xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision 6d732c66bca5da4d261577aad2c8ea84519b0bea)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/specialreg.h>
49 #include <machine/vmparam.h>
50 
51 #include <machine/vmm.h>
52 #include "vmm_host.h"
53 #include "vmm_msr.h"
54 #include "vmm_ktr.h"
55 #include "vmm_stat.h"
56 #include "vlapic.h"
57 #include "vlapic_priv.h"
58 
59 #include "vmx_msr.h"
60 #include "ept.h"
61 #include "vmx_cpufunc.h"
62 #include "vmx.h"
63 #include "x86.h"
64 #include "vmx_controls.h"
65 
66 #define	PINBASED_CTLS_ONE_SETTING					\
67 	(PINBASED_EXTINT_EXITING	|				\
68 	 PINBASED_NMI_EXITING		|				\
69 	 PINBASED_VIRTUAL_NMI)
70 #define	PINBASED_CTLS_ZERO_SETTING	0
71 
72 #define PROCBASED_CTLS_WINDOW_SETTING					\
73 	(PROCBASED_INT_WINDOW_EXITING	|				\
74 	 PROCBASED_NMI_WINDOW_EXITING)
75 
76 #define	PROCBASED_CTLS_ONE_SETTING 					\
77 	(PROCBASED_SECONDARY_CONTROLS	|				\
78 	 PROCBASED_IO_EXITING		|				\
79 	 PROCBASED_MSR_BITMAPS		|				\
80 	 PROCBASED_CTLS_WINDOW_SETTING)
81 #define	PROCBASED_CTLS_ZERO_SETTING	\
82 	(PROCBASED_CR3_LOAD_EXITING |	\
83 	PROCBASED_CR3_STORE_EXITING |	\
84 	PROCBASED_IO_BITMAPS)
85 
86 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
87 #define	PROCBASED_CTLS2_ZERO_SETTING	0
88 
89 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
90 	(VM_EXIT_HOST_LMA			|			\
91 	VM_EXIT_SAVE_EFER			|			\
92 	VM_EXIT_LOAD_EFER)
93 
94 #define	VM_EXIT_CTLS_ONE_SETTING					\
95 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
96 	VM_EXIT_SAVE_PAT			|			\
97 	VM_EXIT_LOAD_PAT)
98 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
99 
100 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
101 
102 #define	VM_ENTRY_CTLS_ONE_SETTING					\
103 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
104 	VM_ENTRY_LOAD_PAT)
105 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
106 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
107 	VM_ENTRY_INTO_SMM			|			\
108 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
109 
110 #define	guest_msr_rw(vmx, msr) \
111 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
112 
113 #define	HANDLED		1
114 #define	UNHANDLED	0
115 
116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
118 
119 SYSCTL_DECL(_hw_vmm);
120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
121 
122 int vmxon_enabled[MAXCPU];
123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124 
125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
126 static uint32_t exit_ctls, entry_ctls;
127 
128 static uint64_t cr0_ones_mask, cr0_zeros_mask;
129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
130 	     &cr0_ones_mask, 0, NULL);
131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
132 	     &cr0_zeros_mask, 0, NULL);
133 
134 static uint64_t cr4_ones_mask, cr4_zeros_mask;
135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
136 	     &cr4_ones_mask, 0, NULL);
137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
138 	     &cr4_zeros_mask, 0, NULL);
139 
140 static int vmx_no_patmsr;
141 
142 static int vmx_initialized;
143 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
144 	   &vmx_initialized, 0, "Intel VMX initialized");
145 
146 /*
147  * Virtual NMI blocking conditions.
148  *
149  * Some processor implementations also require NMI to be blocked if
150  * the STI_BLOCKING bit is set. It is possible to detect this at runtime
151  * based on the (exit_reason,exit_qual) tuple being set to
152  * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
153  *
154  * We take the easy way out and also include STI_BLOCKING as one of the
155  * gating items for vNMI injection.
156  */
157 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
158 				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
159 				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
160 
161 /*
162  * Optional capabilities
163  */
164 static int cap_halt_exit;
165 static int cap_pause_exit;
166 static int cap_unrestricted_guest;
167 static int cap_monitor_trap;
168 static int cap_invpcid;
169 
170 static int virtual_interrupt_delivery;
171 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
172     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
173 
174 static struct unrhdr *vpid_unr;
175 static u_int vpid_alloc_failed;
176 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
177 	    &vpid_alloc_failed, 0, NULL);
178 
179 /*
180  * Use the last page below 4GB as the APIC access address. This address is
181  * occupied by the boot firmware so it is guaranteed that it will not conflict
182  * with a page in system memory.
183  */
184 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
185 
186 static void vmx_inject_pir(struct vlapic *vlapic);
187 
188 #ifdef KTR
189 static const char *
190 exit_reason_to_str(int reason)
191 {
192 	static char reasonbuf[32];
193 
194 	switch (reason) {
195 	case EXIT_REASON_EXCEPTION:
196 		return "exception";
197 	case EXIT_REASON_EXT_INTR:
198 		return "extint";
199 	case EXIT_REASON_TRIPLE_FAULT:
200 		return "triplefault";
201 	case EXIT_REASON_INIT:
202 		return "init";
203 	case EXIT_REASON_SIPI:
204 		return "sipi";
205 	case EXIT_REASON_IO_SMI:
206 		return "iosmi";
207 	case EXIT_REASON_SMI:
208 		return "smi";
209 	case EXIT_REASON_INTR_WINDOW:
210 		return "intrwindow";
211 	case EXIT_REASON_NMI_WINDOW:
212 		return "nmiwindow";
213 	case EXIT_REASON_TASK_SWITCH:
214 		return "taskswitch";
215 	case EXIT_REASON_CPUID:
216 		return "cpuid";
217 	case EXIT_REASON_GETSEC:
218 		return "getsec";
219 	case EXIT_REASON_HLT:
220 		return "hlt";
221 	case EXIT_REASON_INVD:
222 		return "invd";
223 	case EXIT_REASON_INVLPG:
224 		return "invlpg";
225 	case EXIT_REASON_RDPMC:
226 		return "rdpmc";
227 	case EXIT_REASON_RDTSC:
228 		return "rdtsc";
229 	case EXIT_REASON_RSM:
230 		return "rsm";
231 	case EXIT_REASON_VMCALL:
232 		return "vmcall";
233 	case EXIT_REASON_VMCLEAR:
234 		return "vmclear";
235 	case EXIT_REASON_VMLAUNCH:
236 		return "vmlaunch";
237 	case EXIT_REASON_VMPTRLD:
238 		return "vmptrld";
239 	case EXIT_REASON_VMPTRST:
240 		return "vmptrst";
241 	case EXIT_REASON_VMREAD:
242 		return "vmread";
243 	case EXIT_REASON_VMRESUME:
244 		return "vmresume";
245 	case EXIT_REASON_VMWRITE:
246 		return "vmwrite";
247 	case EXIT_REASON_VMXOFF:
248 		return "vmxoff";
249 	case EXIT_REASON_VMXON:
250 		return "vmxon";
251 	case EXIT_REASON_CR_ACCESS:
252 		return "craccess";
253 	case EXIT_REASON_DR_ACCESS:
254 		return "draccess";
255 	case EXIT_REASON_INOUT:
256 		return "inout";
257 	case EXIT_REASON_RDMSR:
258 		return "rdmsr";
259 	case EXIT_REASON_WRMSR:
260 		return "wrmsr";
261 	case EXIT_REASON_INVAL_VMCS:
262 		return "invalvmcs";
263 	case EXIT_REASON_INVAL_MSR:
264 		return "invalmsr";
265 	case EXIT_REASON_MWAIT:
266 		return "mwait";
267 	case EXIT_REASON_MTF:
268 		return "mtf";
269 	case EXIT_REASON_MONITOR:
270 		return "monitor";
271 	case EXIT_REASON_PAUSE:
272 		return "pause";
273 	case EXIT_REASON_MCE:
274 		return "mce";
275 	case EXIT_REASON_TPR:
276 		return "tpr";
277 	case EXIT_REASON_APIC_ACCESS:
278 		return "apic-access";
279 	case EXIT_REASON_GDTR_IDTR:
280 		return "gdtridtr";
281 	case EXIT_REASON_LDTR_TR:
282 		return "ldtrtr";
283 	case EXIT_REASON_EPT_FAULT:
284 		return "eptfault";
285 	case EXIT_REASON_EPT_MISCONFIG:
286 		return "eptmisconfig";
287 	case EXIT_REASON_INVEPT:
288 		return "invept";
289 	case EXIT_REASON_RDTSCP:
290 		return "rdtscp";
291 	case EXIT_REASON_VMX_PREEMPT:
292 		return "vmxpreempt";
293 	case EXIT_REASON_INVVPID:
294 		return "invvpid";
295 	case EXIT_REASON_WBINVD:
296 		return "wbinvd";
297 	case EXIT_REASON_XSETBV:
298 		return "xsetbv";
299 	case EXIT_REASON_APIC_WRITE:
300 		return "apic-write";
301 	default:
302 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
303 		return (reasonbuf);
304 	}
305 }
306 #endif	/* KTR */
307 
308 u_long
309 vmx_fix_cr0(u_long cr0)
310 {
311 
312 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
313 }
314 
315 u_long
316 vmx_fix_cr4(u_long cr4)
317 {
318 
319 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
320 }
321 
322 static void
323 vpid_free(int vpid)
324 {
325 	if (vpid < 0 || vpid > 0xffff)
326 		panic("vpid_free: invalid vpid %d", vpid);
327 
328 	/*
329 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
330 	 * the unit number allocator.
