1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/smp.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/pcpu.h> 38 #include <sys/proc.h> 39 #include <sys/sysctl.h> 40 41 #include <vm/vm.h> 42 #include <vm/pmap.h> 43 44 #include <machine/psl.h> 45 #include <machine/cpufunc.h> 46 #include <machine/md_var.h> 47 #include <machine/segments.h> 48 #include <machine/smp.h> 49 #include <machine/specialreg.h> 50 #include <machine/vmparam.h> 51 52 #include <machine/vmm.h> 53 #include "vmm_host.h" 54 #include "vmm_ipi.h" 55 #include "vmm_msr.h" 56 #include "vmm_ktr.h" 57 #include "vmm_stat.h" 58 #include "vlapic.h" 59 #include "vlapic_priv.h" 60 61 #include "vmx_msr.h" 62 #include "ept.h" 63 #include "vmx_cpufunc.h" 64 #include "vmx.h" 65 #include "x86.h" 66 #include "vmx_controls.h" 67 68 #define PINBASED_CTLS_ONE_SETTING \ 69 (PINBASED_EXTINT_EXITING | \ 70 PINBASED_NMI_EXITING | \ 71 PINBASED_VIRTUAL_NMI) 72 #define PINBASED_CTLS_ZERO_SETTING 0 73 74 #define PROCBASED_CTLS_WINDOW_SETTING \ 75 (PROCBASED_INT_WINDOW_EXITING | \ 76 PROCBASED_NMI_WINDOW_EXITING) 77 78 #define PROCBASED_CTLS_ONE_SETTING \ 79 (PROCBASED_SECONDARY_CONTROLS | \ 80 PROCBASED_IO_EXITING | \ 81 PROCBASED_MSR_BITMAPS | \ 82 PROCBASED_CTLS_WINDOW_SETTING) 83 #define PROCBASED_CTLS_ZERO_SETTING \ 84 (PROCBASED_CR3_LOAD_EXITING | \ 85 PROCBASED_CR3_STORE_EXITING | \ 86 PROCBASED_IO_BITMAPS) 87 88 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 89 #define PROCBASED_CTLS2_ZERO_SETTING 0 90 91 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT \ 92 (VM_EXIT_HOST_LMA | \ 93 VM_EXIT_SAVE_EFER | \ 94 VM_EXIT_LOAD_EFER) 95 96 #define VM_EXIT_CTLS_ONE_SETTING \ 97 (VM_EXIT_CTLS_ONE_SETTING_NO_PAT | \ 98 VM_EXIT_ACKNOWLEDGE_INTERRUPT | \ 99 VM_EXIT_SAVE_PAT | \ 100 VM_EXIT_LOAD_PAT) 101 #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS 102 103 #define VM_ENTRY_CTLS_ONE_SETTING_NO_PAT VM_ENTRY_LOAD_EFER 104 105 #define VM_ENTRY_CTLS_ONE_SETTING \ 106 (VM_ENTRY_CTLS_ONE_SETTING_NO_PAT | \ 107 VM_ENTRY_LOAD_PAT) 108 #define VM_ENTRY_CTLS_ZERO_SETTING \ 109 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 110 VM_ENTRY_INTO_SMM | \ 111 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 112 113 #define guest_msr_rw(vmx, msr) \ 114 msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW) 115 116 #define HANDLED 1 117 #define UNHANDLED 0 118 119 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 120 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 121 122 SYSCTL_DECL(_hw_vmm); 123 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); 124 125 int vmxon_enabled[MAXCPU]; 126 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 127 128 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 129 static uint32_t exit_ctls, entry_ctls; 130 131 static uint64_t cr0_ones_mask, cr0_zeros_mask; 132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 133 &cr0_ones_mask, 0, NULL); 134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 135 &cr0_zeros_mask, 0, NULL); 136 137 static uint64_t cr4_ones_mask, cr4_zeros_mask; 138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 139 &cr4_ones_mask, 0, NULL); 140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 141 &cr4_zeros_mask, 0, NULL); 142 143 static int vmx_no_patmsr; 144 145 static int vmx_initialized; 146 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 147 &vmx_initialized, 0, "Intel VMX initialized"); 148 149 /* 150 * Virtual NMI blocking conditions. 151 * 152 * Some processor implementations also require NMI to be blocked if 153 * the STI_BLOCKING bit is set. It is possible to detect this at runtime 154 * based on the (exit_reason,exit_qual) tuple being set to 155 * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING). 156 * 157 * We take the easy way out and also include STI_BLOCKING as one of the 158 * gating items for vNMI injection. 159 */ 160 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING | 161 VMCS_INTERRUPTIBILITY_NMI_BLOCKING | 162 VMCS_INTERRUPTIBILITY_STI_BLOCKING; 163 164 /* 165 * Optional capabilities 166 */ 167 static int cap_halt_exit; 168 static int cap_pause_exit; 169 static int cap_unrestricted_guest; 170 static int cap_monitor_trap; 171 static int cap_invpcid; 172 173 static int virtual_interrupt_delivery; 174 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 175 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 176 177 static int posted_interrupts; 178 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD, 179 &posted_interrupts, 0, "APICv posted interrupt support"); 180 181 static int pirvec; 182 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 183 &pirvec, 0, "APICv posted interrupt vector"); 184 185 static struct unrhdr *vpid_unr; 186 static u_int vpid_alloc_failed; 187 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 188 &vpid_alloc_failed, 0, NULL); 189 190 /* 191 * Use the last page below 4GB as the APIC access address. This address is 192 * occupied by the boot firmware so it is guaranteed that it will not conflict 193 * with a page in system memory. 194 */ 195 #define APIC_ACCESS_ADDRESS 0xFFFFF000 196 197 static void vmx_inject_pir(struct vlapic *vlapic); 198 199 #ifdef KTR 200 static const char * 201 exit_reason_to_str(int reason) 202 { 203 static char reasonbuf[32]; 204 205 switch (reason) { 206 case EXIT_REASON_EXCEPTION: 207 return "exception"; 208 case EXIT_REASON_EXT_INTR: 209 return "extint"; 210 case EXIT_REASON_TRIPLE_FAULT: 211 return "triplefault"; 212 case EXIT_REASON_INIT: 213 return "init"; 214 case EXIT_REASON_SIPI: 215 return "sipi"; 216 case EXIT_REASON_IO_SMI: 217 return "iosmi"; 218 case EXIT_REASON_SMI: 219 return "smi"; 220 case EXIT_REASON_INTR_WINDOW: 221 return "intrwindow"; 222 case EXIT_REASON_NMI_WINDOW: 223 return "nmiwindow"; 224 case EXIT_REASON_TASK_SWITCH: 225 return "taskswitch"; 226 case EXIT_REASON_CPUID: 227 return "cpuid"; 228 case EXIT_REASON_GETSEC: 229 return "getsec"; 230 case EXIT_REASON_HLT: 231 return "hlt"; 232 case EXIT_REASON_INVD: 233 return "invd"; 234 case EXIT_REASON_INVLPG: 235 return "invlpg"; 236 case EXIT_REASON_RDPMC: 237 return "rdpmc"; 238 case EXIT_REASON_RDTSC: 239 return "rdtsc"; 240 case EXIT_REASON_RSM: 241 return "rsm"; 242 case EXIT_REASON_VMCALL: 243 return "vmcall"; 244 case EXIT_REASON_VMCLEAR: 245 return "vmclear"; 246 case EXIT_REASON_VMLAUNCH: 247 return "vmlaunch"; 248 case EXIT_REASON_VMPTRLD: 249 return "vmptrld"; 250 case EXIT_REASON_VMPTRST: 251 return "vmptrst"; 252 case EXIT_REASON_VMREAD: 253 return "vmread"; 254 case EXIT_REASON_VMRESUME: 255 return "vmresume"; 256 case EXIT_REASON_VMWRITE: 257 return "vmwrite"; 258 case EXIT_REASON_VMXOFF: 259 return "vmxoff"; 260 case EXIT_REASON_VMXON: 261 return "vmxon"; 262 case EXIT_REASON_CR_ACCESS: 263 return "craccess"; 264 case EXIT_REASON_DR_ACCESS: 265 return "draccess"; 266 case EXIT_REASON_INOUT: 267 return "inout"; 268 case EXIT_REASON_RDMSR: 269 return "rdmsr"; 270 case EXIT_REASON_WRMSR: 271 return "wrmsr"; 272 case EXIT_REASON_INVAL_VMCS: 273 return "invalvmcs"; 274 case EXIT_REASON_INVAL_MSR: 275 return "invalmsr"; 276 case EXIT_REASON_MWAIT: 277 return "mwait"; 278 case EXIT_REASON_MTF: 279 return "mtf"; 280 case EXIT_REASON_MONITOR: 281 return "monitor"; 282 case EXIT_REASON_PAUSE: 283 return "pause"; 284 case EXIT_REASON_MCE: 285 return "mce"; 286 case EXIT_REASON_TPR: 287 return "tpr"; 288 case EXIT_REASON_APIC_ACCESS: 289 return "apic-access"; 290 case EXIT_REASON_GDTR_IDTR: 291 return "gdtridtr"; 292 case EXIT_REASON_LDTR_TR: 293 return "ldtrtr"; 294 case EXIT_REASON_EPT_FAULT: 295 return "eptfault"; 296 case EXIT_REASON_EPT_MISCONFIG: 297 return "eptmisconfig"; 298 case EXIT_REASON_INVEPT: 299 return "invept"; 300 case EXIT_REASON_RDTSCP: 301 return "rdtscp"; 302 case EXIT_REASON_VMX_PREEMPT: 303 return "vmxpreempt"; 304 case EXIT_REASON_INVVPID: 305 return "invvpid"; 306 case EXIT_REASON_WBINVD: 307 return "wbinvd"; 308 case EXIT_REASON_XSETBV: 309 return "xsetbv"; 310 case EXIT_REASON_APIC_WRITE: 311 return "apic-write"; 312 default: 313 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 314 return (reasonbuf); 315 } 316 } 317 #endif /* KTR */ 318 319 u_long 320 vmx_fix_cr0(u_long cr0) 321 { 322 323 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 324 } 325 326 u_long 327 vmx_fix_cr4(u_long cr4) 328 { 329 330 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 331 } 332 333 static void 334 vpid_free(int vpid) 335 { 336 if (vpid < 0 || vpid > 0xffff) 337 panic("vpid_free: invalid vpid %d", vpid); 338 339 /* 340 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 341 * the unit number allocator. 