xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision 26a222dc0c048fc071b548eadad7b80405a1b126)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ipi.h"
59 #include "vmm_ktr.h"
60 #include "vmm_stat.h"
61 #include "vatpic.h"
62 #include "vlapic.h"
63 #include "vlapic_priv.h"
64 
65 #include "ept.h"
66 #include "vmx_cpufunc.h"
67 #include "vmx.h"
68 #include "vmx_msr.h"
69 #include "x86.h"
70 #include "vmx_controls.h"
71 
72 #define	PINBASED_CTLS_ONE_SETTING					\
73 	(PINBASED_EXTINT_EXITING	|				\
74 	 PINBASED_NMI_EXITING		|				\
75 	 PINBASED_VIRTUAL_NMI)
76 #define	PINBASED_CTLS_ZERO_SETTING	0
77 
78 #define PROCBASED_CTLS_WINDOW_SETTING					\
79 	(PROCBASED_INT_WINDOW_EXITING	|				\
80 	 PROCBASED_NMI_WINDOW_EXITING)
81 
82 #define	PROCBASED_CTLS_ONE_SETTING 					\
83 	(PROCBASED_SECONDARY_CONTROLS	|				\
84 	 PROCBASED_MWAIT_EXITING	|				\
85 	 PROCBASED_MONITOR_EXITING	|				\
86 	 PROCBASED_IO_EXITING		|				\
87 	 PROCBASED_MSR_BITMAPS		|				\
88 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
89 	 PROCBASED_CR8_LOAD_EXITING	|				\
90 	 PROCBASED_CR8_STORE_EXITING)
91 #define	PROCBASED_CTLS_ZERO_SETTING	\
92 	(PROCBASED_CR3_LOAD_EXITING |	\
93 	PROCBASED_CR3_STORE_EXITING |	\
94 	PROCBASED_IO_BITMAPS)
95 
96 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
97 #define	PROCBASED_CTLS2_ZERO_SETTING	0
98 
99 #define	VM_EXIT_CTLS_ONE_SETTING					\
100 	(VM_EXIT_HOST_LMA			|			\
101 	VM_EXIT_SAVE_EFER			|			\
102 	VM_EXIT_LOAD_EFER			|			\
103 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
104 
105 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
106 
107 #define	VM_ENTRY_CTLS_ONE_SETTING	(VM_ENTRY_LOAD_EFER)
108 
109 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
110 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
111 	VM_ENTRY_INTO_SMM			|			\
112 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
113 
114 #define	HANDLED		1
115 #define	UNHANDLED	0
116 
117 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
118 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
119 
120 SYSCTL_DECL(_hw_vmm);
121 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
122 
123 int vmxon_enabled[MAXCPU];
124 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
127 static uint32_t exit_ctls, entry_ctls;
128 
129 static uint64_t cr0_ones_mask, cr0_zeros_mask;
130 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
131 	     &cr0_ones_mask, 0, NULL);
132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
133 	     &cr0_zeros_mask, 0, NULL);
134 
135 static uint64_t cr4_ones_mask, cr4_zeros_mask;
136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
137 	     &cr4_ones_mask, 0, NULL);
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
139 	     &cr4_zeros_mask, 0, NULL);
140 
141 static int vmx_initialized;
142 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
143 	   &vmx_initialized, 0, "Intel VMX initialized");
144 
145 /*
146  * Optional capabilities
147  */
148 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
149 
150 static int cap_halt_exit;
151 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
152     "HLT triggers a VM-exit");
153 
154 static int cap_pause_exit;
155 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
156     0, "PAUSE triggers a VM-exit");
157 
158 static int cap_unrestricted_guest;
159 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
160     &cap_unrestricted_guest, 0, "Unrestricted guests");
161 
162 static int cap_monitor_trap;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
164     &cap_monitor_trap, 0, "Monitor trap flag");
165 
166 static int cap_invpcid;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
168     0, "Guests are allowed to use INVPCID");
169 
170 static int virtual_interrupt_delivery;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
172     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
173 
174 static int posted_interrupts;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
176     &posted_interrupts, 0, "APICv posted interrupt support");
177 
178 static int pirvec;
179 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
180     &pirvec, 0, "APICv posted interrupt vector");
181 
182 static struct unrhdr *vpid_unr;
183 static u_int vpid_alloc_failed;
184 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
185 	    &vpid_alloc_failed, 0, NULL);
186 
187 /*
188  * Use the last page below 4GB as the APIC access address. This address is
189  * occupied by the boot firmware so it is guaranteed that it will not conflict
190  * with a page in system memory.
