcode and collateral have been populated. 2731 * The VM exit will be processed further in userland. 2732 */ 2733 } 2734 } 2735 2736 SDT_PROBE4(vmm, vmx, exit, return, 2737 vmx, vcpu, vmexit, handled); 2738 return (handled); 2739 } 2740 2741 static __inline void 2742 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2743 { 2744 2745 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2746 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2747 vmxctx->inst_fail_status)); 2748 2749 vmexit->inst_length = 0; 2750 vmexit->exitcode = VM_EXITCODE_VMX; 2751 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2752 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2753 vmexit->u.vmx.exit_reason = ~0; 2754 vmexit->u.vmx.exit_qualification = ~0; 2755 2756 switch (rc) { 2757 case VMX_VMRESUME_ERROR: 2758 case VMX_VMLAUNCH_ERROR: 2759 case VMX_INVEPT_ERROR: 2760 vmexit->u.vmx.inst_type = rc; 2761 break; 2762 default: 2763 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2764 } 2765 } 2766 2767 /* 2768 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2769 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2770 * sufficient to simply vector to the NMI handler via a software interrupt. 2771 * However, this must be done before maskable interrupts are enabled 2772 * otherwise the "iret" issued by an interrupt handler will incorrectly 2773 * clear NMI blocking. 2774 */ 2775 static __inline void 2776 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2777 { 2778 uint32_t intr_info; 2779 2780 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2781 2782 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2783 return; 2784 2785 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2786 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2787 ("VM exit interruption info invalid: %#x", intr_info)); 2788 2789 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2790 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2791 "to NMI has invalid vector: %#x", intr_info)); 2792 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); 2793 __asm __volatile("int $2"); 2794 } 2795 } 2796 2797 static __inline void 2798 vmx_dr_enter_guest(struct vmxctx *vmxctx) 2799 { 2800 register_t rflags; 2801 2802 /* Save host control debug registers. */ 2803 vmxctx->host_dr7 = rdr7(); 2804 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 2805 2806 /* 2807 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 2808 * exceptions in the host based on the guest DRx values. The 2809 * guest DR7 and DEBUGCTL are saved/restored in the VMCS. 2810 */ 2811 load_dr7(0); 2812 wrmsr(MSR_DEBUGCTLMSR, 0); 2813 2814 /* 2815 * Disable single stepping the kernel to avoid corrupting the 2816 * guest DR6. A debugger might still be able to corrupt the 2817 * guest DR6 by setting a breakpoint after this point and then 2818 * single stepping. 2819 */ 2820 rflags = read_rflags(); 2821 vmxctx->host_tf = rflags & PSL_T; 2822 write_rflags(rflags & ~PSL_T); 2823 2824 /* Save host debug registers. */ 2825 vmxctx->host_dr0 = rdr0(); 2826 vmxctx->host_dr1 = rdr1(); 2827 vmxctx->host_dr2 = rdr2(); 2828 vmxctx->host_dr3 = rdr3(); 2829 vmxctx->host_dr6 = rdr6(); 2830 2831 /* Restore guest debug registers. */ 2832 load_dr0(vmxctx->guest_dr0); 2833 load_dr1(vmxctx->guest_dr1); 2834 load_dr2(vmxctx->guest_dr2); 2835 load_dr3(vmxctx->guest_dr3); 2836 load_dr6(vmxctx->guest_dr6); 2837 } 2838 2839 static __inline void 2840 vmx_dr_leave_guest(struct vmxctx *vmxctx) 2841 { 2842 2843 /* Save guest debug registers. */ 2844 vmxctx->guest_dr0 = rdr0(); 2845 vmxctx->guest_dr1 = rdr1(); 2846 vmxctx->guest_dr2 = rdr2(); 2847 vmxctx->guest_dr3 = rdr3(); 2848 vmxctx->guest_dr6 = rdr6(); 2849 2850 /* 2851 * Restore host debug registers. Restore DR7, DEBUGCTL, and 2852 * PSL_T last. 2853 */ 2854 load_dr0(vmxctx->host_dr0); 2855 load_dr1(vmxctx->host_dr1); 2856 load_dr2(vmxctx->host_dr2); 2857 load_dr3(vmxctx->host_dr3); 2858 load_dr6(vmxctx->host_dr6); 2859 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl); 2860 load_dr7(vmxctx->host_dr7); 2861 write_rflags(read_rflags() | vmxctx->host_tf); 