342 */ 343 344 if (vpid > VM_MAXCPU) 345 free_unr(vpid_unr, vpid); 346 } 347 348 static void 349 vpid_alloc(uint16_t *vpid, int num) 350 { 351 int i, x; 352 353 if (num <= 0 || num > VM_MAXCPU) 354 panic("invalid number of vpids requested: %d", num); 355 356 /* 357 * If the "enable vpid" execution control is not enabled then the 358 * VPID is required to be 0 for all vcpus. 359 */ 360 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 361 for (i = 0; i < num; i++) 362 vpid[i] = 0; 363 return; 364 } 365 366 /* 367 * Allocate a unique VPID for each vcpu from the unit number allocator. 368 */ 369 for (i = 0; i < num; i++) { 370 x = alloc_unr(vpid_unr); 371 if (x == -1) 372 break; 373 else 374 vpid[i] = x; 375 } 376 377 if (i < num) { 378 atomic_add_int(&vpid_alloc_failed, 1); 379 380 /* 381 * If the unit number allocator does not have enough unique 382 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 383 * 384 * These VPIDs are not be unique across VMs but this does not 385 * affect correctness because the combined mappings are also 386 * tagged with the EP4TA which is unique for each VM. 387 * 388 * It is still sub-optimal because the invvpid will invalidate 389 * combined mappings for a particular VPID across all EP4TAs. 390 */ 391 while (i-- > 0) 392 vpid_free(vpid[i]); 393 394 for (i = 0; i < num; i++) 395 vpid[i] = i + 1; 396 } 397 } 398 399 static void 400 vpid_init(void) 401 { 402 /* 403 * VPID 0 is required when the "enable VPID" execution control is 404 * disabled. 405 * 406 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 407 * unit number allocator does not have sufficient unique VPIDs to 408 * satisfy the allocation. 409 * 410 * The remaining VPIDs are managed by the unit number allocator. 411 */ 412 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 413 } 414 415 static void 416 msr_save_area_init(struct msr_entry *g_area, int *g_count) 417 { 418 int cnt; 419 420 static struct msr_entry guest_msrs[] = { 421 { MSR_KGSBASE, 0, 0 }, 422 }; 423 424 cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]); 425 if (cnt > GUEST_MSR_MAX_ENTRIES) 426 panic("guest msr save area overrun"); 427 bcopy(guest_msrs, g_area, sizeof(guest_msrs)); 428 *g_count = cnt; 429 } 430 431 static void 432 vmx_disable(void *arg __unused) 433 { 434 struct invvpid_desc invvpid_desc = { 0 }; 435 struct invept_desc invept_desc = { 0 }; 436 437 if (vmxon_enabled[curcpu]) { 438 /* 439 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 440 * 441 * VMXON or VMXOFF are not required to invalidate any TLB 442 * caching structures. This prevents potential retention of 443 * cached information in the TLB between distinct VMX episodes. 444 */ 445 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 446 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 447 vmxoff(); 448 } 449 load_cr4(rcr4() & ~CR4_VMXE); 450 } 451 452 static int 453 vmx_cleanup(void) 454 { 455 456 if (pirvec != 0) 457 vmm_ipi_free(pirvec); 458 459 if (vpid_unr != NULL) { 460 delete_unrhdr(vpid_unr); 461 vpid_unr = NULL; 462 } 463 464 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 465 466 return (0); 467 } 468 469 static void 470 vmx_enable(void *arg __unused) 471 { 472 int error; 473 474 load_cr4(rcr4() | CR4_VMXE); 475 476 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 477 error = vmxon(vmxon_region[curcpu]); 478 if (error == 0) 479 vmxon_enabled[curcpu] = 1; 480 } 481 482 static void 483 vmx_restore(void) 484 { 485 486 if (vmxon_enabled[curcpu]) 487 vmxon(vmxon_region[curcpu]); 488 } 489 490 static int 491 vmx_init(int ipinum) 492 { 493 int error, use_tpr_shadow; 494 uint64_t fixed0, fixed1, feature_control; 495 uint32_t tmp, procbased2_vid_bits; 496 497 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 498 if (!(cpu_feature2 & CPUID2_VMX)) { 499 printf("vmx_init: processor does not support VMX operation\n"); 500 return (ENXIO); 501 } 502 503 /* 504 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 505 * are set (bits 0 and 2 respectively). 506 */ 507 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 508 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 509 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 510 printf("vmx_init: VMX operation disabled by BIOS\n"); 511 return (ENXIO); 512 } 513 514 /* Check support for primary processor-based VM-execution controls */ 515 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 516 MSR_VMX_TRUE_PROCBASED_CTLS, 517 PROCBASED_CTLS_ONE_SETTING, 518 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 519 if (error) { 520 printf("vmx_init: processor does not support desired primary " 521 "processor-based controls\n"); 522 return (error); 523 } 524 525 /* Clear the processor-based ctl bits that are set on demand */ 526 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 527 528 /* Check support for secondary processor-based VM-execution controls */ 529 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 530 MSR_VMX_PROCBASED_CTLS2, 531 PROCBASED_CTLS2_ONE_SETTING, 532 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 533 if (error) { 534 printf("vmx_init: processor does not support desired secondary " 535 "processor-based controls\n"); 536 return (error); 537 } 538 539 /* Check support for VPID */ 540 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 541 PROCBASED2_ENABLE_VPID, 0, &tmp); 542 if (error == 0) 543 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 544 545 /* Check support for pin-based VM-execution controls */ 546 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 547 MSR_VMX_TRUE_PINBASED_CTLS, 548 PINBASED_CTLS_ONE_SETTING, 549 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 550 if (error) { 551 printf("vmx_init: processor does not support desired " 552 "pin-based controls\n"); 553 return (error); 554 } 555 556 /* Check support for VM-exit controls */ 557 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 558 VM_EXIT_CTLS_ONE_SETTING, 559 VM_EXIT_CTLS_ZERO_SETTING, 560 &exit_ctls); 561 if (error) { 562 /* Try again without the PAT MSR bits */ 563 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, 564 MSR_VMX_TRUE_EXIT_CTLS, 565 VM_EXIT_CTLS_ONE_SETTING_NO_PAT, 566 VM_EXIT_CTLS_ZERO_SETTING, 567 &exit_ctls); 568 if (error) { 569 printf("vmx_init: processor does not support desired " 570 "exit controls\n"); 571 return (error); 572 } else { 573 if (bootverbose) 574 printf("vmm: PAT MSR access not supported\n"); 575 guest_msr_valid(MSR_PAT); 576 vmx_no_patmsr = 1; 577 } 578 } 579 580 /* Check support for VM-entry controls */ 581 if (!vmx_no_patmsr) { 582 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, 583 MSR_VMX_TRUE_ENTRY_CTLS, 584 VM_ENTRY_CTLS_ONE_SETTING, 585 VM_ENTRY_CTLS_ZERO_SETTING, 586 &entry_ctls); 587 } else { 588 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, 589 MSR_VMX_TRUE_ENTRY_CTLS, 590 VM_ENTRY_CTLS_ONE_SETTING_NO_PAT, 591 VM_ENTRY_CTLS_ZERO_SETTING, 592 &entry_ctls); 593 } 594 595 if (error) { 596 printf("vmx_init: processor does not support desired " 597 "entry controls\n"); 598 return (error); 599 } 600 601 /* 602 * Check support for optional features by testing them 603 * as individual bits 604 */ 605 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 606 MSR_VMX_TRUE_PROCBASED_CTLS, 607 PROCBASED_HLT_EXITING, 0, 608 &tmp) == 0); 609 610 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 611 MSR_VMX_PROCBASED_CTLS, 612 PROCBASED_MTF, 0, 613 &tmp) == 0); 614 615 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 616 MSR_VMX_TRUE_PROCBASED_CTLS, 617 PROCBASED_PAUSE_EXITING, 0, 618 &tmp) == 0); 619 620 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 621 MSR_VMX_PROCBASED_CTLS2, 622 PROCBASED2_UNRESTRICTED_GUEST, 0, 623 &tmp) == 0); 624 625 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 626 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 627 &tmp) == 0); 628 629 /* 630 * Check support for virtual interrupt delivery. 