331 	 */
332 
333 	if (vpid > VM_MAXCPU)
334 		free_unr(vpid_unr, vpid);
335 }
336 
337 static void
338 vpid_alloc(uint16_t *vpid, int num)
339 {
340 	int i, x;
341 
342 	if (num <= 0 || num > VM_MAXCPU)
343 		panic("invalid number of vpids requested: %d", num);
344 
345 	/*
346 	 * If the "enable vpid" execution control is not enabled then the
347 	 * VPID is required to be 0 for all vcpus.
348 	 */
349 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
350 		for (i = 0; i < num; i++)
351 			vpid[i] = 0;
352 		return;
353 	}
354 
355 	/*
356 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
357 	 */
358 	for (i = 0; i < num; i++) {
359 		x = alloc_unr(vpid_unr);
360 		if (x == -1)
361 			break;
362 		else
363 			vpid[i] = x;
364 	}
365 
366 	if (i < num) {
367 		atomic_add_int(&vpid_alloc_failed, 1);
368 
369 		/*
370 		 * If the unit number allocator does not have enough unique
371 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
372 		 *
373 		 * These VPIDs are not be unique across VMs but this does not
374 		 * affect correctness because the combined mappings are also
375 		 * tagged with the EP4TA which is unique for each VM.
376 		 *
377 		 * It is still sub-optimal because the invvpid will invalidate
378 		 * combined mappings for a particular VPID across all EP4TAs.
379 		 */
380 		while (i-- > 0)
381 			vpid_free(vpid[i]);
382 
383 		for (i = 0; i < num; i++)
384 			vpid[i] = i + 1;
385 	}
386 }
387 
388 static void
389 vpid_init(void)
390 {
391 	/*
392 	 * VPID 0 is required when the "enable VPID" execution control is
393 	 * disabled.
394 	 *
395 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
396 	 * unit number allocator does not have sufficient unique VPIDs to
397 	 * satisfy the allocation.
398 	 *
399 	 * The remaining VPIDs are managed by the unit number allocator.
400 	 */
401 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
402 }
403 
404 static void
405 msr_save_area_init(struct msr_entry *g_area, int *g_count)
406 {
407 	int cnt;
408 
409 	static struct msr_entry guest_msrs[] = {
410 		{ MSR_KGSBASE, 0, 0 },
411 	};
412 
413 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
414 	if (cnt > GUEST_MSR_MAX_ENTRIES)
415 		panic("guest msr save area overrun");
416 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
417 	*g_count = cnt;
418 }
419 
420 static void
421 vmx_disable(void *arg __unused)
422 {
423 	struct invvpid_desc invvpid_desc = { 0 };
424 	struct invept_desc invept_desc = { 0 };
425 
426 	if (vmxon_enabled[curcpu]) {
427 		/*
428 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
429 		 *
430 		 * VMXON or VMXOFF are not required to invalidate any TLB
431 		 * caching structures. This prevents potential retention of
432 		 * cached information in the TLB between distinct VMX episodes.
433 		 */
434 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
435 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
436 		vmxoff();
437 	}
438 	load_cr4(rcr4() & ~CR4_VMXE);
439 }
440 
441 static int
442 vmx_cleanup(void)
443 {
444 
445 	if (vpid_unr != NULL) {
446 		delete_unrhdr(vpid_unr);
447 		vpid_unr = NULL;
448 	}
449 
450 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
451 
452 	return (0);
453 }
454 
455 static void
456 vmx_enable(void *arg __unused)
457 {
458 	int error;
459 
460 	load_cr4(rcr4() | CR4_VMXE);
461 
462 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
463 	error = vmxon(vmxon_region[curcpu]);
464 	if (error == 0)
465 		vmxon_enabled[curcpu] = 1;
466 }
467 
468 static void
469 vmx_restore(void)
470 {
471 
472 	if (vmxon_enabled[curcpu])
473 		vmxon(vmxon_region[curcpu]);
474 }
475 
476 static int
477 vmx_init(int ipinum)
478 {
479 	int error, use_tpr_shadow;
480 	uint64_t fixed0, fixed1, feature_control;
481 	uint32_t tmp, procbased2_vid_bits;
482 
483 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
484 	if (!(cpu_feature2 & CPUID2_VMX)) {
485 		printf("vmx_init: processor does not support VMX operation\n");
486 		return (ENXIO);
487 	}
488 
489 	/*
490 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
491 	 * are set (bits 0 and 2 respectively).
492 	 */
493 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
494 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
495 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
496 		printf("vmx_init: VMX operation disabled by BIOS\n");
497 		return (ENXIO);
498 	}
499 
500 	/* Check support for primary processor-based VM-execution controls */
501 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
502 			       MSR_VMX_TRUE_PROCBASED_CTLS,
503 			       PROCBASED_CTLS_ONE_SETTING,
504 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
505 	if (error) {
506 		printf("vmx_init: processor does not support desired primary "
507 		       "processor-based controls\n");
508 		return (error);
509 	}
510 
511 	/* Clear the processor-based ctl bits that are set on demand */
512 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
513 
514 	/* Check support for secondary processor-based VM-execution controls */
515 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
516 			       MSR_VMX_PROCBASED_CTLS2,
517 			       PROCBASED_CTLS2_ONE_SETTING,
518 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
519 	if (error) {
520 		printf("vmx_init: processor does not support desired secondary "
521 		       "processor-based controls\n");
522 		return (error);
523 	}
524 
525 	/* Check support for VPID */
526 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
527 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
528 	if (error == 0)
529 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
530 
531 	/* Check support for pin-based VM-execution controls */
532 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
533 			       MSR_VMX_TRUE_PINBASED_CTLS,
534 			       PINBASED_CTLS_ONE_SETTING,
535 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
536 	if (error) {
537 		printf("vmx_init: processor does not support desired "
538 		       "pin-based controls\n");
539 		return (error);
540 	}
541 
542 	/* Check support for VM-exit controls */
543 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
544 			       VM_EXIT_CTLS_ONE_SETTING,
545 			       VM_EXIT_CTLS_ZERO_SETTING,
546 			       &exit_ctls);
547 	if (error) {
548 		/* Try again without the PAT MSR bits */
549 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
550 				       MSR_VMX_TRUE_EXIT_CTLS,
551 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
552 				       VM_EXIT_CTLS_ZERO_SETTING,
553 				       &exit_ctls);
554 		if (error) {
555 			printf("vmx_init: processor does not support desired "
556 			       "exit controls\n");
557 			return (error);
558 		} else {
559 			if (bootverbose)
560 				printf("vmm: PAT MSR access not supported\n");
561 			guest_msr_valid(MSR_PAT);
562 			vmx_no_patmsr = 1;
563 		}
564 	}
565 
566 	/* Check support for VM-entry controls */
567 	if (!vmx_no_patmsr) {
568 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
569 				       MSR_VMX_TRUE_ENTRY_CTLS,
570 				       VM_ENTRY_CTLS_ONE_SETTING,
571 				       VM_ENTRY_CTLS_ZERO_SETTING,
572 				       &entry_ctls);
573 	} else {
574 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
575 				       MSR_VMX_TRUE_ENTRY_CTLS,
576 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
577 				       VM_ENTRY_CTLS_ZERO_SETTING,
578 				       &entry_ctls);
579 	}
580 
581 	if (error) {
582 		printf("vmx_init: processor does not support desired "
583 		       "entry controls\n");
584 		       return (error);
585 	}
586 
587 	/*
588 	 * Check support for optional features by testing them
589 	 * as individual bits
590 	 */
591 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
592 					MSR_VMX_TRUE_PROCBASED_CTLS,
593 					PROCBASED_HLT_EXITING, 0,
594 					&tmp) == 0);
595 
596 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
597 					MSR_VMX_PROCBASED_CTLS,
598 					PROCBASED_MTF, 0,
599 					&tmp) == 0);
600 
601 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
602 					 MSR_VMX_TRUE_PROCBASED_CTLS,
603 					 PROCBASED_PAUSE_EXITING, 0,
604 					 &tmp) == 0);
605 
606 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
607 					MSR_VMX_PROCBASED_CTLS2,
608 					PROCBASED2_UNRESTRICTED_GUEST, 0,
609 				        &tmp) == 0);
610 
611 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
612 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
613 	    &tmp) == 0);
614 
615 	/*
616 	 * Check support for virtual interrupt delivery.