2862 } 2863 2864 static int 2865 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap, 2866 struct vm_eventinfo *evinfo) 2867 { 2868 int rc, handled, launched; 2869 struct vmx *vmx; 2870 struct vm *vm; 2871 struct vmxctx *vmxctx; 2872 struct vmcs *vmcs; 2873 struct vm_exit *vmexit; 2874 struct vlapic *vlapic; 2875 uint32_t exit_reason; 2876 struct region_descriptor gdtr, idtr; 2877 uint16_t ldt_sel; 2878 2879 vmx = arg; 2880 vm = vmx->vm; 2881 vmcs = &vmx->vmcs[vcpu]; 2882 vmxctx = &vmx->ctx[vcpu]; 2883 vlapic = vm_lapic(vm, vcpu); 2884 vmexit = vm_exitinfo(vm, vcpu); 2885 launched = 0; 2886 2887 KASSERT(vmxctx->pmap == pmap, 2888 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 2889 2890 vmx_msr_guest_enter(vmx, vcpu); 2891 2892 VMPTRLD(vmcs); 2893 2894 /* 2895 * XXX 2896 * We do this every time because we may setup the virtual machine 2897 * from a different process than the one that actually runs it. 2898 * 2899 * If the life of a virtual machine was spent entirely in the context 2900 * of a single process we could do this once in vmx_vminit(). 2901 */ 2902 vmcs_write(VMCS_HOST_CR3, rcr3()); 2903 2904 vmcs_write(VMCS_GUEST_RIP, rip); 2905 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 2906 do { 2907 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " 2908 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); 2909 2910 handled = UNHANDLED; 2911 /* 2912 * Interrupts are disabled from this point on until the 2913 * guest starts executing. This is done for the following 2914 * reasons: 2915 * 2916 * If an AST is asserted on this thread after the check below, 2917 * then the IPI_AST notification will not be lost, because it 2918 * will cause a VM exit due to external interrupt as soon as 2919 * the guest state is loaded. 2920 * 2921 * A posted interrupt after 'vmx_inject_interrupts()' will 2922 * not be "lost" because it will be held pending in the host 2923 * APIC because interrupts are disabled. The pending interrupt 2924 * will be recognized as soon as the guest state is loaded. 2925 * 2926 * The same reasoning applies to the IPI generated by 2927 * pmap_invalidate_ept(). 2928 */ 2929 disable_intr(); 2930 vmx_inject_interrupts(vmx, vcpu, vlapic, rip); 2931 2932 /* 2933 * Check for vcpu suspension after injecting events because 2934 * vmx_inject_interrupts() can suspend the vcpu due to a 2935 * triple fault. 2936 */ 2937 if (vcpu_suspended(evinfo)) { 2938 enable_intr(); 2939 vm_exit_suspended(vmx->vm, vcpu, rip); 2940 break; 2941 } 2942 2943 if (vcpu_rendezvous_pending(evinfo)) { 2944 enable_intr(); 2945 vm_exit_rendezvous(vmx->vm, vcpu, rip); 2946 break; 2947 } 2948 2949 if (vcpu_reqidle(evinfo)) { 2950 enable_intr(); 2951 vm_exit_reqidle(vmx->vm, vcpu, rip); 2952 break; 2953 } 2954 2955 if (vcpu_should_yield(vm, vcpu)) { 2956 enable_intr(); 2957 vm_exit_astpending(vmx->vm, vcpu, rip); 2958 vmx_astpending_trace(vmx, vcpu, rip); 2959 handled = HANDLED; 2960 break; 2961 } 2962 2963 if (vcpu_debugged(vm, vcpu)) { 2964 enable_intr(); 2965 vm_exit_debug(vmx->vm, vcpu, rip); 2966 break; 2967 } 2968 2969 /* 2970 * If TPR Shadowing is enabled, the TPR Threshold 2971 * must be updated right before entering the guest. 2972 */ 2973 if (tpr_shadowing && !virtual_interrupt_delivery) { 2974 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) { 2975 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic)); 2976 } 2977 } 2978 2979 /* 2980 * VM exits restore the base address but not the 2981 * limits of GDTR and IDTR. The VMCS only stores the 2982 * base address, so VM exits set the limits to 0xffff. 2983 * Save and restore the full GDTR and IDTR to restore 2984 * the limits. 2985 * 2986 * The VMCS does not save the LDTR at all, and VM 2987 * exits clear LDTR as if a NULL selector were loaded. 