631 */ 632 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 633 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 634 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 635 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 636 637 use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 638 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 639 &tmp) == 0); 640 641 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 642 procbased2_vid_bits, 0, &tmp); 643 if (error == 0 && use_tpr_shadow) { 644 virtual_interrupt_delivery = 1; 645 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 646 &virtual_interrupt_delivery); 647 } 648 649 if (virtual_interrupt_delivery) { 650 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 651 procbased_ctls2 |= procbased2_vid_bits; 652 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 653 654 /* 655 * Check for Posted Interrupts only if Virtual Interrupt 656 * Delivery is enabled. 657 */ 658 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 659 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 660 &tmp); 661 if (error == 0) { 662 pirvec = vmm_ipi_alloc(); 663 if (pirvec == 0) { 664 if (bootverbose) { 665 printf("vmx_init: unable to allocate " 666 "posted interrupt vector\n"); 667 } 668 } else { 669 posted_interrupts = 1; 670 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 671 &posted_interrupts); 672 } 673 } 674 } 675 676 if (posted_interrupts) 677 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 678 679 /* Initialize EPT */ 680 error = ept_init(ipinum); 681 if (error) { 682 printf("vmx_init: ept initialization failed (%d)\n", error); 683 return (error); 684 } 685 686 /* 687 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 688 */ 689 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 690 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 691 cr0_ones_mask = fixed0 & fixed1; 692 cr0_zeros_mask = ~fixed0 & ~fixed1; 693 694 /* 695 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 696 * if unrestricted guest execution is allowed. 697 */ 698 if (cap_unrestricted_guest) 699 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 700 701 /* 702 * Do not allow the guest to set CR0_NW or CR0_CD. 703 */ 704 cr0_zeros_mask |= (CR0_NW | CR0_CD); 705 706 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 707 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 708 cr4_ones_mask = fixed0 & fixed1; 709 cr4_zeros_mask = ~fixed0 & ~fixed1; 710 711 vpid_init(); 712 713 /* enable VMX operation */ 714 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 715 716 vmx_initialized = 1; 717 718 return (0); 719 } 720 721 static void 722 vmx_trigger_hostintr(int vector) 723 { 724 uintptr_t func; 725 struct gate_descriptor *gd; 726 727 gd = &idt[vector]; 728 729 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 730 "invalid vector %d", vector)); 731 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 732 vector)); 733 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 734 "has invalid type %d", vector, gd->gd_type)); 735 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 736 "has invalid dpl %d", vector, gd->gd_dpl)); 737 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 738 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 739 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 740 "IST %d", vector, gd->gd_ist)); 741 742 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 743 vmx_call_isr(func); 744 } 745 746 static int 747 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 748 { 749 int error, mask_ident, shadow_ident; 750 uint64_t mask_value; 751 752 if (which != 0 && which != 4) 753 panic("vmx_setup_cr_shadow: unknown cr%d", which); 754 755 if (which == 0) { 756 mask_ident = VMCS_CR0_MASK; 757 mask_value = cr0_ones_mask | cr0_zeros_mask; 758 shadow_ident = VMCS_CR0_SHADOW; 759 } else { 760 mask_ident = VMCS_CR4_MASK; 761 mask_value = cr4_ones_mask | cr4_zeros_mask; 762 shadow_ident = VMCS_CR4_SHADOW; 763 } 764 765 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 766 if (error) 767 return (error); 768 769 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 770 if (error) 771 return (error); 772 773 return (0); 774 } 775 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 776 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 777 778 static void * 779 vmx_vminit(struct vm *vm, pmap_t pmap) 780 { 781 uint16_t vpid[VM_MAXCPU]; 782 int i, error, guest_msr_count; 783 struct vmx *vmx; 784 struct vmcs *vmcs; 785 786 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 787 if ((uintptr_t)vmx & PAGE_MASK) { 788 panic("malloc of struct vmx not aligned on %d byte boundary", 789 PAGE_SIZE); 790 } 791 vmx->vm = vm; 792 793 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 794 795 /* 796 * Clean up EPTP-tagged guest physical and combined mappings 797 * 798 * VMX transitions are not required to invalidate any guest physical 799 * mappings. So, it may be possible for stale guest physical mappings 800 * to be present in the processor TLBs. 801 * 802 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 803 */ 804 ept_invalidate_mappings(vmx->eptp); 805 806 msr_bitmap_initialize(vmx->msr_bitmap); 807 808 /* 809 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 810 * The guest FSBASE and GSBASE are saved and restored during 811 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 812 * always restored from the vmcs host state area on vm-exit. 813 * 814 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 815 * how they are saved/restored so can be directly accessed by the 816 * guest. 817 * 818 * Guest KGSBASE is saved and restored in the guest MSR save area. 819 * Host KGSBASE is restored before returning to userland from the pcb. 820 * There will be a window of time when we are executing in the host 821 * kernel context with a value of KGSBASE from the guest. This is ok 822 * because the value of KGSBASE is inconsequential in kernel context. 823 * 824 * MSR_EFER is saved and restored in the guest VMCS area on a 825 * VM exit and entry respectively. It is also restored from the 826 * host VMCS area on a VM exit. 827 */ 828 if (guest_msr_rw(vmx, MSR_GSBASE) || 829 guest_msr_rw(vmx, MSR_FSBASE) || 830 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 831 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 832 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 833 guest_msr_rw(vmx, MSR_KGSBASE) || 834 guest_msr_rw(vmx, MSR_EFER)) 835 panic("vmx_vminit: error setting guest msr access"); 836 837 /* 838 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit 839 * and entry respectively. It is also restored from the host VMCS 840 * area on a VM exit. However, if running on a system with no 841 * MSR_PAT save/restore support, leave access disabled so accesses 842 * will be trapped. 843 */ 844 if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT)) 845 panic("vmx_vminit: error setting guest pat msr access"); 846 847 vpid_alloc(vpid, VM_MAXCPU); 848 849 if (virtual_interrupt_delivery) { 850 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 851 APIC_ACCESS_ADDRESS); 852 /* XXX this should really return an error to the caller */ 853 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 854 } 855 856 for (i = 0; i < VM_MAXCPU; i++) { 857 vmcs = &vmx->vmcs[i]; 858 vmcs->identifier = vmx_revision(); 859 error = vmclear(vmcs); 860 if (error != 0) { 861 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 862 error, i); 863 } 864 865 error = vmcs_init(vmcs); 866 KASSERT(error == 0, ("vmcs_init error %d", error)); 867 868 VMPTRLD(vmcs); 869 error = 0; 870 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 871 error += vmwrite(VMCS_EPTP, vmx->eptp); 872 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 873 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 874 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 875 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 876 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 877 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 878 error += vmwrite(VMCS_VPID, vpid[i]); 879 if (virtual_interrupt_delivery) { 880 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 881 error += vmwrite(VMCS_VIRTUAL_APIC, 882 vtophys(&vmx->apic_page[i])); 883 error += vmwrite(VMCS_EOI_EXIT0, 0); 884 error += vmwrite(VMCS_EOI_EXIT1, 0); 885 error += vmwrite(VMCS_EOI_EXIT2, 0); 886 error += vmwrite(VMCS_EOI_EXIT3, 0); 887 } 888 if (posted_interrupts) { 889 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 890 error += vmwrite(VMCS_PIR_DESC, 891 vtophys(&vmx->pir_desc[i])); 892 } 893 VMCLEAR(vmcs); 894 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); 895 896 vmx->cap[i].set = 0; 897 vmx->cap[i].proc_ctls = procbased_ctls; 898 vmx->cap[i].proc_ctls2 = procbased_ctls2; 899 900 vmx->state[i].lastcpu = -1; 