617 	 */
618 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
619 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
620 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
621 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
622 
623 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
624 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
625 	    &tmp) == 0);
626 
627 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
628 	    procbased2_vid_bits, 0, &tmp);
629 	if (error == 0 && use_tpr_shadow) {
630 		virtual_interrupt_delivery = 1;
631 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
632 		    &virtual_interrupt_delivery);
633 	}
634 
635 	if (virtual_interrupt_delivery) {
636 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
637 		procbased_ctls2 |= procbased2_vid_bits;
638 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
639 	}
640 
641 	/* Initialize EPT */
642 	error = ept_init(ipinum);
643 	if (error) {
644 		printf("vmx_init: ept initialization failed (%d)\n", error);
645 		return (error);
646 	}
647 
648 	/*
649 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
650 	 */
651 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
652 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
653 	cr0_ones_mask = fixed0 & fixed1;
654 	cr0_zeros_mask = ~fixed0 & ~fixed1;
655 
656 	/*
657 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
658 	 * if unrestricted guest execution is allowed.
659 	 */
660 	if (cap_unrestricted_guest)
661 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
662 
663 	/*
664 	 * Do not allow the guest to set CR0_NW or CR0_CD.
665 	 */
666 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
667 
668 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
669 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
670 	cr4_ones_mask = fixed0 & fixed1;
671 	cr4_zeros_mask = ~fixed0 & ~fixed1;
672 
673 	vpid_init();
674 
675 	/* enable VMX operation */
676 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
677 
678 	vmx_initialized = 1;
679 
680 	return (0);
681 }
682 
683 static int
684 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
685 {
686 	int error, mask_ident, shadow_ident;
687 	uint64_t mask_value;
688 
689 	if (which != 0 && which != 4)
690 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
691 
692 	if (which == 0) {
693 		mask_ident = VMCS_CR0_MASK;
694 		mask_value = cr0_ones_mask | cr0_zeros_mask;
695 		shadow_ident = VMCS_CR0_SHADOW;
696 	} else {
697 		mask_ident = VMCS_CR4_MASK;
698 		mask_value = cr4_ones_mask | cr4_zeros_mask;
699 		shadow_ident = VMCS_CR4_SHADOW;
700 	}
701 
702 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
703 	if (error)
704 		return (error);
705 
706 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
707 	if (error)
708 		return (error);
709 
710 	return (0);
711 }
712 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
713 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
714 
715 static void *
716 vmx_vminit(struct vm *vm, pmap_t pmap)
717 {
718 	uint16_t vpid[VM_MAXCPU];
719 	int i, error, guest_msr_count;
720 	struct vmx *vmx;
721 	struct vmcs *vmcs;
722 
723 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
724 	if ((uintptr_t)vmx & PAGE_MASK) {
725 		panic("malloc of struct vmx not aligned on %d byte boundary",
726 		      PAGE_SIZE);
727 	}
728 	vmx->vm = vm;
729 
730 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
731 
732 	/*
733 	 * Clean up EPTP-tagged guest physical and combined mappings
734 	 *
735 	 * VMX transitions are not required to invalidate any guest physical
736 	 * mappings. So, it may be possible for stale guest physical mappings
737 	 * to be present in the processor TLBs.
738 	 *
739 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
740 	 */
741 	ept_invalidate_mappings(vmx->eptp);
742 
743 	msr_bitmap_initialize(vmx->msr_bitmap);
744 
745 	/*
746 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
747 	 * The guest FSBASE and GSBASE are saved and restored during
748 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
749 	 * always restored from the vmcs host state area on vm-exit.
750 	 *
751 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
752 	 * how they are saved/restored so can be directly accessed by the
753 	 * guest.
754 	 *
755 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
756 	 * Host KGSBASE is restored before returning to userland from the pcb.
757 	 * There will be a window of time when we are executing in the host
758 	 * kernel context with a value of KGSBASE from the guest. This is ok
759 	 * because the value of KGSBASE is inconsequential in kernel context.
760 	 *
761 	 * MSR_EFER is saved and restored in the guest VMCS area on a
762 	 * VM exit and entry respectively. It is also restored from the
763 	 * host VMCS area on a VM exit.
764 	 */
765 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
766 	    guest_msr_rw(vmx, MSR_FSBASE) ||
767 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
768 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
769 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
770 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
771 	    guest_msr_rw(vmx, MSR_EFER))
772 		panic("vmx_vminit: error setting guest msr access");
773 
774 	/*
775 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
776 	 * and entry respectively. It is also restored from the host VMCS
777 	 * area on a VM exit. However, if running on a system with no
778 	 * MSR_PAT save/restore support, leave access disabled so accesses
779 	 * will be trapped.
780 	 */
781 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
782 		panic("vmx_vminit: error setting guest pat msr access");
783 
784 	vpid_alloc(vpid, VM_MAXCPU);
785 
786 	if (virtual_interrupt_delivery) {
787 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
788 		    APIC_ACCESS_ADDRESS);
789 		/* XXX this should really return an error to the caller */
790 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
791 	}
792 
793 	for (i = 0; i < VM_MAXCPU; i++) {
794 		vmcs = &vmx->vmcs[i];
795 		vmcs->identifier = vmx_revision();
796 		error = vmclear(vmcs);
797 		if (error != 0) {
798 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
799 			      error, i);
800 		}
801 
802 		error = vmcs_init(vmcs);
803 		KASSERT(error == 0, ("vmcs_init error %d", error));
804 
805 		VMPTRLD(vmcs);
806 		error = 0;
807 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
808 		error += vmwrite(VMCS_EPTP, vmx->eptp);
809 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
810 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
811 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
812 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
813 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
814 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
815 		error += vmwrite(VMCS_VPID, vpid[i]);
816 		if (virtual_interrupt_delivery) {
817 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
818 			error += vmwrite(VMCS_VIRTUAL_APIC,
819 			    vtophys(&vmx->apic_page[i]));
820 			error += vmwrite(VMCS_EOI_EXIT0, 0);
821 			error += vmwrite(VMCS_EOI_EXIT1, 0);
822 			error += vmwrite(VMCS_EOI_EXIT2, 0);
823 			error += vmwrite(VMCS_EOI_EXIT3, 0);
824 		}
825 		VMCLEAR(vmcs);
826 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
827 
828 		vmx->cap[i].set = 0;
829 		vmx->cap[i].proc_ctls = procbased_ctls;
830 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
831 
832 		vmx->state[i].lastcpu = -1;
833 		vmx->state[i].vpid = vpid[i];
834 
835 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
836 
837 		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
838 		    guest_msr_count);
839 		if (error != 0)
840 			panic("vmcs_set_msr_save error %d", error);
841 
842 		/*
843 		 * Set up the CR0/4 shadows, and init the read shadow
844 		 * to the power-on register value from the Intel Sys Arch.
845 		 *  CR0 - 0x60000010
846 		 *  CR4 - 0
847 		 */
848 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
849 		if (error != 0)
850 			panic("vmx_setup_cr0_shadow %d", error);
851 
852 		error = vmx_setup_cr4_shadow(vmcs, 0);
853 		if (error != 0)
854 			panic("vmx_setup_cr4_shadow %d", error);
855 
856 		vmx->ctx[i].pmap = pmap;
857 		vmx->ctx[i].eptp = vmx->eptp;
858 	}
859 
860 	return (vmx);
861 }
862 
863 static int
864 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
865 {
866 	int handled, func;
867 
868 	func = vmxctx->guest_rax;
869 
870 	handled = x86_emulate_cpuid(vm, vcpu,
871 				    (uint32_t*)(&vmxctx->guest_rax),
872 				    (uint32_t*)(&vmxctx->guest_rbx),
873 				    (uint32_t*)(&vmxctx->guest_rcx),
874 				    (uint32_t*)(&vmxctx->guest_rdx));
875 	return (handled);
876 }
877 
878 static __inline void
879 vmx_run_trace(struct vmx *vmx, int vcpu)
880 {
881 #ifdef KTR
882 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
883 #endif
884 }
885 
886 static __inline void
887 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
888 	       int handled)
889 {
890 #ifdef KTR
891 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
892 		 handled ? "handled" : "unhandled",
893 		 exit_reason_to_str(exit_reason), rip);
894 #endif
895 }
896 
897 static __inline void
898 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
899 {
900 #ifdef KTR
901 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
902 #endif
903 }
904 
905 static void
906 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
907 {
908 	int lastcpu;
909 	struct vmxstate *vmxstate;
910 	struct invvpid_desc invvpid_desc = { 0 };
911 
912 	vmxstate = &vmx->state[vcpu];
913 	lastcpu = vmxstate->lastcpu;
914 	vmxstate->lastcpu = curcpu;
915 
916 	if (lastcpu == curcpu)
917 		return;
918 
919 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
920 
921 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
922 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
923 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
924 
925 	/*
926 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
927 	 *
928 	 * We do this because this vcpu was executing on a different host
929 	 * cpu when it last ran. We do not track whether it invalidated
930 	 * mappings associated with its 'vpid' during that run. So we must
931 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
932 	 * stale and invalidate them.