2988 * The userspace hypervisor probably doesn't use a 2989 * LDT, but save and restore it to be safe. 2990 */ 2991 sgdt(&gdtr); 2992 sidt(&idtr); 2993 ldt_sel = sldt(); 2994 2995 vmx_run_trace(vmx, vcpu); 2996 vmx_dr_enter_guest(vmxctx); 2997 rc = vmx_enter_guest(vmxctx, vmx, launched); 2998 vmx_dr_leave_guest(vmxctx); 2999 3000 bare_lgdt(&gdtr); 3001 lidt(&idtr); 3002 lldt(ldt_sel); 3003 3004 /* Collect some information for VM exit processing */ 3005 vmexit->rip = rip = vmcs_guest_rip(); 3006 vmexit->inst_length = vmexit_instruction_length(); 3007 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 3008 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 3009 3010 /* Update 'nextrip' */ 3011 vmx->state[vcpu].nextrip = rip; 3012 3013 if (rc == VMX_GUEST_VMEXIT) { 3014 vmx_exit_handle_nmi(vmx, vcpu, vmexit); 3015 enable_intr(); 3016 handled = vmx_exit_process(vmx, vcpu, vmexit); 3017 } else { 3018 enable_intr(); 3019 vmx_exit_inst_error(vmxctx, rc, vmexit); 3020 } 3021 launched = 1; 3022 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 3023 rip = vmexit->rip; 3024 } while (handled); 3025 3026 /* 3027 * If a VM exit has been handled then the exitcode must be BOGUS 3028 * If a VM exit is not handled then the exitcode must not be BOGUS 3029 */ 3030 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 3031 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 3032 panic("Mismatch between handled (%d) and exitcode (%d)", 3033 handled, vmexit->exitcode); 3034 } 3035 3036 if (!handled) 3037 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); 3038 3039 VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", 3040 vmexit->exitcode); 3041 3042 VMCLEAR(vmcs); 3043 vmx_msr_guest_exit(vmx, vcpu); 3044 3045 return (0); 3046 } 3047 3048 static void 3049 vmx_vmcleanup(void *arg) 3050 { 3051 int i; 3052 struct vmx *vmx = arg; 3053 uint16_t maxcpus; 3054 3055 if (apic_access_virtualization(vmx, 0)) 3056 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3057 3058 maxcpus = vm_get_maxcpus(vmx->vm); 3059 for (i = 0; i < maxcpus; i++) 3060 vpid_free(vmx->state[i].vpid); 3061 3062 free(vmx, M_VMX); 3063 3064 return; 3065 } 3066 3067 static register_t * 3068 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 3069 { 3070 3071 switch (reg) { 3072 case VM_REG_GUEST_RAX: 3073 return (&vmxctx->guest_rax); 3074 case VM_REG_GUEST_RBX: 3075 return (&vmxctx->guest_rbx); 3076 case VM_REG_GUEST_RCX: 3077 return (&vmxctx->guest_rcx); 3078 case VM_REG_GUEST_RDX: 3079 return (&vmxctx->guest_rdx); 3080 case VM_REG_GUEST_RSI: 3081 return (&vmxctx->guest_rsi); 3082 case VM_REG_GUEST_RDI: 3083 return (&vmxctx->guest_rdi); 3084 case VM_REG_GUEST_RBP: 3085 return (&vmxctx->guest_rbp); 3086 case VM_REG_GUEST_R8: 3087 return (&vmxctx->guest_r8); 3088 case VM_REG_GUEST_R9: 3089 return (&vmxctx->guest_r9); 3090 case VM_REG_GUEST_R10: 3091 return (&vmxctx->guest_r10); 3092 case VM_REG_GUEST_R11: 3093 return (&vmxctx->guest_r11); 3094 case VM_REG_GUEST_R12: 3095 return (&vmxctx->guest_r12); 3096 case VM_REG_GUEST_R13: 3097 return (&vmxctx->guest_r13); 3098 case VM_REG_GUEST_R14: 3099 return (&vmxctx->guest_r14); 3100 case VM_REG_GUEST_R15: 3101 return (&vmxctx->guest_r15); 3102 case VM_REG_GUEST_CR2: 3103 return (&vmxctx->guest_cr2); 3104 case VM_REG_GUEST_DR0: 3105 return (&vmxctx->guest_dr0); 3106 case VM_REG_GUEST_DR1: 3107 return (&vmxctx->guest_dr1); 3108 case VM_REG_GUEST_DR2: 3109 return (&vmxctx->guest_dr2); 3110 case VM_REG_GUEST_DR3: 3111 return (&vmxctx->guest_dr3); 3112 case VM_REG_GUEST_DR6: 3113 return (&vmxctx->guest_dr6); 3114 default: 3115 break; 3116 } 3117 return (NULL); 3118 } 3119 3120 static int 3121 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 3122 { 3123 register_t *regp; 3124 3125 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3126 *retval = *regp; 3127 return (0); 3128 } else 3129 return (EINVAL); 3130 } 3131 3132 static int 3133 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 3134 { 3135 register_t *regp; 3136 3137 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3138 *regp = val; 3139 return (0); 3140 } else 3141 return (EINVAL); 3142 } 3143 3144 static int 3145 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) 3146 { 3147 uint64_t gi; 3148 int error; 3149 3150 error = vmcs_getreg(&vmx->vmcs[vcpu], running, 3151 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 3152 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 3153 return (error); 3154 } 3155 3156 static int 3157 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) 3158 { 3159 struct vmcs *vmcs; 3160 uint64_t gi; 3161 int error, ident; 3162 3163 /* 3164 * Forcing the vcpu into an interrupt shadow is not supported. 