901 vmx->state[i].vpid = vpid[i]; 902 903 msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count); 904 905 error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]), 906 guest_msr_count); 907 if (error != 0) 908 panic("vmcs_set_msr_save error %d", error); 909 910 /* 911 * Set up the CR0/4 shadows, and init the read shadow 912 * to the power-on register value from the Intel Sys Arch. 913 * CR0 - 0x60000010 914 * CR4 - 0 915 */ 916 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 917 if (error != 0) 918 panic("vmx_setup_cr0_shadow %d", error); 919 920 error = vmx_setup_cr4_shadow(vmcs, 0); 921 if (error != 0) 922 panic("vmx_setup_cr4_shadow %d", error); 923 924 vmx->ctx[i].pmap = pmap; 925 vmx->ctx[i].eptp = vmx->eptp; 926 } 927 928 return (vmx); 929 } 930 931 static int 932 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 933 { 934 int handled, func; 935 936 func = vmxctx->guest_rax; 937 938 handled = x86_emulate_cpuid(vm, vcpu, 939 (uint32_t*)(&vmxctx->guest_rax), 940 (uint32_t*)(&vmxctx->guest_rbx), 941 (uint32_t*)(&vmxctx->guest_rcx), 942 (uint32_t*)(&vmxctx->guest_rdx)); 943 return (handled); 944 } 945 946 static __inline void 947 vmx_run_trace(struct vmx *vmx, int vcpu) 948 { 949 #ifdef KTR 950 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 951 #endif 952 } 953 954 static __inline void 955 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 956 int handled) 957 { 958 #ifdef KTR 959 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 960 handled ? "handled" : "unhandled", 961 exit_reason_to_str(exit_reason), rip); 962 #endif 963 } 964 965 static __inline void 966 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 967 { 968 #ifdef KTR 969 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 970 #endif 971 } 972 973 static void 974 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu) 975 { 976 int lastcpu; 977 struct vmxstate *vmxstate; 978 struct invvpid_desc invvpid_desc = { 0 }; 979 980 vmxstate = &vmx->state[vcpu]; 981 lastcpu = vmxstate->lastcpu; 982 vmxstate->lastcpu = curcpu; 983 984 if (lastcpu == curcpu) 985 return; 986 987 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 988 989 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 990 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 991 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 992 993 /* 994 * If we are using VPIDs then invalidate all mappings tagged with 'vpid' 995 * 996 * We do this because this vcpu was executing on a different host 997 * cpu when it last ran. We do not track whether it invalidated 998 * mappings associated with its 'vpid' during that run. So we must 999 * assume that the mappings associated with 'vpid' on 'curcpu' are 1000 * stale and invalidate them. 1001 * 1002 * Note that we incur this penalty only when the scheduler chooses to 1003 * move the thread associated with this vcpu between host cpus. 1004 * 1005 * Note also that this will invalidate mappings tagged with 'vpid' 1006 * for "all" EP4TAs. 1007 */ 1008 if (vmxstate->vpid != 0) { 1009 invvpid_desc.vpid = vmxstate->vpid; 1010 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1011 } 1012 } 1013 1014 /* 1015 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1016 */ 1017 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1018 1019 static void __inline 1020 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1021 { 1022 1023 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1024 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1025 } 1026 1027 static void __inline 1028 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1029 { 1030 1031 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1032 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1033 } 1034 1035 static void __inline 1036 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1037 { 1038 1039 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1040 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1041 } 1042 1043 static void __inline 1044 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1045 { 1046 1047 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1048 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1049 } 1050 1051 static int 1052 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1053 { 1054 uint64_t info, interruptibility; 1055 1056 /* Bail out if no NMI requested */ 1057 if (!vm_nmi_pending(vmx->vm, vcpu)) 1058 return (0); 1059 1060 interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1061 if (interruptibility & nmi_blocking_bits) 1062 goto nmiblocked; 1063 1064 /* 1065 * Inject the virtual NMI. The vector must be the NMI IDT entry 1066 * or the VMCS entry check will fail. 1067 */ 1068 info = VMCS_INTR_INFO_NMI | VMCS_INTR_INFO_VALID; 1069 info |= IDT_NMI; 1070 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1071 1072 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1073 1074 /* Clear the request */ 1075 vm_nmi_clear(vmx->vm, vcpu); 1076 return (1); 1077 1078 nmiblocked: 1079 /* 1080 * Set the NMI Window Exiting execution control so we can inject 1081 * the virtual NMI as soon as blocking condition goes away. 1082 */ 1083 vmx_set_nmi_window_exiting(vmx, vcpu); 1084 1085 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1086 return (1); 1087 } 1088 1089 static void 1090 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic) 1091 { 1092 int vector; 1093 uint64_t info, rflags, interruptibility; 1094 1095 const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING | 1096 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING; 1097 1098 /* 1099 * If there is already an interrupt pending then just return. 1100 * 1101 * This could happen if an interrupt was injected on a prior 1102 * VM entry but the actual entry into guest mode was aborted 1103 * because of a pending AST. 1104 */ 1105 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1106 if (info & VMCS_INTR_INFO_VALID) 1107 return; 1108 1109 /* 1110 * NMI injection has priority so deal with those first 1111 */ 1112 if (vmx_inject_nmi(vmx, vcpu)) 1113 return; 1114 1115 if (virtual_interrupt_delivery) { 1116 vmx_inject_pir(vlapic); 1117 return; 1118 } 1119 1120 /* Ask the local apic for a vector to inject */ 1121 if (!vlapic_pending_intr(vlapic, &vector)) 1122 return; 1123 1124 if (vector < 32 || vector > 255) 1125 panic("vmx_inject_interrupts: invalid vector %d\n", vector); 1126 1127 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1128 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1129 if ((rflags & PSL_I) == 0) 1130 goto cantinject; 1131 1132 interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1133 if (interruptibility & HWINTR_BLOCKED) 1134 goto cantinject; 1135 1136 /* Inject the interrupt */ 1137 info = VMCS_INTR_INFO_HW_INTR | VMCS_INTR_INFO_VALID; 1138 info |= vector; 1139 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1140 1141 /* Update the Local APIC ISR */ 1142 vlapic_intr_accepted(vlapic, vector); 1143 1144 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1145 1146 return; 1147 1148 cantinject: 1149 /* 1150 * Set the Interrupt Window Exiting execution control so we can inject 1151 * the interrupt as soon as blocking condition goes away. 1152 */ 1153 vmx_set_int_window_exiting(vmx, vcpu); 1154 1155 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1156 } 1157 1158 static int 1159 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1160 { 1161 int cr, vmcs_guest_cr, vmcs_shadow_cr; 1162 uint64_t crval, regval, ones_mask, zeros_mask; 1163 const struct vmxctx *vmxctx; 1164 1165 /* We only handle mov to %cr0 or %cr4 at this time */ 1166 if ((exitqual & 0xf0) != 0x00) 1167 return (UNHANDLED); 1168 1169 cr = exitqual & 0xf; 1170 if (cr != 0 && cr != 4) 1171 return (UNHANDLED); 1172 1173 regval = 0; /* silence gcc */ 1174 vmxctx = &vmx->ctx[vcpu]; 1175 1176 /* 1177 * We must use vmcs_write() directly here because vmcs_setreg() will 1178 * call vmclear(vmcs) as a side-effect which we certainly don't want. 1179 */ 1180 switch ((exitqual >> 8) & 0xf) { 1181 case 0: 1182 regval = vmxctx->guest_rax; 1183 break; 1184 case 1: 1185 regval = vmxctx->guest_rcx; 1186 break; 1187 case 2: 1188 regval = vmxctx->guest_rdx; 1189 break; 1190 case 3: 1191 regval = vmxctx->guest_rbx; 1192 break; 1193 case 4: 1194 regval = vmcs_read(VMCS_GUEST_RSP); 1195 break; 1196 case 5: 1197 regval = vmxctx->guest_rbp; 1198 break; 1199 case 6: 1200 regval = vmxctx->guest_rsi; 1201 break; 1202 case 7: 1203 regval = vmxctx->guest_rdi; 1204 break; 1205 case 8: 1206 regval = vmxctx->guest_r8; 1207 break; 1208 case 9: 1209 regval = vmxctx->guest_r9; 1210 break; 1211 case 10: 1212 regval = vmxctx->guest_r10; 1213 break; 1214 case 11: 1215 regval = vmxctx->guest_r11; 1216 break; 1217 case 12: 1218 regval = vmxctx->guest_r12; 1219 break; 1220 case 13: 1221 regval = vmxctx->guest_r13; 1222 break; 1223 case 14: 1224 regval = vmxctx->guest_r14; 1225 break; 1226 case 15: 1227 regval = vmxctx->guest_r15; 1228 break; 1229 } 1230 1231 if (cr == 0) { 1232 ones_mask = cr0_ones_mask; 1233 zeros_mask = cr0_zeros_mask; 1234 vmcs_guest_cr = VMCS_GUEST_CR0; 1235 vmcs_shadow_cr = VMCS_CR0_SHADOW; 1236 } else { 1237 ones_mask = cr4_ones_mask; 1238 zeros_mask = cr4_zeros_mask; 1239 vmcs_guest_cr = VMCS_GUEST_CR4; 1240 vmcs_shadow_cr = VMCS_CR4_SHADOW; 1241 } 1242 vmcs_write(vmcs_shadow_cr, regval); 1243 1244 crval = regval | ones_mask; 1245 crval &= ~zeros_mask; 1246 vmcs_write(vmcs_guest_cr, crval); 1247 1248 if (cr == 0 && regval & CR0_PG) { 1249 uint64_t efer, entry_ctls; 1250 1251 /* 1252 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1253 * the "IA-32e mode guest" bit in VM-entry control must be 1254 * equal. 