933 	 *
934 	 * Note that we incur this penalty only when the scheduler chooses to
935 	 * move the thread associated with this vcpu between host cpus.
936 	 *
937 	 * Note also that this will invalidate mappings tagged with 'vpid'
938 	 * for "all" EP4TAs.
939 	 */
940 	if (vmxstate->vpid != 0) {
941 		invvpid_desc.vpid = vmxstate->vpid;
942 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
943 	}
944 }
945 
946 /*
947  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
948  */
949 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
950 
951 static void __inline
952 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
953 {
954 
955 	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
956 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
957 }
958 
959 static void __inline
960 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
961 {
962 
963 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
964 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
965 }
966 
967 static void __inline
968 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
969 {
970 
971 	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
972 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
973 }
974 
975 static void __inline
976 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
977 {
978 
979 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
980 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
981 }
982 
983 static int
984 vmx_inject_nmi(struct vmx *vmx, int vcpu)
985 {
986 	uint64_t info, interruptibility;
987 
988 	/* Bail out if no NMI requested */
989 	if (!vm_nmi_pending(vmx->vm, vcpu))
990 		return (0);
991 
992 	interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
993 	if (interruptibility & nmi_blocking_bits)
994 		goto nmiblocked;
995 
996 	/*
997 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
998 	 * or the VMCS entry check will fail.
999 	 */
1000 	info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID;
1001 	info |= IDT_NMI;
1002 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1003 
1004 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1005 
1006 	/* Clear the request */
1007 	vm_nmi_clear(vmx->vm, vcpu);
1008 	return (1);
1009 
1010 nmiblocked:
1011 	/*
1012 	 * Set the NMI Window Exiting execution control so we can inject
1013 	 * the virtual NMI as soon as blocking condition goes away.
1014 	 */
1015 	vmx_set_nmi_window_exiting(vmx, vcpu);
1016 
1017 	VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1018 	return (1);
1019 }
1020 
1021 static void
1022 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1023 {
1024 	int vector;
1025 	uint64_t info, rflags, interruptibility;
1026 
1027 	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
1028 				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
1029 
1030 	/*
1031 	 * If there is already an interrupt pending then just return.
1032 	 *
1033 	 * This could happen if an interrupt was injected on a prior
1034 	 * VM entry but the actual entry into guest mode was aborted
1035 	 * because of a pending AST.
1036 	 */
1037 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1038 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1039 		return;
1040 
1041 	/*
1042 	 * NMI injection has priority so deal with those first
1043 	 */
1044 	if (vmx_inject_nmi(vmx, vcpu))
1045 		return;
1046 
1047 	if (virtual_interrupt_delivery) {
1048 		vmx_inject_pir(vlapic);
1049 		return;
1050 	}
1051 
1052 	/* Ask the local apic for a vector to inject */
1053 	if (!vlapic_pending_intr(vlapic, &vector))
1054 		return;
1055 
1056 	if (vector < 32 || vector > 255)
1057 		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1058 
1059 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1060 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1061 	if ((rflags & PSL_I) == 0)
1062 		goto cantinject;
1063 
1064 	interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1065 	if (interruptibility & HWINTR_BLOCKED)
1066 		goto cantinject;
1067 
1068 	/* Inject the interrupt */
1069 	info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID;
1070 	info |= vector;
1071 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1072 
1073 	/* Update the Local APIC ISR */
1074 	vlapic_intr_accepted(vlapic, vector);
1075 
1076 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1077 
1078 	return;
1079 
1080 cantinject:
1081 	/*
1082 	 * Set the Interrupt Window Exiting execution control so we can inject
1083 	 * the interrupt as soon as blocking condition goes away.
1084 	 */
1085 	vmx_set_int_window_exiting(vmx, vcpu);
1086 
1087 	VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1088 }
1089 
1090 static int
1091 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1092 {
1093 	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1094 	uint64_t crval, regval, ones_mask, zeros_mask;
1095 	const struct vmxctx *vmxctx;
1096 
1097 	/* We only handle mov to %cr0 or %cr4 at this time */
1098 	if ((exitqual & 0xf0) != 0x00)
1099 		return (UNHANDLED);
1100 
1101 	cr = exitqual & 0xf;
1102 	if (cr != 0 && cr != 4)
1103 		return (UNHANDLED);
1104 
1105 	regval = 0; /* silence gcc */
1106 	vmxctx = &vmx->ctx[vcpu];
1107 
1108 	/*
1109 	 * We must use vmcs_write() directly here because vmcs_setreg() will
1110 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1111 	 */
1112 	switch ((exitqual >> 8) & 0xf) {
1113 	case 0:
1114 		regval = vmxctx->guest_rax;
1115 		break;
1116 	case 1:
1117 		regval = vmxctx->guest_rcx;
1118 		break;
1119 	case 2:
1120 		regval = vmxctx->guest_rdx;
1121 		break;
1122 	case 3:
1123 		regval = vmxctx->guest_rbx;
1124 		break;
1125 	case 4:
1126 		regval = vmcs_read(VMCS_GUEST_RSP);
1127 		break;
1128 	case 5:
1129 		regval = vmxctx->guest_rbp;
1130 		break;
1131 	case 6:
1132 		regval = vmxctx->guest_rsi;
1133 		break;
1134 	case 7:
1135 		regval = vmxctx->guest_rdi;
1136 		break;
1137 	case 8:
1138 		regval = vmxctx->guest_r8;
1139 		break;
1140 	case 9:
1141 		regval = vmxctx->guest_r9;
1142 		break;
1143 	case 10:
1144 		regval = vmxctx->guest_r10;
1145 		break;
1146 	case 11:
1147 		regval = vmxctx->guest_r11;
1148 		break;
1149 	case 12:
1150 		regval = vmxctx->guest_r12;
1151 		break;
1152 	case 13:
1153 		regval = vmxctx->guest_r13;
1154 		break;
1155 	case 14:
1156 		regval = vmxctx->guest_r14;
1157 		break;
1158 	case 15:
1159 		regval = vmxctx->guest_r15;
1160 		break;
1161 	}
1162 
1163 	if (cr == 0) {
1164 		ones_mask = cr0_ones_mask;
1165 		zeros_mask = cr0_zeros_mask;
1166 		vmcs_guest_cr = VMCS_GUEST_CR0;
1167 		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1168 	} else {
1169 		ones_mask = cr4_ones_mask;
1170 		zeros_mask = cr4_zeros_mask;
1171 		vmcs_guest_cr = VMCS_GUEST_CR4;
1172 		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1173 	}
1174 	vmcs_write(vmcs_shadow_cr, regval);
1175 
1176 	crval = regval | ones_mask;
1177 	crval &= ~zeros_mask;
1178 	vmcs_write(vmcs_guest_cr, crval);
1179 
1180 	if (cr == 0 && regval & CR0_PG) {
1181 		uint64_t efer, entry_ctls;
1182 
1183 		/*
1184 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1185 		 * the "IA-32e mode guest" bit in VM-entry control must be
1186 		 * equal.
1187 		 */
1188 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1189 		if (efer & EFER_LME) {
1190 			efer |= EFER_LMA;
1191 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1192 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1193 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1194 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1195 		}
1196 	}
1197 
1198 	return (HANDLED);
1199 }
1200 
1201 static int
1202 ept_fault_type(uint64_t ept_qual)
1203 {
1204 	int fault_type;
1205 
1206 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1207 		fault_type = VM_PROT_WRITE;
1208 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1209 		fault_type = VM_PROT_EXECUTE;
1210 	else
1211 		fault_type= VM_PROT_READ;
1212 
1213 	return (fault_type);
1214 }
1215 
1216 static boolean_t
1217 ept_emulation_fault(uint64_t ept_qual)
1218 {
1219 	int read, write;
1220 
1221 	/* EPT fault on an instruction fetch doesn't make sense here */
1222 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1223 		return (FALSE);
1224 
1225 	/* EPT fault must be a read fault or a write fault */
1226 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1227 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1228 	if ((read | write) == 0)
1229 		return (FALSE);
1230 
1231 	/*
1232 	 * The EPT violation must have been caused by accessing a
1233 	 * guest-physical address that is a translation of a guest-linear
1234 	 * address.