191  */
192 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
193 
194 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
195 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
196 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
197 static void vmx_inject_pir(struct vlapic *vlapic);
198 
199 #ifdef KTR
200 static const char *
201 exit_reason_to_str(int reason)
202 {
203 	static char reasonbuf[32];
204 
205 	switch (reason) {
206 	case EXIT_REASON_EXCEPTION:
207 		return "exception";
208 	case EXIT_REASON_EXT_INTR:
209 		return "extint";
210 	case EXIT_REASON_TRIPLE_FAULT:
211 		return "triplefault";
212 	case EXIT_REASON_INIT:
213 		return "init";
214 	case EXIT_REASON_SIPI:
215 		return "sipi";
216 	case EXIT_REASON_IO_SMI:
217 		return "iosmi";
218 	case EXIT_REASON_SMI:
219 		return "smi";
220 	case EXIT_REASON_INTR_WINDOW:
221 		return "intrwindow";
222 	case EXIT_REASON_NMI_WINDOW:
223 		return "nmiwindow";
224 	case EXIT_REASON_TASK_SWITCH:
225 		return "taskswitch";
226 	case EXIT_REASON_CPUID:
227 		return "cpuid";
228 	case EXIT_REASON_GETSEC:
229 		return "getsec";
230 	case EXIT_REASON_HLT:
231 		return "hlt";
232 	case EXIT_REASON_INVD:
233 		return "invd";
234 	case EXIT_REASON_INVLPG:
235 		return "invlpg";
236 	case EXIT_REASON_RDPMC:
237 		return "rdpmc";
238 	case EXIT_REASON_RDTSC:
239 		return "rdtsc";
240 	case EXIT_REASON_RSM:
241 		return "rsm";
242 	case EXIT_REASON_VMCALL:
243 		return "vmcall";
244 	case EXIT_REASON_VMCLEAR:
245 		return "vmclear";
246 	case EXIT_REASON_VMLAUNCH:
247 		return "vmlaunch";
248 	case EXIT_REASON_VMPTRLD:
249 		return "vmptrld";
250 	case EXIT_REASON_VMPTRST:
251 		return "vmptrst";
252 	case EXIT_REASON_VMREAD:
253 		return "vmread";
254 	case EXIT_REASON_VMRESUME:
255 		return "vmresume";
256 	case EXIT_REASON_VMWRITE:
257 		return "vmwrite";
258 	case EXIT_REASON_VMXOFF:
259 		return "vmxoff";
260 	case EXIT_REASON_VMXON:
261 		return "vmxon";
262 	case EXIT_REASON_CR_ACCESS:
263 		return "craccess";
264 	case EXIT_REASON_DR_ACCESS:
265 		return "draccess";
266 	case EXIT_REASON_INOUT:
267 		return "inout";
268 	case EXIT_REASON_RDMSR:
269 		return "rdmsr";
270 	case EXIT_REASON_WRMSR:
271 		return "wrmsr";
272 	case EXIT_REASON_INVAL_VMCS:
273 		return "invalvmcs";
274 	case EXIT_REASON_INVAL_MSR:
275 		return "invalmsr";
276 	case EXIT_REASON_MWAIT:
277 		return "mwait";
278 	case EXIT_REASON_MTF:
279 		return "mtf";
280 	case EXIT_REASON_MONITOR:
281 		return "monitor";
282 	case EXIT_REASON_PAUSE:
283 		return "pause";
284 	case EXIT_REASON_MCE_DURING_ENTRY:
285 		return "mce-during-entry";
286 	case EXIT_REASON_TPR:
287 		return "tpr";
288 	case EXIT_REASON_APIC_ACCESS:
289 		return "apic-access";
290 	case EXIT_REASON_GDTR_IDTR:
291 		return "gdtridtr";
292 	case EXIT_REASON_LDTR_TR:
293 		return "ldtrtr";
294 	case EXIT_REASON_EPT_FAULT:
295 		return "eptfault";
296 	case EXIT_REASON_EPT_MISCONFIG:
297 		return "eptmisconfig";
298 	case EXIT_REASON_INVEPT:
299 		return "invept";
300 	case EXIT_REASON_RDTSCP:
301 		return "rdtscp";
302 	case EXIT_REASON_VMX_PREEMPT:
303 		return "vmxpreempt";
304 	case EXIT_REASON_INVVPID:
305 		return "invvpid";
306 	case EXIT_REASON_WBINVD:
307 		return "wbinvd";
308 	case EXIT_REASON_XSETBV:
309 		return "xsetbv";
310 	case EXIT_REASON_APIC_WRITE:
311 		return "apic-write";
312 	default:
313 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