1255 */ 1256 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1257 if (efer & EFER_LME) { 1258 efer |= EFER_LMA; 1259 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1260 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1261 entry_ctls |= VM_ENTRY_GUEST_LMA; 1262 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1263 } 1264 } 1265 1266 return (HANDLED); 1267 } 1268 1269 static int 1270 ept_fault_type(uint64_t ept_qual) 1271 { 1272 int fault_type; 1273 1274 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1275 fault_type = VM_PROT_WRITE; 1276 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1277 fault_type = VM_PROT_EXECUTE; 1278 else 1279 fault_type= VM_PROT_READ; 1280 1281 return (fault_type); 1282 } 1283 1284 static boolean_t 1285 ept_emulation_fault(uint64_t ept_qual) 1286 { 1287 int read, write; 1288 1289 /* EPT fault on an instruction fetch doesn't make sense here */ 1290 if (ept_qual & EPT_VIOLATION_INST_FETCH) 1291 return (FALSE); 1292 1293 /* EPT fault must be a read fault or a write fault */ 1294 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 1295 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 1296 if ((read | write) == 0) 1297 return (FALSE); 1298 1299 /* 1300 * The EPT violation must have been caused by accessing a 1301 * guest-physical address that is a translation of a guest-linear 1302 * address. 1303 */ 1304 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 1305 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 1306 return (FALSE); 1307 } 1308 1309 return (TRUE); 1310 } 1311 1312 static int 1313 vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual) 1314 { 1315 int error, handled, offset; 1316 bool retu; 1317 1318 if (!virtual_interrupt_delivery) 1319 return (UNHANDLED); 1320 1321 handled = 1; 1322 offset = APIC_WRITE_OFFSET(qual); 1323 switch (offset) { 1324 case APIC_OFFSET_ID: 1325 vlapic_id_write_handler(vlapic); 1326 break; 1327 case APIC_OFFSET_LDR: 1328 vlapic_ldr_write_handler(vlapic); 1329 break; 1330 case APIC_OFFSET_DFR: 1331 vlapic_dfr_write_handler(vlapic); 1332 break; 1333 case APIC_OFFSET_SVR: 1334 vlapic_svr_write_handler(vlapic); 1335 break; 1336 case APIC_OFFSET_ESR: 1337 vlapic_esr_write_handler(vlapic); 1338 break; 1339 case APIC_OFFSET_ICR_LOW: 1340 retu = false; 1341 error = vlapic_icrlo_write_handler(vlapic, &retu); 1342 if (error != 0 || retu) 1343 handled = 0; 1344 break; 1345 case APIC_OFFSET_CMCI_LVT: 1346 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 1347 vlapic_lvt_write_handler(vlapic, offset); 1348 break; 1349 case APIC_OFFSET_TIMER_ICR: 1350 vlapic_icrtmr_write_handler(vlapic); 1351 break; 1352 case APIC_OFFSET_TIMER_DCR: 1353 vlapic_dcr_write_handler(vlapic); 1354 break; 1355 default: 1356 handled = 0; 1357 break; 1358 } 1359 return (handled); 1360 } 1361 1362 static bool 1363 apic_access_fault(uint64_t gpa) 1364 { 1365 1366 if (virtual_interrupt_delivery && 1367 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 1368 return (true); 1369 else 1370 return (false); 1371 } 1372 1373 static int 1374 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 1375 { 1376 uint64_t qual; 1377 int access_type, offset, allowed; 1378 1379 if (!virtual_interrupt_delivery) 1380 return (UNHANDLED); 1381 1382 qual = vmexit->u.vmx.exit_qualification; 1383 access_type = APIC_ACCESS_TYPE(qual); 1384 offset = APIC_ACCESS_OFFSET(qual); 1385 1386 allowed = 0; 1387 if (access_type == 0) { 1388 /* 1389 * Read data access to the following registers is expected. 1390 */ 1391 switch (offset) { 1392 case APIC_OFFSET_APR: 1393 case APIC_OFFSET_PPR: 1394 case APIC_OFFSET_RRR: 1395 case APIC_OFFSET_CMCI_LVT: 1396 case APIC_OFFSET_TIMER_CCR: 1397 allowed = 1; 1398 break; 1399 default: 1400 break; 1401 } 1402 } else if (access_type == 1) { 1403 /* 1404 * Write data access to the following registers is expected. 1405 */ 1406 switch (offset) { 1407 case APIC_OFFSET_VER: 1408 case APIC_OFFSET_APR: 1409 case APIC_OFFSET_PPR: 1410 case APIC_OFFSET_RRR: 1411 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 1412 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 1413 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 1414 case APIC_OFFSET_CMCI_LVT: 1415 case APIC_OFFSET_TIMER_CCR: 1416 allowed = 1; 1417 break; 1418 default: 1419 break; 1420 } 1421 } 1422 1423 if (allowed) { 1424 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1425 vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset; 1426 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 1427 vmexit->u.inst_emul.cr3 = vmcs_guest_cr3(); 1428 } 1429 1430 /* 1431 * Regardless of whether the APIC-access is allowed this handler 1432 * always returns UNHANDLED: 1433 * - if the access is allowed then it is handled by emulating the 1434 * instruction that caused the VM-exit (outside the critical section) 1435 * - if the access is not allowed then it will be converted to an 1436 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 1437 */ 1438 return (UNHANDLED); 1439 } 1440 1441 static int 1442 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1443 { 1444 int error, handled; 1445 struct vmxctx *vmxctx; 1446 struct vlapic *vlapic; 1447 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason; 1448 uint64_t qual, gpa; 1449 bool retu; 1450 1451 handled = 0; 1452 vmxctx = &vmx->ctx[vcpu]; 1453 1454 qual = vmexit->u.vmx.exit_qualification; 1455 reason = vmexit->u.vmx.exit_reason; 1456 vmexit->exitcode = VM_EXITCODE_BOGUS; 1457 1458 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 1459 1460 /* 1461 * VM exits that could be triggered during event injection on the 1462 * previous VM entry need to be handled specially by re-injecting 1463 * the event. 1464 * 1465 * See "Information for VM Exits During Event Delivery" in Intel SDM 1466 * for details. 1467 */ 1468 switch (reason) { 1469 case EXIT_REASON_EPT_FAULT: 1470 case EXIT_REASON_EPT_MISCONFIG: 1471 case EXIT_REASON_APIC_ACCESS: 1472 case EXIT_REASON_TASK_SWITCH: 1473 case EXIT_REASON_EXCEPTION: 1474 idtvec_info = vmcs_idt_vectoring_info(); 1475 if (idtvec_info & VMCS_IDT_VEC_VALID) { 1476 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 1477 vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info); 1478 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 1479 idtvec_err = vmcs_idt_vectoring_err(); 1480 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, 1481 idtvec_err); 1482 } 1483 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 1484 } 1485 default: 1486 break; 1487 } 1488 1489 switch (reason) { 1490 case EXIT_REASON_CR_ACCESS: 1491 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 1492 handled = vmx_emulate_cr_access(vmx, vcpu, qual); 1493 break; 1494 case EXIT_REASON_RDMSR: 1495 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 1496 retu = false; 1497 ecx = vmxctx->guest_rcx; 1498 error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu); 1499 if (error) { 1500 vmexit->exitcode = VM_EXITCODE_RDMSR; 1501 vmexit->u.msr.code = ecx; 1502 } else if (!retu) { 1503 handled = 1; 1504 } else { 1505 /* Return to userspace with a valid exitcode */ 1506 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1507 ("emulate_wrmsr retu with bogus exitcode")); 1508 } 1509 break; 1510 case