1235 	 */
1236 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1237 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1238 		return (FALSE);
1239 	}
1240 
1241 	return (TRUE);
1242 }
1243 
1244 static int
1245 vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual)
1246 {
1247 	int error, handled, offset;
1248 	bool retu;
1249 
1250 	if (!virtual_interrupt_delivery)
1251 		return (UNHANDLED);
1252 
1253 	handled = 1;
1254 	offset = APIC_WRITE_OFFSET(qual);
1255 	switch (offset) {
1256 	case APIC_OFFSET_ID:
1257 		vlapic_id_write_handler(vlapic);
1258 		break;
1259 	case APIC_OFFSET_LDR:
1260 		vlapic_ldr_write_handler(vlapic);
1261 		break;
1262 	case APIC_OFFSET_DFR:
1263 		vlapic_dfr_write_handler(vlapic);
1264 		break;
1265 	case APIC_OFFSET_SVR:
1266 		vlapic_svr_write_handler(vlapic);
1267 		break;
1268 	case APIC_OFFSET_ESR:
1269 		vlapic_esr_write_handler(vlapic);
1270 		break;
1271 	case APIC_OFFSET_ICR_LOW:
1272 		retu = false;
1273 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1274 		if (error != 0 || retu)
1275 			handled = 0;
1276 		break;
1277 	case APIC_OFFSET_CMCI_LVT:
1278 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1279 		vlapic_lvt_write_handler(vlapic, offset);
1280 		break;
1281 	case APIC_OFFSET_TIMER_ICR:
1282 		vlapic_icrtmr_write_handler(vlapic);
1283 		break;
1284 	case APIC_OFFSET_TIMER_DCR:
1285 		vlapic_dcr_write_handler(vlapic);
1286 		break;
1287 	default:
1288 		handled = 0;
1289 		break;
1290 	}
1291 	return (handled);
1292 }
1293 
1294 static bool
1295 apic_access_fault(uint64_t gpa)
1296 {
1297 
1298 	if (virtual_interrupt_delivery &&
1299 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1300 		return (true);
1301 	else
1302 		return (false);
1303 }
1304 
1305 static int
1306 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1307 {
1308 	uint64_t qual;
1309 	int access_type, offset, allowed;
1310 
1311 	if (!virtual_interrupt_delivery)
1312 		return (UNHANDLED);
1313 
1314 	qual = vmexit->u.vmx.exit_qualification;
1315 	access_type = APIC_ACCESS_TYPE(qual);
1316 	offset = APIC_ACCESS_OFFSET(qual);
1317 
1318 	allowed = 0;
1319 	if (access_type == 0) {
1320 		/*
1321 		 * Read data access to the following registers is expected.
1322 		 */
1323 		switch (offset) {
1324 		case APIC_OFFSET_APR:
1325 		case APIC_OFFSET_PPR:
1326 		case APIC_OFFSET_RRR:
1327 		case APIC_OFFSET_CMCI_LVT:
1328 		case APIC_OFFSET_TIMER_CCR:
1329 			allowed = 1;
1330 			break;
1331 		default:
1332 			break;
1333 		}
1334 	} else if (access_type == 1) {
1335 		/*
1336 		 * Write data access to the following registers is expected.
1337 		 */
1338 		switch (offset) {
1339 		case APIC_OFFSET_VER:
1340 		case APIC_OFFSET_APR:
1341 		case APIC_OFFSET_PPR:
1342 		case APIC_OFFSET_RRR:
1343 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1344 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1345 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1346 		case APIC_OFFSET_CMCI_LVT:
1347 		case APIC_OFFSET_TIMER_CCR:
1348 			allowed = 1;
1349 			break;
1350 		default:
1351 			break;
1352 		}
1353 	}
1354 
1355 	if (allowed) {
1356 		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1357 		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1358 		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1359 		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1360 	}
1361 
1362 	/*
1363 	 * Regardless of whether the APIC-access is allowed this handler
1364 	 * always returns UNHANDLED:
1365 	 * - if the access is allowed then it is handled by emulating the
1366 	 *   instruction that caused the VM-exit (outside the critical section)
1367 	 * - if the access is not allowed then it will be converted to an
1368 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1369 	 */
1370 	return (UNHANDLED);
1371 }
1372 
1373 static int
1374 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1375 {
1376 	int error, handled;
1377 	struct vmxctx *vmxctx;
1378 	struct vlapic *vlapic;
1379 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, reason;
1380 	uint64_t qual, gpa;
1381 	bool retu;
1382 
1383 	handled = 0;
1384 	vmxctx = &vmx->ctx[vcpu];
1385 
1386 	qual = vmexit->u.vmx.exit_qualification;
1387 	reason = vmexit->u.vmx.exit_reason;
1388 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1389 
1390 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1391 
1392 	/*
1393 	 * VM exits that could be triggered during event injection on the
1394 	 * previous VM entry need to be handled specially by re-injecting
1395 	 * the event.
1396 	 *
1397 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1398 	 * for details.
1399 	 */
1400 	switch (reason) {
1401 	case EXIT_REASON_EPT_FAULT:
1402 	case EXIT_REASON_EPT_MISCONFIG:
1403 	case EXIT_REASON_APIC_ACCESS:
1404 	case EXIT_REASON_TASK_SWITCH:
1405 	case EXIT_REASON_EXCEPTION:
1406 		idtvec_info = vmcs_idt_vectoring_info();
1407 		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1408 			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1409 			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1410 			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1411 				idtvec_err = vmcs_idt_vectoring_err();
1412 				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1413 				    idtvec_err);
1414 			}
1415 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1416 		}
1417 	default:
1418 		break;
1419 	}
1420 
1421 	switch (reason) {
1422 	case EXIT_REASON_CR_ACCESS:
1423 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1424 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1425 		break;
1426 	case EXIT_REASON_RDMSR:
1427 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1428 		retu = false;
1429 		ecx = vmxctx->guest_rcx;
1430 		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1431 		if (error) {
1432 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1433 			vmexit->u.msr.code = ecx;
1434 		} else if (!retu) {
1435 			handled = 1;
1436 		} else {
1437 			/* Return to userspace with a valid exitcode */
1438 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1439 			    ("emulate_wrmsr retu with bogus exitcode"));
1440 		}
1441 		break;
1442 	case EXIT_REASON_WRMSR:
1443 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1444 		retu = false;
1445 		eax = vmxctx->guest_rax;
1446 		ecx = vmxctx->guest_rcx;
1447 		edx = vmxctx->guest_rdx;
1448 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1449 		    (uint64_t)edx << 32 | eax, &retu);
1450 		if (error) {
1451 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1452 			vmexit->u.msr.code = ecx;
1453 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1454 		} else if (!retu) {
1455 			handled = 1;
1456 		} else {
1457 			/* Return to userspace with a valid exitcode */
1458 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1459 			    ("emulate_wrmsr retu with bogus exitcode"));
1460 		}
1461 		break;
1462 	case EXIT_REASON_HLT:
1463 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1464 		vmexit->exitcode = VM_EXITCODE_HLT;
1465 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1466 		break;
1467 	case EXIT_REASON_MTF:
1468 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1469 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1470 		break;
1471 	case EXIT_REASON_PAUSE:
1472 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1473 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1474 		break;
1475 	case EXIT_REASON_INTR_WINDOW:
1476 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1477 		vmx_clear_int_window_exiting(vmx, vcpu);
1478 		VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1479 		return (1);
1480 	case EXIT_REASON_EXT_INTR:
1481 		/*
1482 		 * External interrupts serve only to cause VM exits and allow
1483 		 * the host interrupt handler to run.
1484 		 *
1485 		 * If this external interrupt triggers a virtual interrupt
1486 		 * to a VM, then that state will be recorded by the
1487 		 * host interrupt handler in the VM's softc. We will inject
1488 		 * this virtual interrupt during the subsequent VM enter.
1489 		 */
1490 
1491 		/*
1492 		 * This is special. We want to treat this as an 'handled'
1493 		 * VM-exit but not increment the instruction pointer.