3165 */ 3166 if (val) { 3167 error = EINVAL; 3168 goto done; 3169 } 3170 3171 vmcs = &vmx->vmcs[vcpu]; 3172 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 3173 error = vmcs_getreg(vmcs, running, ident, &gi); 3174 if (error == 0) { 3175 gi &= ~HWINTR_BLOCKING; 3176 error = vmcs_setreg(vmcs, running, ident, gi); 3177 } 3178 done: 3179 VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, 3180 error ? "failed" : "succeeded"); 3181 return (error); 3182 } 3183 3184 static int 3185 vmx_shadow_reg(int reg) 3186 { 3187 int shreg; 3188 3189 shreg = -1; 3190 3191 switch (reg) { 3192 case VM_REG_GUEST_CR0: 3193 shreg = VMCS_CR0_SHADOW; 3194 break; 3195 case VM_REG_GUEST_CR4: 3196 shreg = VMCS_CR4_SHADOW; 3197 break; 3198 default: 3199 break; 3200 } 3201 3202 return (shreg); 3203 } 3204 3205 static int 3206 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 3207 { 3208 int running, hostcpu; 3209 struct vmx *vmx = arg; 3210 3211 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3212 if (running && hostcpu != curcpu) 3213 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 3214 3215 if (reg == VM_REG_GUEST_INTR_SHADOW) 3216 return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); 3217 3218 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 3219 return (0); 3220 3221 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 3222 } 3223 3224 static int 3225 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 3226 { 3227 int error, hostcpu, running, shadow; 3228 uint64_t ctls; 3229 pmap_t pmap; 3230 struct vmx *vmx = arg; 3231 3232 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3233 if (running && hostcpu != curcpu) 3234 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 3235 3236 if (reg == VM_REG_GUEST_INTR_SHADOW) 3237 return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); 3238 3239 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 3240 return (0); 3241 3242 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 3243 3244 if (error == 0) { 3245 /* 3246 * If the "load EFER" VM-entry control is 1 then the 3247 * value of EFER.LMA must be identical to "IA-32e mode guest" 3248 * bit in the VM-entry control. 3249 */ 3250 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 3251 (reg == VM_REG_GUEST_EFER)) { 3252 vmcs_getreg(&vmx->vmcs[vcpu], running, 3253 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 3254 if (val & EFER_LMA) 3255 ctls |= VM_ENTRY_GUEST_LMA; 3256 else 3257 ctls &= ~VM_ENTRY_GUEST_LMA; 3258 vmcs_setreg(&vmx->vmcs[vcpu], running, 3259 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 3260 } 3261 3262 shadow = vmx_shadow_reg(reg); 3263 if (shadow > 0) { 3264 /* 3265 * Store the unmodified value in the shadow 3266 */ 3267 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 3268 VMCS_IDENT(shadow), val); 3269 } 3270 3271 if (reg == VM_REG_GUEST_CR3) { 3272 /* 3273 * Invalidate the guest vcpu's TLB mappings to emulate 3274 * the behavior of updating %cr3. 3275 * 3276 * XXX the processor retains global mappings when %cr3 3277 * is updated but vmx_invvpid() does not. 3278 */ 3279 pmap = vmx->ctx[vcpu].pmap; 3280 vmx_invvpid(vmx, vcpu, pmap, running); 3281 } 3282 } 3283 3284 return (error); 3285 } 3286 3287 static int 3288 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3289 { 3290 int hostcpu, running; 3291 struct vmx *vmx = arg; 3292 3293 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3294 if (running && hostcpu != curcpu) 3295 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3296 3297 return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3298 } 3299 3300 static int 3301 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3302 { 3303 int hostcpu, running; 3304 struct vmx *vmx = arg; 3305 3306 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3307 if (running && hostcpu != curcpu) 3308 