EXIT_REASON_WRMSR: 1511 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 1512 retu = false; 1513 eax = vmxctx->guest_rax; 1514 ecx = vmxctx->guest_rcx; 1515 edx = vmxctx->guest_rdx; 1516 error = emulate_wrmsr(vmx->vm, vcpu, ecx, 1517 (uint64_t)edx << 32 | eax, &retu); 1518 if (error) { 1519 vmexit->exitcode = VM_EXITCODE_WRMSR; 1520 vmexit->u.msr.code = ecx; 1521 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 1522 } else if (!retu) { 1523 handled = 1; 1524 } else { 1525 /* Return to userspace with a valid exitcode */ 1526 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1527 ("emulate_wrmsr retu with bogus exitcode")); 1528 } 1529 break; 1530 case EXIT_REASON_HLT: 1531 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 1532 vmexit->exitcode = VM_EXITCODE_HLT; 1533 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1534 break; 1535 case EXIT_REASON_MTF: 1536 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 1537 vmexit->exitcode = VM_EXITCODE_MTRAP; 1538 break; 1539 case EXIT_REASON_PAUSE: 1540 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 1541 vmexit->exitcode = VM_EXITCODE_PAUSE; 1542 break; 1543 case EXIT_REASON_INTR_WINDOW: 1544 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 1545 vmx_clear_int_window_exiting(vmx, vcpu); 1546 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1547 return (1); 1548 case EXIT_REASON_EXT_INTR: 1549 /* 1550 * External interrupts serve only to cause VM exits and allow 1551 * the host interrupt handler to run. 1552 * 1553 * If this external interrupt triggers a virtual interrupt 1554 * to a VM, then that state will be recorded by the 1555 * host interrupt handler in the VM's softc. We will inject 1556 * this virtual interrupt during the subsequent VM enter. 1557 */ 1558 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 1559 KASSERT((intr_info & VMCS_INTR_INFO_VALID) != 0 && 1560 VMCS_INTR_INFO_TYPE(intr_info) == 0, 1561 ("VM exit interruption info invalid: %#x", intr_info)); 1562 vmx_trigger_hostintr(intr_info & 0xff); 1563 1564 /* 1565 * This is special. We want to treat this as an 'handled' 1566 * VM-exit but not increment the instruction pointer. 1567 */ 1568 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 1569 return (1); 1570 case EXIT_REASON_NMI_WINDOW: 1571 /* Exit to allow the pending virtual NMI to be injected */ 1572 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 1573 vmx_clear_nmi_window_exiting(vmx, vcpu); 1574 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1575 return (1); 1576 case EXIT_REASON_INOUT: 1577 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 1578 vmexit->exitcode = VM_EXITCODE_INOUT; 1579 vmexit->u.inout.bytes = (qual & 0x7) + 1; 1580 vmexit->u.inout.in = (qual & 0x8) ? 1 : 0; 1581 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 1582 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 1583 vmexit->u.inout.port = (uint16_t)(qual >> 16); 1584 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 1585 break; 1586 case EXIT_REASON_CPUID: 1587 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 1588 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 1589 break; 1590 case EXIT_REASON_EPT_FAULT: 1591 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1); 1592 /* 1593 * If 'gpa' lies within the address space allocated to 1594 * memory then this must be a nested page fault otherwise 1595 * this must be an instruction that accesses MMIO space. 1596 */ 1597 gpa = vmcs_gpa(); 1598 if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) { 1599 vmexit->exitcode = VM_EXITCODE_PAGING; 1600 vmexit->u.paging.gpa = gpa; 1601 vmexit->u.paging.fault_type = ept_fault_type(qual); 1602 } else if (ept_emulation_fault(qual)) { 1603 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1604 vmexit->u.inst_emul.gpa = gpa; 1605 vmexit->u.inst_emul.gla = vmcs_gla(); 1606 vmexit->u.inst_emul.cr3 = vmcs_guest_cr3(); 1607 } 1608 break; 1609 case EXIT_REASON_APIC_ACCESS: 1610 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 1611 break; 1612 case EXIT_REASON_APIC_WRITE: 1613 /* 1614 * APIC-write VM exit is trap-like so the %rip is already 1615 * pointing to the next instruction. 1616 */ 1617 vmexit->inst_length = 0; 1618 vlapic = vm_lapic(vmx->vm, vcpu); 1619 handled = vmx_handle_apic_write(vlapic, qual); 1620 break; 1621 default: 1622 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 1623 break; 1624 } 1625 1626 if (handled) { 1627 /* 1628 * It is possible that control is returned to userland 1629 * even though we were able to handle the VM exit in the 1630 * kernel. 1631 * 1632 * In such a case we want to make sure that the userland 1633 * restarts guest execution at the instruction *after* 1634 * the one we just processed. Therefore we update the 1635 * guest rip in the VMCS and in 'vmexit'. 1636 */ 1637 vmexit->rip += vmexit->inst_length; 1638 vmexit->inst_length = 0; 1639 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 1640 } else { 1641 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1642 /* 1643 * If this VM exit was not claimed by anybody then 1644 * treat it as a generic VMX exit. 1645 */ 1646 vmexit->exitcode = VM_EXITCODE_VMX; 1647 vmexit->u.vmx.status = VM_SUCCESS; 1648 } else { 1649 /* 1650 * The exitcode and collateral have been populated. 1651 * The VM exit will be processed further in userland. 1652 */ 1653 } 1654 } 1655 return (handled); 1656 } 1657 1658 static __inline int 1659 vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1660 { 1661 1662 vmexit->rip = vmcs_guest_rip(); 1663 vmexit->inst_length = 0; 1664 vmexit->exitcode = VM_EXITCODE_BOGUS; 1665 vmx_astpending_trace(vmx, vcpu, vmexit->rip); 1666 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1); 1667 1668 return (HANDLED); 1669 } 1670 1671 static __inline int 1672 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 1673 { 1674 1675 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 1676 ("vmx_exit_inst_error: invalid inst_fail_status %d", 1677 vmxctx->inst_fail_status)); 1678 1679 vmexit->inst_length = 0; 1680 vmexit->exitcode = VM_EXITCODE_VMX; 1681 vmexit->u.vmx.status = vmxctx->inst_fail_status; 1682 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 1683 vmexit->u.vmx.exit_reason = ~0; 1684 vmexit->u.vmx.exit_qualification = ~0; 1685 1686 switch (rc) { 1687 case VMX_VMRESUME_ERROR: 1688 case VMX_VMLAUNCH_ERROR: 1689 case VMX_INVEPT_ERROR: 1690 vmexit->u.vmx.inst_type = rc; 1691 break; 1692 default: 1693 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 1694 } 1695 1696 return (UNHANDLED); 1697 } 1698 1699 static int 1700 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap) 1701 { 1702 int rc, handled, launched; 1703 struct vmx *vmx; 1704 struct vmxctx *vmxctx; 1705 struct vmcs *vmcs; 1706 struct vm_exit *vmexit; 1707 struct vlapic *vlapic; 1708 uint64_t rip; 1709 uint32_t exit_reason; 1710 1711 vmx = arg; 1712 vmcs = &vmx->vmcs[vcpu]; 1713 vmxctx = &vmx->ctx[vcpu]; 1714 vlapic = vm_lapic(vmx->vm, vcpu); 1715 vmexit = vm_exitinfo(vmx->vm, vcpu); 1716 launched = 0; 1717 1718 KASSERT(vmxctx->pmap == pmap, 1719 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 1720 KASSERT(vmxctx->eptp == vmx->eptp, 1721 ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp)); 1722 1723 VMPTRLD(vmcs); 1724 1725 /* 1726 * XXX 1727 * We do this every time because we may setup the virtual machine 1728 * from a different process than the one that actually runs it. 1729 * 1730 * If the life of a virtual machine was spent entirely in the context 1731 * of a single process we could do this once in vmx_vminit(). 1732 */ 1733 vmcs_write(VMCS_HOST_CR3, rcr3()); 1734 1735 vmcs_write(VMCS_GUEST_RIP, startrip); 1736 vmx_set_pcpu_defaults(vmx, vcpu); 1737 do { 1738 /* 1739 * Interrupts are disabled from this point on until the 1740 * guest starts executing. This is done for the following 1741 * reasons: 1742 * 1743 * If an AST is asserted on this thread after the check below, 1744 * then the IPI_AST notification will not be lost, because it 1745 * will cause a VM exit due to external interrupt as soon as 1746 * the guest state is loaded. 1747 * 1748 * A posted interrupt after 'vmx_inject_interrupts()' will 1749 * not be "lost" because it will be held pending in the host 1750 * APIC because interrupts are disabled. The pending interrupt 1751 * will be recognized as soon as the guest state is loaded. 1752 * 1753 * The same reasoning applies to the IPI generated by 1754 * pmap_invalidate_ept(). 