314 		return (reasonbuf);
315 	}
316 }
317 #endif	/* KTR */
318 
319 static int
320 vmx_allow_x2apic_msrs(struct vmx *vmx)
321 {
322 	int i, error;
323 
324 	error = 0;
325 
326 	/*
327 	 * Allow readonly access to the following x2APIC MSRs from the guest.
328 	 */
329 	error += guest_msr_ro(vmx, MSR_APIC_ID);
330 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
331 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
332 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
333 
334 	for (i = 0; i < 8; i++)
335 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
336 
337 	for (i = 0; i < 8; i++)
338 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
339 
340 	for (i = 0; i < 8; i++)
341 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
342 
343 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
344 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
345 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
346 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
347 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
348 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
349 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
350 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
351 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
352 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
353 
354 	/*
355 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
356 	 *
357 	 * These registers get special treatment described in the section
358 	 * "Virtualizing MSR-Based APIC Accesses".
359 	 */
360 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
361 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
362 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
363 
364 	return (error);
365 }
366 
367 u_long
368 vmx_fix_cr0(u_long cr0)
369 {
370 
371 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
372 }
373 
374 u_long
375 vmx_fix_cr4(u_long cr4)
376 {
377 
378 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
379 }
380 
381 static void
382 vpid_free(int vpid)
383 {
384 	if (vpid < 0 || vpid > 0xffff)
385 		panic("vpid_free: invalid vpid %d", vpid);
386 
387 	/*
388 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
389 	 * the unit number allocator.
390 	 */
391 
392 	if (vpid > VM_MAXCPU)
393 		free_unr(vpid_unr, vpid);
394 }
395 
396 static void
397 vpid_alloc(uint16_t *vpid, int num)
398 {
399 	int i, x;
400 
401 	if (num <= 0 || num > VM_MAXCPU)
402 		panic("invalid number of vpids requested: %d", num);
403 
404 	/*
405 	 * If the "enable vpid" execution control is not enabled then the
406 	 * VPID is required to be 0 for all vcpus.
407 	 */
408 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
409 		for (i = 0; i < num; i++)
410 			vpid[i] = 0;
411 		return;
412 	}
413 
414 	/*
415 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
416 	 */
417 	for (i = 0; i < num; i++) {
418 		x = alloc_unr(vpid_unr);
419 		if (x == -1)
420 			break;
421 		else
422 			vpid[i] = x;
423 	}
424 
425 	if (i < num) {
426 		atomic_add_int(&vpid_alloc_failed, 1);
427 
428 		/*
429 		 * If the unit number allocator does not have enough unique
430 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
431 		 *
432 		 * These VPIDs are not be unique across VMs but this does not
433 		 * affect correctness because the combined mappings are also
434 		 * tagged with the EP4TA which is unique for each VM.