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3309 3310 return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3311 } 3312 3313 static int 3314 vmx_getcap(void *arg, int vcpu, int type, int *retval) 3315 { 3316 struct vmx *vmx = arg; 3317 int vcap; 3318 int ret; 3319 3320 ret = ENOENT; 3321 3322 vcap = vmx->cap[vcpu].set; 3323 3324 switch (type) { 3325 case VM_CAP_HALT_EXIT: 3326 if (cap_halt_exit) 3327 ret = 0; 3328 break; 3329 case VM_CAP_PAUSE_EXIT: 3330 if (cap_pause_exit) 3331 ret = 0; 3332 break; 3333 case VM_CAP_MTRAP_EXIT: 3334 if (cap_monitor_trap) 3335 ret = 0; 3336 break; 3337 case VM_CAP_UNRESTRICTED_GUEST: 3338 if (cap_unrestricted_guest) 3339 ret = 0; 3340 break; 3341 case VM_CAP_ENABLE_INVPCID: 3342 if (cap_invpcid) 3343 ret = 0; 3344 break; 3345 case VM_CAP_BPT_EXIT: 3346 ret = 0; 3347 break; 3348 default: 3349 break; 3350 } 3351 3352 if (ret == 0) 3353 *retval = (vcap & (1 << type)) ? 1 : 0; 3354 3355 return (ret); 3356 } 3357 3358 static int 3359 vmx_setcap(void *arg, int vcpu, int type, int val) 3360 { 3361 struct vmx *vmx = arg; 3362 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 3363 uint32_t baseval; 3364 uint32_t *pptr; 3365 int error; 3366 int flag; 3367 int reg; 3368 int retval; 3369 3370 retval = ENOENT; 3371 pptr = NULL; 3372 3373 switch (type) { 3374 case VM_CAP_HALT_EXIT: 3375 if (cap_halt_exit) { 3376 retval = 0; 3377 pptr = &vmx->cap[vcpu].proc_ctls; 3378 baseval = *pptr; 3379 flag = PROCBASED_HLT_EXITING; 3380 reg = VMCS_PRI_PROC_BASED_CTLS; 3381 } 3382 break; 3383 case VM_CAP_MTRAP_EXIT: 3384 if (cap_monitor_trap) { 3385 retval = 0; 3386 pptr = &vmx->cap[vcpu].proc_ctls; 3387 baseval = *pptr; 3388 flag = PROCBASED_MTF; 3389 reg = VMCS_PRI_PROC_BASED_CTLS; 3390 } 3391 break; 3392 case VM_CAP_PAUSE_EXIT: 3393 if (cap_pause_exit) { 3394 retval = 0; 3395 pptr = &vmx->cap[vcpu].proc_ctls; 3396 baseval = *pptr; 3397 flag = PROCBASED_PAUSE_EXITING; 3398 reg = VMCS_PRI_PROC_BASED_CTLS; 3399 } 3400 break; 3401 case VM_CAP_UNRESTRICTED_GUEST: 3402 if (cap_unrestricted_guest) { 3403 retval = 0; 3404 pptr = &vmx->cap[vcpu].proc_ctls2; 3405 baseval = *pptr; 3406 flag = PROCBASED2_UNRESTRICTED_GUEST; 3407 reg = VMCS_SEC_PROC_BASED_CTLS; 3408 } 3409 break; 3410 case VM_CAP_ENABLE_INVPCID: 3411 if (cap_invpcid) { 3412 retval = 0; 3413 pptr = &vmx->cap[vcpu].proc_ctls2; 3414 baseval = *pptr; 3415 flag = PROCBASED2_ENABLE_INVPCID; 3416 reg = VMCS_SEC_PROC_BASED_CTLS; 3417 } 3418 break; 3419 case VM_CAP_BPT_EXIT: 3420 retval = 0; 3421 3422 /* Don't change the bitmap if we are tracing all exceptions. */ 3423 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) { 3424 pptr = &vmx->cap[vcpu].exc_bitmap; 3425 baseval = *pptr; 3426 flag = (1 << IDT_BP); 3427 reg = VMCS_EXCEPTION_BITMAP; 3428 } 3429 break; 3430 default: 3431 break; 3432 } 3433 3434 if (retval) 3435 return (retval); 3436 3437 if (pptr != NULL) { 3438 if (val) { 3439 baseval |= flag; 3440 } else { 3441 baseval &= ~flag; 3442 } 3443 VMPTRLD(vmcs); 3444 error = vmwrite(reg, baseval); 3445 VMCLEAR(vmcs); 3446 3447 if (error) 3448 return (error); 3449 3450 /* 3451 * Update optional stored flags, and record 3452 * setting 3453 */ 3454 *pptr = baseval; 3455 } 3456 3457 if (val) { 3458 vmx->cap[vcpu].set |= (1 << type); 3459 } else { 3460 vmx->cap[vcpu].set &= ~(1 << type); 3461 } 3462 3463 return (0); 3464 } 3465 3466 struct vlapic_vtx { 3467 struct vlapic vlapic; 3468 struct pir_desc *pir_desc; 3469 struct vmx *vmx; 3470 u_int pending_prio; 3471 }; 3472 3473 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4)) 3474 3475 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 3476 do { \ 3477 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 3478 level ? "level" : "edge", vector); \ 3479 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3480 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3481 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3482 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3483 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 3484 } while (0) 3485 3486 /* 3487 * vlapic->ops handlers that utilize the APICv hardware assist described in 3488 * Chapter 29 of the Intel SDM. 3489 */ 3490 static int 3491 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3492 { 3493 struct vlapic_vtx *vlapic_vtx; 3494 struct pir_desc *pir_desc; 3495 uint64_t mask; 3496 int idx, notify = 0; 3497 3498 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3499 pir_desc = vlapic_vtx->pir_desc; 3500 3501 /* 3502 * Keep track of interrupt requests in the PIR descriptor. This is 3503 * because the virtual APIC page pointed to by the VMCS cannot be 3504 * modified if the vcpu is running. 