1755 */ 1756 disable_intr(); 1757 if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { 1758 enable_intr(); 1759 handled = vmx_exit_astpending(vmx, vcpu, vmexit); 1760 break; 1761 } 1762 1763 vmx_inject_interrupts(vmx, vcpu, vlapic); 1764 vmx_run_trace(vmx, vcpu); 1765 rc = vmx_enter_guest(vmxctx, launched); 1766 1767 enable_intr(); 1768 1769 /* Collect some information for VM exit processing */ 1770 vmexit->rip = rip = vmcs_guest_rip(); 1771 vmexit->inst_length = vmexit_instruction_length(); 1772 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 1773 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 1774 1775 if (rc == VMX_GUEST_VMEXIT) { 1776 launched = 1; 1777 handled = vmx_exit_process(vmx, vcpu, vmexit); 1778 } else { 1779 handled = vmx_exit_inst_error(vmxctx, rc, vmexit); 1780 } 1781 1782 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 1783 } while (handled); 1784 1785 /* 1786 * If a VM exit has been handled then the exitcode must be BOGUS 1787 * If a VM exit is not handled then the exitcode must not be BOGUS 1788 */ 1789 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 1790 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 1791 panic("Mismatch between handled (%d) and exitcode (%d)", 1792 handled, vmexit->exitcode); 1793 } 1794 1795 if (!handled) 1796 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1); 1797 1798 VCPU_CTR1(vmx->vm, vcpu, "returning from vmx_run: exitcode %d", 1799 vmexit->exitcode); 1800 1801 VMCLEAR(vmcs); 1802 return (0); 1803 } 1804 1805 static void 1806 vmx_vmcleanup(void *arg) 1807 { 1808 int i, error; 1809 struct vmx *vmx = arg; 1810 1811 if (virtual_interrupt_delivery) 1812 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 1813 1814 for (i = 0; i < VM_MAXCPU; i++) 1815 vpid_free(vmx->state[i].vpid); 1816 1817 /* 1818 * XXXSMP we also need to clear the VMCS active on the other vcpus. 1819 */ 1820 error = vmclear(&vmx->vmcs[0]); 1821 if (error != 0) 1822 panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error); 1823 1824 free(vmx, M_VMX); 1825 1826 return; 1827 } 1828 1829 static register_t * 1830 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 1831 { 1832 1833 switch (reg) { 1834 case VM_REG_GUEST_RAX: 1835 return (&vmxctx->guest_rax); 1836 case VM_REG_GUEST_RBX: 1837 return (&vmxctx->guest_rbx); 1838 case VM_REG_GUEST_RCX: 1839 return (&vmxctx->guest_rcx); 1840 case VM_REG_GUEST_RDX: 1841 return (&vmxctx->guest_rdx); 1842 case VM_REG_GUEST_RSI: 1843 return (&vmxctx->guest_rsi); 1844 case VM_REG_GUEST_RDI: 1845 return (&vmxctx->guest_rdi); 1846 case VM_REG_GUEST_RBP: 1847 return (&vmxctx->guest_rbp); 1848 case VM_REG_GUEST_R8: 1849 return (&vmxctx->guest_r8); 1850 case VM_REG_GUEST_R9: 1851 return (&vmxctx->guest_r9); 1852 case VM_REG_GUEST_R10: 1853 return (&vmxctx->guest_r10); 1854 case VM_REG_GUEST_R11: 1855 return (&vmxctx->guest_r11); 1856 case VM_REG_GUEST_R12: 1857 return (&vmxctx->guest_r12); 1858 case VM_REG_GUEST_R13: 1859 return (&vmxctx->guest_r13); 1860 case VM_REG_GUEST_R14: 1861 return (&vmxctx->guest_r14); 1862 case VM_REG_GUEST_R15: 1863 return (&vmxctx->guest_r15); 1864 default: 1865 break; 1866 } 1867 return (NULL); 1868 } 1869 1870 static int 1871 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 1872 { 1873 register_t *regp; 1874 1875 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 1876 *retval = *regp; 1877 return (0); 1878 } else 1879 return (EINVAL); 1880 } 1881 1882 static int 1883 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 1884 { 1885 register_t *regp; 1886 1887 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 1888 *regp = val; 1889 return (0); 1890 } else 1891 return (EINVAL); 1892 } 1893 1894 static int 1895 vmx_shadow_reg(int reg) 1896 { 1897 int shreg; 1898 1899 shreg = -1; 1900 1901 switch (reg) { 1902 case VM_REG_GUEST_CR0: 1903 shreg = VMCS_CR0_SHADOW; 1904 break; 1905 case VM_REG_GUEST_CR4: 1906 shreg = VMCS_CR4_SHADOW; 1907 break; 1908 default: 1909 break; 1910 } 1911 1912 return (shreg); 1913 } 1914 1915 static int 1916 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 1917 { 1918 int running, hostcpu; 1919 struct vmx *vmx = arg; 1920 1921 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 1922 if (running && hostcpu != curcpu) 1923 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 1924 1925 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 1926 return (0); 1927 1928 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 1929 } 1930 1931 static int 1932 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 1933 { 1934 int error, hostcpu, running, shadow; 1935 uint64_t ctls; 1936 struct vmx *vmx = arg; 1937 1938 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 1939 if (running && hostcpu != curcpu) 1940 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 1941 1942 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 1943 return (0); 1944 1945 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 1946 1947 if (error == 0) { 1948 /* 1949 * If the "load EFER" VM-entry control is 1 then the 1950 * value of EFER.LMA must be identical to "IA-32e mode guest" 1951 * bit in the VM-entry control. 1952 */ 1953 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 1954 (reg == VM_REG_GUEST_EFER)) { 1955 vmcs_getreg(&vmx->vmcs[vcpu], running, 1956 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 1957 if (val & EFER_LMA) 1958 ctls |= VM_ENTRY_GUEST_LMA; 1959 else 1960 ctls &= ~VM_ENTRY_GUEST_LMA; 1961 vmcs_setreg(&vmx->vmcs[vcpu], running, 1962 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 1963 } 1964 1965 shadow = vmx_shadow_reg(reg); 1966 if (shadow > 0) { 1967 /* 1968 * Store the unmodified value in the shadow 1969 */ 1970 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 1971 VMCS_IDENT(shadow), val); 1972 } 1973 } 1974 1975 return (error); 1976 } 1977 1978 static int 1979 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 1980 { 1981 struct vmx *vmx = arg; 1982 1983 return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc)); 1984 } 1985 1986 static int 1987 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 1988 { 1989 struct vmx *vmx = arg; 1990 1991 return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc)); 1992 } 1993 1994 static int 1995 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code, 1996 int code_valid) 1997 { 1998 int error; 1999 uint64_t info; 2000 struct vmx *vmx = arg; 2001 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 2002 2003 static uint32_t type_map[VM_EVENT_MAX] = { 2004 0x1, /* VM_EVENT_NONE */ 2005 0x0, /* VM_HW_INTR */ 2006 0x2, /* VM_NMI */ 2007 0x3, /* VM_HW_EXCEPTION */ 2008 0x4, /* VM_SW_INTR */ 2009 0x5, /* VM_PRIV_SW_EXCEPTION */ 2010 0x6, /* VM_SW_EXCEPTION */ 2011 }; 2012 2013 /* 2014 * If there is already an exception pending to be delivered to the 2015 * vcpu then just return. 2016 */ 2017 error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info); 2018 if (error) 2019 return (error); 2020 2021 if (info & VMCS_INTR_INFO_VALID) 2022 return (EAGAIN); 2023 2024 info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0); 2025 info |= VMCS_INTR_INFO_VALID; 2026 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info); 2027 if (error != 0) 2028 return (error); 2029 2030 if (code_valid) { 2031 error = vmcs_setreg(vmcs, 0, 2032 VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR), 2033 code); 2034 } 2035 return (error); 2036 } 2037 2038 static int 2039 vmx_getcap(void *arg, int vcpu, int type, int *retval) 2040 { 2041 struct vmx *vmx = arg; 2042 int vcap; 2043 int ret; 2044 2045 ret = ENOENT; 2046 2047 vcap = vmx->cap[vcpu].set; 2048 2049 switch (type) { 2050 case VM_CAP_HALT_EXIT: 2051 if (cap_halt_exit) 2052 ret = 0; 2053 break; 2054 case VM_CAP_PAUSE_EXIT: 2055 if (cap_pause_exit) 2056 ret = 0; 2057 break; 2058 case VM_CAP_MTRAP_EXIT: 2059 if (cap_monitor_trap) 2060 ret = 0; 2061 break; 2062 case VM_CAP_UNRESTRICTED_GUEST: 2063 if (cap_unrestricted_guest) 2064 ret = 0; 2065 break; 2066 case VM_CAP_ENABLE_INVPCID: 2067 if (cap_invpcid) 2068 ret = 0; 2069 break; 2070 default: 2071 break; 2072 } 2073 2074 if (ret == 0) 2075 *retval = (vcap & (1 << type)) ? 