1494 		 */
1495 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1496 		return (1);
1497 	case EXIT_REASON_NMI_WINDOW:
1498 		/* Exit to allow the pending virtual NMI to be injected */
1499 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1500 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1501 		VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1502 		return (1);
1503 	case EXIT_REASON_INOUT:
1504 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1505 		vmexit->exitcode = VM_EXITCODE_INOUT;
1506 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1507 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1508 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1509 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1510 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1511 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1512 		break;
1513 	case EXIT_REASON_CPUID:
1514 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1515 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1516 		break;
1517 	case EXIT_REASON_EPT_FAULT:
1518 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1519 		/*
1520 		 * If 'gpa' lies within the address space allocated to
1521 		 * memory then this must be a nested page fault otherwise
1522 		 * this must be an instruction that accesses MMIO space.
1523 		 */
1524 		gpa = vmcs_gpa();
1525 		if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) {
1526 			vmexit->exitcode = VM_EXITCODE_PAGING;
1527 			vmexit->u.paging.gpa = gpa;
1528 			vmexit->u.paging.fault_type = ept_fault_type(qual);
1529 		} else if (ept_emulation_fault(qual)) {
1530 			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1531 			vmexit->u.inst_emul.gpa = gpa;
1532 			vmexit->u.inst_emul.gla = vmcs_gla();
1533 			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1534 		}
1535 		break;
1536 	case EXIT_REASON_APIC_ACCESS:
1537 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1538 		break;
1539 	case EXIT_REASON_APIC_WRITE:
1540 		/*
1541 		 * APIC-write VM exit is trap-like so the %rip is already
1542 		 * pointing to the next instruction.
1543 		 */
1544 		vmexit->inst_length = 0;
1545 		vlapic = vm_lapic(vmx->vm, vcpu);
1546 		handled = vmx_handle_apic_write(vlapic, qual);
1547 		break;
1548 	default:
1549 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1550 		break;
1551 	}
1552 
1553 	if (handled) {
1554 		/*
1555 		 * It is possible that control is returned to userland
1556 		 * even though we were able to handle the VM exit in the
1557 		 * kernel.
1558 		 *
1559 		 * In such a case we want to make sure that the userland
1560 		 * restarts guest execution at the instruction *after*
1561 		 * the one we just processed. Therefore we update the
1562 		 * guest rip in the VMCS and in 'vmexit'.
1563 		 */
1564 		vmexit->rip += vmexit->inst_length;
1565 		vmexit->inst_length = 0;
1566 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1567 	} else {
1568 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1569 			/*
1570 			 * If this VM exit was not claimed by anybody then
1571 			 * treat it as a generic VMX exit.
1572 			 */
1573 			vmexit->exitcode = VM_EXITCODE_VMX;
1574 			vmexit->u.vmx.status = VM_SUCCESS;
1575 		} else {
1576 			/*
1577 			 * The exitcode and collateral have been populated.
1578 			 * The VM exit will be processed further in userland.
1579 			 */
1580 		}
1581 	}
1582 	return (handled);
1583 }
1584 
1585 static __inline int
1586 vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1587 {
1588 
1589 	vmexit->rip = vmcs_guest_rip();
1590 	vmexit->inst_length = 0;
1591 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1592 	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1593 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1594 
1595 	return (HANDLED);
1596 }
1597 
1598 static __inline int
1599 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
1600 {
1601 
1602 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
1603 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
1604 	    vmxctx->inst_fail_status));
1605 
1606 	vmexit->inst_length = 0;
1607 	vmexit->exitcode = VM_EXITCODE_VMX;
1608 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
1609 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
1610 	vmexit->u.vmx.exit_reason = ~0;
1611 	vmexit->u.vmx.exit_qualification = ~0;
1612 
1613 	switch (rc) {
1614 	case VMX_VMRESUME_ERROR:
1615 	case VMX_VMLAUNCH_ERROR:
1616 	case VMX_INVEPT_ERROR:
1617 		vmexit->u.vmx.inst_type = rc;
1618 		break;
1619 	default:
1620 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
1621 	}
1622 
1623 	return (UNHANDLED);
1624 }
1625 
1626 static int
1627 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap)
1628 {
1629 	int rc, handled, launched;
1630 	struct vmx *vmx;
1631 	struct vmxctx *vmxctx;
1632 	struct vmcs *vmcs;
1633 	struct vm_exit *vmexit;
1634 	struct vlapic *vlapic;
1635 	uint64_t rip;
1636 	uint32_t exit_reason;
1637 
1638 	vmx = arg;
1639 	vmcs = &vmx->vmcs[vcpu];
1640 	vmxctx = &vmx->ctx[vcpu];
1641 	vlapic = vm_lapic(vmx->vm, vcpu);
1642 	vmexit = vm_exitinfo(vmx->vm, vcpu);
1643 	launched = 0;
1644 
1645 	KASSERT(vmxctx->pmap == pmap,
1646 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1647 	KASSERT(vmxctx->eptp == vmx->eptp,
1648 	    ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp));
1649 
1650 	VMPTRLD(vmcs);
1651 
1652 	/*
1653 	 * XXX
1654 	 * We do this every time because we may setup the virtual machine
1655 	 * from a different process than the one that actually runs it.
1656 	 *
1657 	 * If the life of a virtual machine was spent entirely in the context
1658 	 * of a single process we could do this once in vmx_vminit().
1659 	 */
1660 	vmcs_write(VMCS_HOST_CR3, rcr3());
1661 
1662 	vmcs_write(VMCS_GUEST_RIP, startrip);
1663 	vmx_set_pcpu_defaults(vmx, vcpu);
1664 	do {
1665 		/*
1666 		 * Interrupts are disabled from this point on until the
1667 		 * guest starts executing. This is done for the following
1668 		 * reasons:
1669 		 *
1670 		 * If an AST is asserted on this thread after the check below,
1671 		 * then the IPI_AST notification will not be lost, because it
1672 		 * will cause a VM exit due to external interrupt as soon as
1673 		 * the guest state is loaded.
1674 		 *
1675 		 * A posted interrupt after 'vmx_inject_interrupts()' will
1676 		 * not be "lost" because it will be held pending in the host
1677 		 * APIC because interrupts are disabled. The pending interrupt
1678 		 * will be recognized as soon as the guest state is loaded.
1679 		 *
1680 		 * The same reasoning applies to the IPI generated by
1681 		 * pmap_invalidate_ept().
1682 		 */
1683 		disable_intr();
1684 		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1685 			enable_intr();
1686 			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
1687 			break;
1688 		}
1689 
1690 		vmx_inject_interrupts(vmx, vcpu, vlapic);
1691 		vmx_run_trace(vmx, vcpu);
1692 		rc = vmx_enter_guest(vmxctx, launched);
1693 
1694 		enable_intr();
1695 
1696 		/* Collect some information for VM exit processing */
1697 		vmexit->rip = rip = vmcs_guest_rip();
1698 		vmexit->inst_length = vmexit_instruction_length();
1699 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1700 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1701 
1702 		if (rc == VMX_GUEST_VMEXIT) {
1703 			launched = 1;
1704 			handled = vmx_exit_process(vmx, vcpu, vmexit);
1705 		} else {
1706 			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
1707 		}
1708 
1709 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1710 	} while (handled);
1711 
1712 	/*
1713 	 * If a VM exit has been handled then the exitcode must be BOGUS
1714 	 * If a VM exit is not handled then the exitcode must not be BOGUS
1715 	 */
1716 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1717 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1718 		panic("Mismatch between handled (%d) and exitcode (%d)",
1719 		      handled, vmexit->exitcode);
1720 	}
1721 
1722 	if (!handled)
1723 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1);
1724 
1725 	VCPU_CTR1(vmx->vm, vcpu, "returning from vmx_run: exitcode %d",
1726 	    vmexit->exitcode);
1727 
1728 	VMCLEAR(vmcs);
1729 	return (0);
1730 }
1731 
1732 static void
1733 vmx_vmcleanup(void *arg)
1734 {
1735 	int i, error;
1736 	struct vmx *vmx = arg;
1737 
1738 	if (virtual_interrupt_delivery)
1739 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
1740 
1741 	for (i = 0; i < VM_MAXCPU; i++)
1742 		vpid_free(vmx->state[i].vpid);
1743 
1744 	/*
1745 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1746 	 */
1747 	error = vmclear(&vmx->vmcs[0]);
1748 	if (error != 0)
1749 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1750 
1751 	free(vmx, M_VMX);
1752 
1753 	return;
1754 }
1755 