3505 */ 3506 idx = vector / 64; 3507 mask = 1UL << (vector % 64); 3508 atomic_set_long(&pir_desc->pir[idx], mask); 3509 3510 /* 3511 * A notification is required whenever the 'pending' bit makes a 3512 * transition from 0->1. 3513 * 3514 * Even if the 'pending' bit is already asserted, notification about 3515 * the incoming interrupt may still be necessary. For example, if a 3516 * vCPU is HLTed with a high PPR, a low priority interrupt would cause 3517 * the 0->1 'pending' transition with a notification, but the vCPU 3518 * would ignore the interrupt for the time being. The same vCPU would 3519 * need to then be notified if a high-priority interrupt arrived which 3520 * satisfied the PPR. 3521 * 3522 * The priorities of interrupts injected while 'pending' is asserted 3523 * are tracked in a custom bitfield 'pending_prio'. Should the 3524 * to-be-injected interrupt exceed the priorities already present, the 3525 * notification is sent. The priorities recorded in 'pending_prio' are 3526 * cleared whenever the 'pending' bit makes another 0->1 transition. 3527 */ 3528 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) { 3529 notify = 1; 3530 vlapic_vtx->pending_prio = 0; 3531 } else { 3532 const u_int old_prio = vlapic_vtx->pending_prio; 3533 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT); 3534 3535 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) { 3536 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit); 3537 notify = 1; 3538 } 3539 } 3540 3541 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 3542 level, "vmx_set_intr_ready"); 3543 return (notify); 3544 } 3545 3546 static int 3547 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3548 { 3549 struct vlapic_vtx *vlapic_vtx; 3550 struct pir_desc *pir_desc; 3551 struct LAPIC *lapic; 3552 uint64_t pending, pirval; 3553 uint32_t ppr, vpr; 3554 int i; 3555 3556 /* 3557 * This function is only expected to be called from the 'HLT' exit 3558 * handler which does not care about the vector that is pending. 3559 */ 3560 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3561 3562 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3563 pir_desc = vlapic_vtx->pir_desc; 3564 3565 pending = atomic_load_acq_long(&pir_desc->pending); 3566 if (!pending) { 3567 /* 3568 * While a virtual interrupt may have already been 3569 * processed the actual delivery maybe pending the 3570 * interruptibility of the guest. Recognize a pending 3571 * interrupt by reevaluating virtual interrupts 3572 * following Section 29.2.1 in the Intel SDM Volume 3. 3573 */ 3574 struct vm_exit *vmexit; 3575 uint8_t rvi, ppr; 3576 3577 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid); 3578 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT, 3579 ("vmx_pending_intr: exitcode not 'HLT'")); 3580 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT; 3581 lapic = vlapic->apic_page; 3582 ppr = lapic->ppr & APIC_TPR_INT; 3583 if (rvi > ppr) { 3584 return (1); 3585 } 3586 3587 return (0); 3588 } 3589 3590 /* 3591 * If there is an interrupt pending then it will be recognized only 3592 * if its priority is greater than the processor priority. 3593 * 3594 * Special case: if the processor priority is zero then any pending 3595 * interrupt will be recognized. 