1 : 0; 2076 2077 return (ret); 2078 } 2079 2080 static int 2081 vmx_setcap(void *arg, int vcpu, int type, int val) 2082 { 2083 struct vmx *vmx = arg; 2084 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 2085 uint32_t baseval; 2086 uint32_t *pptr; 2087 int error; 2088 int flag; 2089 int reg; 2090 int retval; 2091 2092 retval = ENOENT; 2093 pptr = NULL; 2094 2095 switch (type) { 2096 case VM_CAP_HALT_EXIT: 2097 if (cap_halt_exit) { 2098 retval = 0; 2099 pptr = &vmx->cap[vcpu].proc_ctls; 2100 baseval = *pptr; 2101 flag = PROCBASED_HLT_EXITING; 2102 reg = VMCS_PRI_PROC_BASED_CTLS; 2103 } 2104 break; 2105 case VM_CAP_MTRAP_EXIT: 2106 if (cap_monitor_trap) { 2107 retval = 0; 2108 pptr = &vmx->cap[vcpu].proc_ctls; 2109 baseval = *pptr; 2110 flag = PROCBASED_MTF; 2111 reg = VMCS_PRI_PROC_BASED_CTLS; 2112 } 2113 break; 2114 case VM_CAP_PAUSE_EXIT: 2115 if (cap_pause_exit) { 2116 retval = 0; 2117 pptr = &vmx->cap[vcpu].proc_ctls; 2118 baseval = *pptr; 2119 flag = PROCBASED_PAUSE_EXITING; 2120 reg = VMCS_PRI_PROC_BASED_CTLS; 2121 } 2122 break; 2123 case VM_CAP_UNRESTRICTED_GUEST: 2124 if (cap_unrestricted_guest) { 2125 retval = 0; 2126 pptr = &vmx->cap[vcpu].proc_ctls2; 2127 baseval = *pptr; 2128 flag = PROCBASED2_UNRESTRICTED_GUEST; 2129 reg = VMCS_SEC_PROC_BASED_CTLS; 2130 } 2131 break; 2132 case VM_CAP_ENABLE_INVPCID: 2133 if (cap_invpcid) { 2134 retval = 0; 2135 pptr = &vmx->cap[vcpu].proc_ctls2; 2136 baseval = *pptr; 2137 flag = PROCBASED2_ENABLE_INVPCID; 2138 reg = VMCS_SEC_PROC_BASED_CTLS; 2139 } 2140 break; 2141 default: 2142 break; 2143 } 2144 2145 if (retval == 0) { 2146 if (val) { 2147 baseval |= flag; 2148 } else { 2149 baseval &= ~flag; 2150 } 2151 VMPTRLD(vmcs); 2152 error = vmwrite(reg, baseval); 2153 VMCLEAR(vmcs); 2154 2155 if (error) { 2156 retval = error; 2157 } else { 2158 /* 2159 * Update optional stored flags, and record 2160 * setting 2161 */ 2162 if (pptr != NULL) { 2163 *pptr = baseval; 2164 } 2165 2166 if (val) { 2167 vmx->cap[vcpu].set |= (1 << type); 2168 } else { 2169 vmx->cap[vcpu].set &= ~(1 << type); 2170 } 2171 } 2172 } 2173 2174 return (retval); 2175 } 2176 2177 struct vlapic_vtx { 2178 struct vlapic vlapic; 2179 struct pir_desc *pir_desc; 2180 }; 2181 2182 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 2183 do { \ 2184 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 2185 level ? "level" : "edge", vector); \ 2186 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 2187 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 2188 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 2189 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 2190 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 2191 } while (0) 2192 2193 /* 2194 * vlapic->ops handlers that utilize the APICv hardware assist described in 2195 * Chapter 29 of the Intel SDM. 2196 */ 2197 static int 2198 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 2199 { 2200 struct vlapic_vtx *vlapic_vtx; 2201 struct pir_desc *pir_desc; 2202 uint64_t mask; 2203 int idx, notify; 2204 2205 /* 2206 * XXX need to deal with level triggered interrupts 2207 */ 2208 vlapic_vtx = (struct vlapic_vtx *)vlapic; 2209 pir_desc = vlapic_vtx->pir_desc; 2210 2211 /* 2212 * Keep track of interrupt requests in the PIR descriptor. This is 2213 * because the virtual APIC page pointed to by the VMCS cannot be 2214 * modified if the vcpu is running. 2215 */ 2216 idx = vector / 64; 2217 mask = 1UL << (vector % 64); 2218 atomic_set_long(&pir_desc->pir[idx], mask); 2219 notify = atomic_cmpset_long(&pir_desc->pending, 0, 1); 2220 2221 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 2222 level, "vmx_set_intr_ready"); 2223 return (notify); 2224 } 2225 2226 static int 2227 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 2228 { 2229 struct vlapic_vtx *vlapic_vtx; 2230 struct pir_desc *pir_desc; 2231 struct LAPIC *lapic; 2232 uint64_t pending, pirval; 2233 uint32_t ppr, vpr; 2234 int i; 2235 2236 /* 2237 * This function is only expected to be called from the 'HLT' exit 2238 * handler which does not care about the vector that is pending. 2239 */ 2240 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 2241 2242 vlapic_vtx = (struct vlapic_vtx *)vlapic; 2243 pir_desc = vlapic_vtx->pir_desc; 2244 2245 pending = atomic_load_acq_long(&pir_desc->pending); 2246 if (!pending) 2247 return (0); /* common case */ 2248 2249 /* 2250 * If there is an interrupt pending then it will be recognized only 2251 * if its priority is greater than the processor priority. 2252 * 2253 * Special case: if the processor priority is zero then any pending 2254 * interrupt will be recognized. 2255 */ 2256 lapic = vlapic->apic_page; 2257 ppr = lapic->ppr & 0xf0; 2258 if (ppr == 0) 2259 return (1); 2260 2261 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 2262 lapic->ppr); 2263 2264 for (i = 3; i >= 0; i--) { 2265 pirval = pir_desc->pir[i]; 2266 if (pirval != 0) { 2267 vpr = (i * 64 + flsl(pirval) - 1) & 0xf0; 2268 return (vpr > ppr); 2269 } 2270 } 2271 return (0); 2272 } 2273 2274 static void 2275 vmx_intr_accepted(struct vlapic *vlapic, int vector) 2276 { 2277 2278 panic("vmx_intr_accepted: not expected to be called"); 2279 } 2280 2281 static void 2282 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 2283 { 2284 2285 ipi_cpu(hostcpu, pirvec); 2286 } 2287 2288 /* 2289 * Transfer the pending interrupts in the PIR descriptor to the IRR 2290 * in the virtual APIC page. 2291 */ 2292 static void 2293 vmx_inject_pir(struct vlapic *vlapic) 2294 { 2295 struct vlapic_vtx *vlapic_vtx; 2296 struct pir_desc *pir_desc; 2297 struct LAPIC *lapic; 2298 uint64_t val, pirval; 2299 int rvi, pirbase; 2300 uint16_t intr_status_old, intr_status_new; 2301 2302 vlapic_vtx = (struct vlapic_vtx *)vlapic; 2303 pir_desc = vlapic_vtx->pir_desc; 2304 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 2305 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 2306 "no posted interrupt pending"); 2307 return; 2308 } 2309 2310 pirval = 0; 2311 lapic = vlapic->apic_page; 2312 2313 val = atomic_readandclear_long(&pir_desc->pir[0]); 2314 if (val != 0) { 2315 lapic->irr0 |= val; 2316 lapic->irr1 |= val >> 32; 2317 pirbase = 0; 2318 pirval = val; 2319 } 2320 2321 val = atomic_readandclear_long(&pir_desc->pir[1]); 2322 if (val != 0) { 2323 lapic->irr2 |= val; 2324 lapic->irr3 |= val >> 32; 2325 pirbase = 64; 2326 pirval = val; 2327 } 2328 2329 val = atomic_readandclear_long(&pir_desc->pir[2]); 2330 if (val != 0) { 2331 lapic->irr4 |= val; 2332 lapic->irr5 |= val >> 32; 2333 pirbase = 128; 2334 pirval = val; 2335 } 2336 2337 val = atomic_readandclear_long(&pir_desc->pir[3]); 2338 if (val != 0) { 2339 lapic->irr6 |= val; 2340 lapic->irr7 |= val >> 32; 2341 pirbase = 192; 2342 pirval = val; 2343 } 2344 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 2345 2346 /* 2347 * Update RVI so the processor can evaluate pending virtual 2348 * interrupts on VM-entry. 2349 */ 2350 if (pirval != 0) { 2351 rvi = pirbase + flsl(pirval) - 1; 2352 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 2353 intr_status_new = (intr_status_old & 0xFF00) | rvi; 2354 if (intr_status_new > intr_status_old) { 2355 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 2356 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 2357 "guest_intr_status changed from 0x%04x to 0x%04x", 2358 intr_status_old, intr_status_new); 2359 } 2360 } 2361 } 2362 2363 static struct vlapic * 2364 vmx_vlapic_init(void *arg, int vcpuid) 2365 { 2366 struct vmx *vmx; 2367 struct vlapic *vlapic; 2368 struct vlapic_vtx *vlapic_vtx; 2369 2370 vmx = arg; 2371 2372 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 2373 vlapic->vm = vmx->vm; 2374 vlapic->vcpuid = vcpuid; 2375 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 2376 2377 vlapic_vtx = (struct vlapic_vtx *)vlapic; 2378 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 2379 2380 if (virtual_interrupt_delivery) { 2381 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 2382 vlapic->ops.pending_intr = vmx_pending_intr; 2383 vlapic->ops.intr_accepted = vmx_intr_accepted; 2384 } 2385 2386 if (posted_interrupts) 2387 vlapic->ops.post_intr = vmx_post_intr; 2388 2389 vlapic_init(vlapic); 2390 2391 return (vlapic); 2392 } 2393 2394 static void 2395 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2396 { 2397 2398 vlapic_cleanup(vlapic); 2399 free(vlapic, M_VLAPIC); 2400 } 2401 2402 struct vmm_ops vmm_ops_intel = { 2403 vmx_init, 2404 vmx_cleanup, 2405 vmx_restore, 2406 vmx_vminit, 2407 vmx_run, 2408 vmx_vmcleanup, 2409 vmx_getreg, 2410 vmx_setreg, 2411 vmx_getdesc, 2412 vmx_setdesc, 2413 vmx_inject, 2414 vmx_getcap, 2415 vmx_setcap, 2416 ept_vmspace_alloc, 2417 ept_vmspace_free, 2418 vmx_vlapic_init, 2419 vmx_vlapic_cleanup, 2420 }; 2421