1756 static register_t *
1757 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1758 {
1759 
1760 	switch (reg) {
1761 	case VM_REG_GUEST_RAX:
1762 		return (&vmxctx->guest_rax);
1763 	case VM_REG_GUEST_RBX:
1764 		return (&vmxctx->guest_rbx);
1765 	case VM_REG_GUEST_RCX:
1766 		return (&vmxctx->guest_rcx);
1767 	case VM_REG_GUEST_RDX:
1768 		return (&vmxctx->guest_rdx);
1769 	case VM_REG_GUEST_RSI:
1770 		return (&vmxctx->guest_rsi);
1771 	case VM_REG_GUEST_RDI:
1772 		return (&vmxctx->guest_rdi);
1773 	case VM_REG_GUEST_RBP:
1774 		return (&vmxctx->guest_rbp);
1775 	case VM_REG_GUEST_R8:
1776 		return (&vmxctx->guest_r8);
1777 	case VM_REG_GUEST_R9:
1778 		return (&vmxctx->guest_r9);
1779 	case VM_REG_GUEST_R10:
1780 		return (&vmxctx->guest_r10);
1781 	case VM_REG_GUEST_R11:
1782 		return (&vmxctx->guest_r11);
1783 	case VM_REG_GUEST_R12:
1784 		return (&vmxctx->guest_r12);
1785 	case VM_REG_GUEST_R13:
1786 		return (&vmxctx->guest_r13);
1787 	case VM_REG_GUEST_R14:
1788 		return (&vmxctx->guest_r14);
1789 	case VM_REG_GUEST_R15:
1790 		return (&vmxctx->guest_r15);
1791 	default:
1792 		break;
1793 	}
1794 	return (NULL);
1795 }
1796 
1797 static int
1798 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1799 {
1800 	register_t *regp;
1801 
1802 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1803 		*retval = *regp;
1804 		return (0);
1805 	} else
1806 		return (EINVAL);
1807 }
1808 
1809 static int
1810 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1811 {
1812 	register_t *regp;
1813 
1814 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1815 		*regp = val;
1816 		return (0);
1817 	} else
1818 		return (EINVAL);
1819 }
1820 
1821 static int
1822 vmx_shadow_reg(int reg)
1823 {
1824 	int shreg;
1825 
1826 	shreg = -1;
1827 
1828 	switch (reg) {
1829 	case VM_REG_GUEST_CR0:
1830 		shreg = VMCS_CR0_SHADOW;
1831                 break;
1832         case VM_REG_GUEST_CR4:
1833 		shreg = VMCS_CR4_SHADOW;
1834 		break;
1835 	default:
1836 		break;
1837 	}
1838 
1839 	return (shreg);
1840 }
1841 
1842 static int
1843 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
1844 {
1845 	int running, hostcpu;
1846 	struct vmx *vmx = arg;
1847 
1848 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1849 	if (running && hostcpu != curcpu)
1850 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
1851 
1852 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
1853 		return (0);
1854 
1855 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
1856 }
1857 
1858 static int
1859 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
1860 {
1861 	int error, hostcpu, running, shadow;
1862 	uint64_t ctls;
1863 	struct vmx *vmx = arg;
1864 
1865 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
1866 	if (running && hostcpu != curcpu)
1867 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
1868 
1869 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
1870 		return (0);
1871 
1872 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
1873 
1874 	if (error == 0) {
1875 		/*
1876 		 * If the "load EFER" VM-entry control is 1 then the
1877 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
1878 		 * bit in the VM-entry control.
1879 		 */
1880 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
1881 		    (reg == VM_REG_GUEST_EFER)) {
1882 			vmcs_getreg(&vmx->vmcs[vcpu], running,
1883 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
1884 			if (val & EFER_LMA)
1885 				ctls |= VM_ENTRY_GUEST_LMA;
1886 			else
1887 				ctls &= ~VM_ENTRY_GUEST_LMA;
1888 			vmcs_setreg(&vmx->vmcs[vcpu], running,
1889 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
1890 		}
1891 
1892 		shadow = vmx_shadow_reg(reg);
1893 		if (shadow > 0) {
1894 			/*
1895 			 * Store the unmodified value in the shadow
1896 			 */
1897 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
1898 				    VMCS_IDENT(shadow), val);
1899 		}
1900 	}
1901 
1902 	return (error);
1903 }
1904 
1905 static int
1906 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1907 {
1908 	struct vmx *vmx = arg;
1909 
1910 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
1911 }
1912 
1913 static int
1914 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1915 {
1916 	struct vmx *vmx = arg;
1917 
1918 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
1919 }
1920 
1921 static int
1922 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
1923 	   int code_valid)
1924 {
1925 	int error;
1926 	uint64_t info;
1927 	struct vmx *vmx = arg;
1928 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1929 
1930 	static uint32_t type_map[VM_EVENT_MAX] = {
1931 		0x1,		/* VM_EVENT_NONE */
1932 		0x0,		/* VM_HW_INTR */
1933 		0x2,		/* VM_NMI */
1934 		0x3,		/* VM_HW_EXCEPTION */
1935 		0x4,		/* VM_SW_INTR */
1936 		0x5,		/* VM_PRIV_SW_EXCEPTION */
1937 		0x6,		/* VM_SW_EXCEPTION */
1938 	};
1939 
1940 	/*
1941 	 * If there is already an exception pending to be delivered to the
1942 	 * vcpu then just return.
1943 	 */
1944 	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
1945 	if (error)
1946 		return (error);
1947 
1948 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1949 		return (EAGAIN);
1950 
1951 	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
1952 	info |= VMCS_INTERRUPTION_INFO_VALID;
1953 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
1954 	if (error != 0)
1955 		return (error);
1956 
1957 	if (code_valid) {
1958 		error = vmcs_setreg(vmcs, 0,
1959 				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
1960 				    code);
1961 	}
1962 	return (error);
1963 }
1964 
1965 static int
1966 vmx_getcap(void *arg, int vcpu, int type, int *retval)
1967 {
1968 	struct vmx *vmx = arg;
1969 	int vcap;
1970 	int ret;
1971 
1972 	ret = ENOENT;
1973 
1974 	vcap = vmx->cap[vcpu].set;
1975 
1976 	switch (type) {
1977 	case VM_CAP_HALT_EXIT:
1978 		if (cap_halt_exit)
1979 			ret = 0;
1980 		break;
1981 	case VM_CAP_PAUSE_EXIT:
1982 		if (cap_pause_exit)
1983 			ret = 0;
1984 		break;
1985 	case VM_CAP_MTRAP_EXIT:
1986 		if (cap_monitor_trap)
1987 			ret = 0;
1988 		break;
1989 	case VM_CAP_UNRESTRICTED_GUEST:
1990 		if (cap_unrestricted_guest)
1991 			ret = 0;
1992 		break;
1993 	case VM_CAP_ENABLE_INVPCID:
1994 		if (cap_invpcid)
1995 			ret = 0;
1996 		break;
1997 	default:
1998 		break;
1999 	}
2000 
2001 	if (ret == 0)
2002 		*retval = (vcap & (1 << type)) ? 1 : 0;
2003 
2004 	return (ret);
2005 }
2006 
2007 static int
2008 vmx_setcap(void *arg, int vcpu, int type, int val)
2009 {
2010 	struct vmx *vmx = arg;
2011 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2012 	uint32_t baseval;
2013 	uint32_t *pptr;
2014 	int error;
2015 	int flag;
2016 	int reg;
2017 	int retval;
2018 
2019 	retval = ENOENT;
2020 	pptr = NULL;
2021 
2022 	switch (type) {
2023 	case VM_CAP_HALT_EXIT:
2024 		if (cap_halt_exit) {
2025 			retval = 0;
2026 			pptr = &vmx->cap[vcpu].proc_ctls;
2027 			baseval = *pptr;
2028 			flag = PROCBASED_HLT_EXITING;
2029 			reg = VMCS_PRI_PROC_BASED_CTLS;
2030 		}
2031 		break;
2032 	case VM_CAP_MTRAP_EXIT:
2033 		if (cap_monitor_trap) {
2034 			retval = 0;
2035 			pptr = &vmx->cap[vcpu].proc_ctls;
2036 			baseval = *pptr;
2037 			flag = PROCBASED_MTF;
2038 			reg = VMCS_PRI_PROC_BASED_CTLS;
2039 		}
2040 		break;
2041 	case VM_CAP_PAUSE_EXIT:
2042 		if (cap_pause_exit) {
2043 			retval = 0;
2044 			pptr = &vmx->cap[vcpu].proc_ctls;
2045 			baseval = *pptr;
2046 			flag = PROCBASED_PAUSE_EXITING;
2047 			reg = VMCS_PRI_PROC_BASED_CTLS;
2048 		}
2049 		break;
2050 	case VM_CAP_UNRESTRICTED_GUEST:
2051 		if (cap_unrestricted_guest) {
2052 			retval = 0;
2053 			pptr = &vmx->cap[vcpu].proc_ctls2;
2054 			baseval = *pptr;
2055 			flag = PROCBASED2_UNRESTRICTED_GUEST;
2056 			reg = VMCS_SEC_PROC_BASED_CTLS;
2057 		}
2058 		break;
2059 	case VM_CAP_ENABLE_INVPCID:
2060 		if (cap_invpcid) {
2061 			retval = 0;
2062 			pptr = &vmx->cap[vcpu].proc_ctls2;
2063 			baseval = *pptr;
2064 			flag = PROCBASED2_ENABLE_INVPCID;
2065 			reg = VMCS_SEC_PROC_BASED_CTLS;
2066 		}
2067 		break;
2068 	default:
2069 		break;
2070 	}
2071 
2072 	if (retval == 0) {
2073 		if (val) {
2074 			baseval |= flag;
2075 		} else {
2076 			baseval &= ~flag;
2077 		}
2078 		VMPTRLD(vmcs);
2079 		error = vmwrite(reg, baseval);
2080 		VMCLEAR(vmcs);
2081 
2082 		if (error) {
2083 			retval = error;
2084 		} else {
2085 			/*
2086 			 * Update optional stored flags, and record
2087 			 * setting
2088 			 */
2089 			if (pptr != NULL) {
2090 				*pptr = baseval;
2091 			}
2092 
2093 			if (val) {
2094 				vmx->cap[vcpu].set |= (1 << type);
2095 			} else {
2096 				vmx->cap[vcpu].set &= ~(1 << type);
2097 			}
2098 		}
2099 	}
2100 
2101         return (retval);
2102 }
2103 
2104 /*
2105  * Posted Interrupt Descriptor (described in section 29.6 of the Intel SDM).