3596 */ 3597 lapic = vlapic->apic_page; 3598 ppr = lapic->ppr & APIC_TPR_INT; 3599 if (ppr == 0) 3600 return (1); 3601 3602 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 3603 lapic->ppr); 3604 3605 vpr = 0; 3606 for (i = 3; i >= 0; i--) { 3607 pirval = pir_desc->pir[i]; 3608 if (pirval != 0) { 3609 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT; 3610 break; 3611 } 3612 } 3613 3614 /* 3615 * If the highest-priority pending interrupt falls short of the 3616 * processor priority of this vCPU, ensure that 'pending_prio' does not 3617 * have any stale bits which would preclude a higher-priority interrupt 3618 * from incurring a notification later. 3619 */ 3620 if (vpr <= ppr) { 3621 const u_int prio_bit = VPR_PRIO_BIT(vpr); 3622 const u_int old = vlapic_vtx->pending_prio; 3623 3624 if (old > prio_bit && (old & prio_bit) == 0) { 3625 vlapic_vtx->pending_prio = prio_bit; 3626 } 3627 return (0); 3628 } 3629 return (1); 3630 } 3631 3632 static void 3633 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3634 { 3635 3636 panic("vmx_intr_accepted: not expected to be called"); 3637 } 3638 3639 static void 3640 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3641 { 3642 struct vlapic_vtx *vlapic_vtx; 3643 struct vmx *vmx; 3644 struct vmcs *vmcs; 3645 uint64_t mask, val; 3646 3647 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3648 KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), 3649 ("vmx_set_tmr: vcpu cannot be running")); 3650 3651 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3652 vmx = vlapic_vtx->vmx; 3653 vmcs = &vmx->vmcs[vlapic->vcpuid]; 3654 mask = 1UL << (vector % 64); 3655 3656 VMPTRLD(vmcs); 3657 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3658 if (level) 3659 val |= mask; 3660 else 3661 val &= ~mask; 3662 vmcs_write(VMCS_EOI_EXIT(vector), val); 3663 VMCLEAR(vmcs); 3664 } 3665 3666 static void 3667 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic) 3668 { 3669 struct vmx *vmx; 3670 struct vmcs *vmcs; 3671 uint32_t proc_ctls; 3672 int vcpuid; 3673 3674 vcpuid = vlapic->vcpuid; 3675 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3676 vmcs = &vmx->vmcs[vcpuid]; 3677 3678 proc_ctls = vmx->cap[vcpuid].proc_ctls; 3679 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW; 3680 proc_ctls |= PROCBASED_CR8_LOAD_EXITING; 3681 proc_ctls |= PROCBASED_CR8_STORE_EXITING; 3682 vmx->cap[vcpuid].proc_ctls = proc_ctls; 3683 3684 VMPTRLD(vmcs); 3685 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls); 3686 VMCLEAR(vmcs); 3687 } 3688 3689 static void 3690 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic) 3691 { 3692 struct vmx *vmx; 3693 struct vmcs *vmcs; 3694 uint32_t proc_ctls2; 3695 int vcpuid, error; 3696 3697 vcpuid = vlapic->vcpuid; 3698 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3699 vmcs = &vmx->vmcs[vcpuid]; 3700 3701 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 3702 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3703 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3704 3705 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3706 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3707 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; 3708 3709 VMPTRLD(vmcs); 3710 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3711 VMCLEAR(vmcs); 3712 3713 if (vlapic->vcpuid == 0) { 3714 /* 3715 * The nested page table mappings are shared by all vcpus 3716 * so unmap the APIC access page just once. 3717 */ 3718 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3719 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3720 __func__, error)); 3721 3722 /* 3723 * The MSR bitmap is shared by all vcpus so modify it only 3724 * once in the context of vcpu 0. 3725 */ 3726 error = vmx_allow_x2apic_msrs(vmx); 3727 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3728 __func__, error)); 3729 } 3730 } 3731 3732 static void 3733 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3734 { 3735 3736 ipi_cpu(hostcpu, pirvec); 3737 } 3738 3739 /* 3740 * Transfer the pending interrupts in the PIR descriptor to the IRR 3741 * in the virtual APIC page. 3742 */ 3743 static void 3744 vmx_inject_pir(struct vlapic *vlapic) 3745 { 3746 struct vlapic_vtx *vlapic_vtx; 3747 struct pir_desc *pir_desc; 3748 struct LAPIC *lapic; 3749 uint64_t val, pirval; 3750 int rvi, pirbase = -1; 3751 uint16_t intr_status_old, intr_status_new; 