435 		 *
436 		 * It is still sub-optimal because the invvpid will invalidate
437 		 * combined mappings for a particular VPID across all EP4TAs.
438 		 */
439 		while (i-- > 0)
440 			vpid_free(vpid[i]);
441 
442 		for (i = 0; i < num; i++)
443 			vpid[i] = i + 1;
444 	}
445 }
446 
447 static void
448 vpid_init(void)
449 {
450 	/*
451 	 * VPID 0 is required when the "enable VPID" execution control is
452 	 * disabled.
453 	 *
454 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
455 	 * unit number allocator does not have sufficient unique VPIDs to
456 	 * satisfy the allocation.
457 	 *
458 	 * The remaining VPIDs are managed by the unit number allocator.
459 	 */
460 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
461 }
462 
463 static void
464 vmx_disable(void *arg __unused)
465 {
466 	struct invvpid_desc invvpid_desc = { 0 };
467 	struct invept_desc invept_desc = { 0 };
468 
469 	if (vmxon_enabled[curcpu]) {
470 		/*
471 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
472 		 *
473 		 * VMXON or VMXOFF are not required to invalidate any TLB
474 		 * caching structures. This prevents potential retention of
475 		 * cached information in the TLB between distinct VMX episodes.
476 		 */
477 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
478 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
479 		vmxoff();
480 	}
481 	load_cr4(rcr4() & ~CR4_VMXE);
482 }
483 
484 static int
485 vmx_cleanup(void)
486 {
487 
488 	if (pirvec != 0)
489 		vmm_ipi_free(pirvec);
490 
491 	if (vpid_unr != NULL) {
492 		delete_unrhdr(vpid_unr);
493 		vpid_unr = NULL;
494 	}
495 
496 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
497 
498 	return (0);
499 }
500 
501 static void
502 vmx_enable(void *arg __unused)
503 {
504 	int error;
505 	uint64_t feature_control;
506 
507 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
508 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
509 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
510 		wrmsr(MSR_IA32_FEATURE_CONTROL,
511 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
512 		    IA32_FEATURE_CONTROL_LOCK);
513 	}
514 
515 	load_cr4(rcr4() | CR4_VMXE);
516 
517 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
518 	error = vmxon(vmxon_region[curcpu]);
519 	if (error == 0)
520 		vmxon_enabled[curcpu] = 1;
521 }
522 
523 static void
524 vmx_restore(void)
525 {
526 
527 	if (vmxon_enabled[curcpu])
528 		vmxon(vmxon_region[curcpu]);
529 }
530 
531 static int
532 vmx_init(int ipinum)
533 {
534 	int error, use_tpr_shadow;
535 	uint64_t basic, fixed0, fixed1, feature_control;
536 	uint32_t tmp, procbased2_vid_bits;
537 
538 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
539 	if (!(cpu_feature2 & CPUID2_VMX)) {
540 		printf("vmx_init: processor does not support VMX operation\n");
541 		return (ENXIO);
542 	}
543 
544 	/*
545 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
546 	 * are set (bits 0 and 2 respectively).