2106  */
2107 struct pir_desc {
2108 	uint64_t	pir[4];
2109 	uint64_t	pending;
2110 	uint64_t	unused[3];
2111 } __aligned(64);
2112 CTASSERT(sizeof(struct pir_desc) == 64);
2113 
2114 struct vlapic_vtx {
2115 	struct vlapic	vlapic;
2116 	struct pir_desc	pir_desc;
2117 };
2118 
2119 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2120 do {									\
2121 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2122 	    level ? "level" : "edge", vector);				\
2123 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2124 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2125 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2126 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2127 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2128 } while (0)
2129 
2130 /*
2131  * vlapic->ops handlers that utilize the APICv hardware assist described in
2132  * Chapter 29 of the Intel SDM.
2133  */
2134 static int
2135 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2136 {
2137 	struct vlapic_vtx *vlapic_vtx;
2138 	struct pir_desc *pir_desc;
2139 	uint64_t mask;
2140 	int idx, notify;
2141 
2142 	/*
2143 	 * XXX need to deal with level triggered interrupts
2144 	 */
2145 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2146 	pir_desc = &vlapic_vtx->pir_desc;
2147 
2148 	/*
2149 	 * Keep track of interrupt requests in the PIR descriptor. This is
2150 	 * because the virtual APIC page pointed to by the VMCS cannot be
2151 	 * modified if the vcpu is running.
2152 	 */
2153 	idx = vector / 64;
2154 	mask = 1UL << (vector % 64);
2155 	atomic_set_long(&pir_desc->pir[idx], mask);
2156 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2157 
2158 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2159 	    level, "vmx_set_intr_ready");
2160 	return (notify);
2161 }
2162 
2163 static int
2164 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2165 {
2166 	struct vlapic_vtx *vlapic_vtx;
2167 	struct pir_desc *pir_desc;
2168 	struct LAPIC *lapic;
2169 	uint64_t pending, pirval;
2170 	uint32_t ppr, vpr;
2171 	int i;
2172 
2173 	/*
2174 	 * This function is only expected to be called from the 'HLT' exit
2175 	 * handler which does not care about the vector that is pending.
2176 	 */
2177 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2178 
2179 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2180 	pir_desc = &vlapic_vtx->pir_desc;
2181 
2182 	pending = atomic_load_acq_long(&pir_desc->pending);
2183 	if (!pending)
2184 		return (0);	/* common case */
2185 
2186 	/*
2187 	 * If there is an interrupt pending then it will be recognized only
2188 	 * if its priority is greater than the processor priority.
2189 	 *
2190 	 * Special case: if the processor priority is zero then any pending
2191 	 * interrupt will be recognized.
2192 	 */
2193 	lapic = vlapic->apic_page;
2194 	ppr = lapic->ppr & 0xf0;
2195 	if (ppr == 0)
2196 		return (1);
2197 
2198 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2199 	    lapic->ppr);
2200 
2201 	for (i = 3; i >= 0; i--) {
2202 		pirval = pir_desc->pir[i];
2203 		if (pirval != 0) {
2204 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2205 			return (vpr > ppr);
2206 		}
2207 	}
2208 	return (0);
2209 }
2210 
2211 static void
2212 vmx_intr_accepted(struct vlapic *vlapic, int vector)
2213 {
2214 
2215 	panic("vmx_intr_accepted: not expected to be called");
2216 }
2217 
2218 /*
2219  * Transfer the pending interrupts in the PIR descriptor to the IRR
2220  * in the virtual APIC page.
2221  */
2222 static void
2223 vmx_inject_pir(struct vlapic *vlapic)
2224 {
2225 	struct vlapic_vtx *vlapic_vtx;
2226 	struct pir_desc *pir_desc;
2227 	struct LAPIC *lapic;
2228 	uint64_t val, pirval;
2229 	int rvi, pirbase;
2230 	uint16_t intr_status_old, intr_status_new;
2231 
2232 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2233 	pir_desc = &vlapic_vtx->pir_desc;
2234 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2235 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2236 		    "no posted interrupt pending");
2237 		return;
2238 	}
2239 
2240 	pirval = 0;
2241 	lapic = vlapic->apic_page;
2242 
2243 	val = atomic_readandclear_long(&pir_desc->pir[0]);
2244 	if (val != 0) {
2245 		lapic->irr0 |= val;
2246 		lapic->irr1 |= val >> 32;
2247 		pirbase = 0;
2248 		pirval = val;
2249 	}
2250 
2251 	val = atomic_readandclear_long(&pir_desc->pir[1]);
2252 	if (val != 0) {
2253 		lapic->irr2 |= val;
2254 		lapic->irr3 |= val >> 32;
2255 		pirbase = 64;
2256 		pirval = val;
2257 	}
2258 
2259 	val = atomic_readandclear_long(&pir_desc->pir[2]);
2260 	if (val != 0) {
2261 		lapic->irr4 |= val;
2262 		lapic->irr5 |= val >> 32;
2263 		pirbase = 128;
2264 		pirval = val;
2265 	}
2266 
2267 	val = atomic_readandclear_long(&pir_desc->pir[3]);
2268 	if (val != 0) {
2269 		lapic->irr6 |= val;
2270 		lapic->irr7 |= val >> 32;
2271 		pirbase = 192;
2272 		pirval = val;
2273 	}
2274 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2275 
2276 	/*
2277 	 * Update RVI so the processor can evaluate pending virtual
2278 	 * interrupts on VM-entry.
2279 	 */
2280 	if (pirval != 0) {
2281 		rvi = pirbase + flsl(pirval) - 1;
2282 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2283 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2284 		if (intr_status_new > intr_status_old) {
2285 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2286 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2287 			    "guest_intr_status changed from 0x%04x to 0x%04x",
2288 			    intr_status_old, intr_status_new);
2289 		}
2290 	}
2291 }
2292 
2293 static struct vlapic *
2294 vmx_vlapic_init(void *arg, int vcpuid)
2295 {
2296 	struct vmx *vmx;
2297 	struct vlapic *vlapic;
2298 
2299 	vmx = arg;
2300 
2301 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2302 	vlapic->vm = vmx->vm;
2303 	vlapic->vcpuid = vcpuid;
2304 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2305 
2306 	if (virtual_interrupt_delivery) {
2307 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2308 		vlapic->ops.pending_intr = vmx_pending_intr;
2309 		vlapic->ops.intr_accepted = vmx_intr_accepted;
2310 	}
2311 
2312 	vlapic_init(vlapic);
2313 
2314 	return (vlapic);
2315 }
2316 
2317 static void
2318 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2319 {
2320 
2321 	vlapic_cleanup(vlapic);
2322 	free(vlapic, M_VLAPIC);
2323 }
2324 
2325 struct vmm_ops vmm_ops_intel = {
2326 	vmx_init,
2327 	vmx_cleanup,
2328 	vmx_restore,
2329 	vmx_vminit,
2330 	vmx_run,
2331 	vmx_vmcleanup,
2332 	vmx_getreg,
2333 	vmx_setreg,
2334 	vmx_getdesc,
2335 	vmx_setdesc,
2336 	vmx_inject,
2337 	vmx_getcap,
2338 	vmx_setcap,
2339 	ept_vmspace_alloc,
2340 	ept_vmspace_free,
2341 	vmx_vlapic_init,
2342 	vmx_vlapic_cleanup,
2343 };
2344