3752 3753 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3754 pir_desc = vlapic_vtx->pir_desc; 3755 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3756 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3757 "no posted interrupt pending"); 3758 return; 3759 } 3760 3761 pirval = 0; 3762 pirbase = -1; 3763 lapic = vlapic->apic_page; 3764 3765 val = atomic_readandclear_long(&pir_desc->pir[0]); 3766 if (val != 0) { 3767 lapic->irr0 |= val; 3768 lapic->irr1 |= val >> 32; 3769 pirbase = 0; 3770 pirval = val; 3771 } 3772 3773 val = atomic_readandclear_long(&pir_desc->pir[1]); 3774 if (val != 0) { 3775 lapic->irr2 |= val; 3776 lapic->irr3 |= val >> 32; 3777 pirbase = 64; 3778 pirval = val; 3779 } 3780 3781 val = atomic_readandclear_long(&pir_desc->pir[2]); 3782 if (val != 0) { 3783 lapic->irr4 |= val; 3784 lapic->irr5 |= val >> 32; 3785 pirbase = 128; 3786 pirval = val; 3787 } 3788 3789 val = atomic_readandclear_long(&pir_desc->pir[3]); 3790 if (val != 0) { 3791 lapic->irr6 |= val; 3792 lapic->irr7 |= val >> 32; 3793 pirbase = 192; 3794 pirval = val; 3795 } 3796 3797 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 3798 3799 /* 3800 * Update RVI so the processor can evaluate pending virtual 3801 * interrupts on VM-entry. 3802 * 3803 * It is possible for pirval to be 0 here, even though the 3804 * pending bit has been set. The scenario is: 3805 * CPU-Y is sending a posted interrupt to CPU-X, which 3806 * is running a guest and processing posted interrupts in h/w. 3807 * CPU-X will eventually exit and the state seen in s/w is 3808 * the pending bit set, but no PIR bits set. 3809 * 3810 * CPU-X CPU-Y 3811 * (vm running) (host running) 3812 * rx posted interrupt 3813 * CLEAR pending bit 3814 * SET PIR bit 3815 * READ/CLEAR PIR bits 3816 * SET pending bit 3817 * (vm exit) 3818 * pending bit set, PIR 0 3819 */ 3820 if (pirval != 0) { 3821 rvi = pirbase + flsl(pirval) - 1; 3822 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 3823 intr_status_new = (intr_status_old & 0xFF00) | rvi; 3824 if (intr_status_new > intr_status_old) { 3825 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 3826 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3827 "guest_intr_status changed from 0x%04x to 0x%04x", 3828 intr_status_old, intr_status_new); 3829 } 3830 } 3831 } 3832 3833 static struct vlapic * 3834 vmx_vlapic_init(void *arg, int vcpuid) 3835 { 3836 struct vmx *vmx; 3837 struct vlapic *vlapic; 3838 struct vlapic_vtx *vlapic_vtx; 3839 3840 vmx = arg; 3841 3842 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 3843 vlapic->vm = vmx->vm; 3844 vlapic->vcpuid = vcpuid; 3845 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 3846 3847 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3848 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 3849 vlapic_vtx->vmx = vmx; 3850 3851 if (tpr_shadowing) { 3852 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts; 3853 } 3854 3855 if (virtual_interrupt_delivery) { 3856 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 3857 vlapic->ops.pending_intr = vmx_pending_intr; 3858 vlapic->ops.intr_accepted = vmx_intr_accepted; 3859 vlapic->ops.set_tmr = vmx_set_tmr; 3860 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid; 3861 } 3862 3863 if (posted_interrupts) 3864 vlapic->ops.post_intr = vmx_post_intr; 3865 3866 vlapic_init(vlapic); 3867 3868 return (vlapic); 3869 } 3870 3871 static void 3872 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 3873 { 3874 3875 vlapic_cleanup(vlapic); 3876 free(vlapic, M_VLAPIC); 3877 } 3878 3879 struct vmm_ops vmm_ops_intel = { 3880 .init = vmx_init, 3881 .cleanup = vmx_cleanup, 3882 .resume = vmx_restore, 3883 .vminit = vmx_vminit, 3884 .vmrun = vmx_run, 3885 .vmcleanup = vmx_vmcleanup, 3886 .vmgetreg = vmx_getreg, 3887 .vmsetreg = vmx_setreg, 3888 .vmgetdesc = vmx_getdesc, 3889 .vmsetdesc = vmx_setdesc, 3890 .vmgetcap = vmx_getcap, 3891 .vmsetcap = vmx_setcap, 3892 .vmspace_alloc = ept_vmspace_alloc, 3893 .vmspace_free = ept_vmspace_free, 3894 .vlapic_init = vmx_vlapic_init, 3895 .vlapic_cleanup = vmx_vlapic_cleanup, 3896 }; 3897