547 	 */
548 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
549 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
550 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
551 		printf("vmx_init: VMX operation disabled by BIOS\n");
552 		return (ENXIO);
553 	}
554 
555 	/*
556 	 * Verify capabilities MSR_VMX_BASIC:
557 	 * - bit 54 indicates support for INS/OUTS decoding
558 	 */
559 	basic = rdmsr(MSR_VMX_BASIC);
560 	if ((basic & (1UL << 54)) == 0) {
561 		printf("vmx_init: processor does not support desired basic "
562 		    "capabilities\n");
563 		return (EINVAL);
564 	}
565 
566 	/* Check support for primary processor-based VM-execution controls */
567 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
568 			       MSR_VMX_TRUE_PROCBASED_CTLS,
569 			       PROCBASED_CTLS_ONE_SETTING,
570 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
571 	if (error) {
572 		printf("vmx_init: processor does not support desired primary "
573 		       "processor-based controls\n");
574 		return (error);
575 	}
576 
577 	/* Clear the processor-based ctl bits that are set on demand */
578 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
579 
580 	/* Check support for secondary processor-based VM-execution controls */
581 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
582 			       MSR_VMX_PROCBASED_CTLS2,
583 			       PROCBASED_CTLS2_ONE_SETTING,
584 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
585 	if (error) {
586 		printf("vmx_init: processor does not support desired secondary "
587 		       "processor-based controls\n");
588 		return (error);
589 	}
590 
591 	/* Check support for VPID */
592 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
593 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
594 	if (error == 0)
595 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
596 
597 	/* Check support for pin-based VM-execution controls */
598 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
599 			       MSR_VMX_TRUE_PINBASED_CTLS,
600 			       PINBASED_CTLS_ONE_SETTING,
601 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
602 	if (error) {
603 		printf("vmx_init: processor does not support desired "
604 		       "pin-based controls\n");
605 		return (error);
606 	}
607 
608 	/* Check support for VM-exit controls */
609 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
610 			       VM_EXIT_CTLS_ONE_SETTING,
611 			       VM_EXIT_CTLS_ZERO_SETTING,
612 			       &exit_ctls);
613 	if (error) {
614 		printf("vmx_init: processor does not support desired "
615 		    "exit controls\n");
616 		return (error);
617 	}
618 
619 	/* Check support for VM-entry controls */
620 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
621 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
622 	    &entry_ctls);
623 	if (error) {
624 		printf("vmx_init: processor does not support desired "
625 		    "entry controls\n");
626 		return (error);
627 	}
628 
629 	/*
630 	 * Check support for optional features by testing them
631 	 * as individual bits
632 	 */
633 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
634 					MSR_VMX_TRUE_PROCBASED_CTLS,
635 					PROCBASED_HLT_EXITING, 0,
636 					&tmp) == 0);
637 
638 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
639 					MSR_VMX_PROCBASED_CTLS,
640 					PROCBASED_MTF, 0,
641 					&tmp) == 0);
642 
643 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
644 					 MSR_VMX_TRUE_PROCBASED_CTLS,
645 					 PROCBASED_PAUSE_EXITING, 0,
646 					 &tmp) == 0);
647 
648 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
649 					MSR_VMX_PROCBASED_CTLS2,
650 					PROCBASED2_UNRESTRICTED_GUEST, 0,
651 				        &tmp) == 0);
652 
653 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
654 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
655 	    &tmp) == 0);
656 
657 	/*
658 	 * Check support for virtual interrupt delivery.
659 	 */
660 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
661 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
662 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
663 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
664 
665 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
666 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
667 	    &tmp) == 0);
668 
669 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
670 	    procbased2_vid_bits, 0, &tmp);
671 	if (error == 0 && use_tpr_shadow) {
672 		virtual_interrupt_delivery = 1;
673 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
674 		    &virtual_interrupt_delivery);
675 	}
676 
677 	if (virtual_interrupt_delivery) {
678 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
679 		procbased_ctls2 |= procbased2_vid_bits;
680 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
681 
682 		/*
683 		 * No need to emulate accesses to %CR8 if virtual
684 		 * interrupt delivery is enabled.
685 		 */
686 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
687 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
688 
689 		/*
690 		 * Check for Posted Interrupts only if Virtual Interrupt
691 		 * Delivery is enabled.
692 		 */
693 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
694 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
695 		    &tmp);
696 		if (error == 0) {
697 			pirvec = vmm_ipi_alloc();
698 			if (pirvec == 0) {
699 				if (bootverbose) {
700 					printf("vmx_init: unable to allocate "
701 					    "posted interrupt vector\n");
702 				}
703 			} else {
704 				posted_interrupts = 1;
705 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
706 				    &posted_interrupts);
707 			}
708 		}
709 	}
710 
711 	if (posted_interrupts)
712 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
713 
714 	/* Initialize EPT */
715 	error = ept_init(ipinum);
716 	if (error) {
717 		printf("vmx_init: ept initialization failed (%d)\n", error);
718 		return (error);
719 	}
720 
721 	/*
722 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
723 	 */
724 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
725 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
726 	cr0_ones_mask = fixed0 & fixed1;
727 	cr0_zeros_mask = ~fixed0 & ~fixed1;
728 
729 	/*
730 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
731 	 * if unrestricted guest execution is allowed.
732 	 */
733 	if (cap_unrestricted_guest)
734 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
735 
736 	/*
737 	 * Do not allow the guest to set CR0_NW or CR0_CD.
738 	 */
739 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
740 
741 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
742 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
743 	cr4_ones_mask = fixed0 & fixed1;
744 	cr4_zeros_mask = ~fixed0 & ~fixed1;
745 
746 	vpid_init();
747 
748 	vmx_msr_init();
749 
750 	/* enable VMX operation */
751 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
752 
753 	vmx_initialized = 1;
754 
755 	return (0);
756 }
757 
758 static void
759 vmx_trigger_hostintr(int vector)
760 {
761 	uintptr_t func;
762 	struct gate_descriptor *gd;
763 
764 	gd = &idt[vector];
765 
766 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
767 	    "invalid vector %d", vector));
768 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
769 	    vector));
770 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
771 	    "has invalid type %d", vector, gd->gd_type));
772 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
773 	    "has invalid dpl %d", vector, gd->gd_dpl));
774 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
775 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
776 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
777 	    "IST %d", vector, gd->gd_ist));
778 
779 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
780 	vmx_call_isr(func);
781 }
782 
783 static int
784 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
785 {
786 	int error, mask_ident, shadow_ident;
787 	uint64_t mask_value;
788 
789 	if (which != 0 && which != 4)
790 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
791 
792 	if (which == 0) {
793 		mask_ident = VMCS_CR0_MASK;
794 		mask_value = cr0_ones_mask | cr0_zeros_mask;
795 		shadow_ident = VMCS_CR0_SHADOW;
796 	} else {
797 		mask_ident = VMCS_CR4_MASK;
798 		mask_value = cr4_ones_mask | cr4_zeros_mask;
799 		shadow_ident = VMCS_CR4_SHADOW;
800 	}
801 
802 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
803 	if (error)
804 		return (error);
805 
806 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
807 	if (error)
808 		return (error);
809 
810 	return (0);
811 }
812 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
813 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
814 
815 static void *
816 vmx_vminit(struct vm *vm, pmap_t pmap)
817 {
818 	uint16_t vpid[VM_MAXCPU];
819 	int i, error;
820 	struct vmx *vmx;
821 	struct vmcs *vmcs;
822 	uint32_t exc_bitmap;
823 
824 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
825 	if ((uintptr_t)vmx & PAGE_MASK) {
826 		panic("malloc of struct vmx not aligned on %d byte boundary",
827 		      PAGE_SIZE);
828 	}
829 	vmx->vm = vm;
830 
831 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
832 
833 	/*
834 	 * Clean up EPTP-tagged guest physical and combined mappings
835 	 *
836 	 * VMX transitions are not required to invalidate any guest physical
837 	 * mappings. So, it may be possible for stale guest physical mappings
838 	 * to be present in the processor TLBs.
839 	 *
840 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
841 	 */
842 	ept_invalidate_mappings(vmx->eptp);
843 
844 	msr_bitmap_initialize(vmx->msr_bitmap);
845 
846 	/*
847 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
848 	 * The guest FSBASE and GSBASE are saved and restored during
849 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
850 	 * always restored from the vmcs host state area on vm-exit.
851 	 *
852 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
853 	 * how they are saved/restored so can be directly accessed by the
854 	 * guest.
855 	 *
856 	 * MSR_EFER is saved and restored in the guest VMCS area on a
857 	 * VM exit and entry respectively. It is also restored from the
858 	 * host VMCS area on a VM exit.
859 	 *
860 	 * The TSC MSR is exposed read-only. Writes are disallowed as that
861 	 * will impact the host TSC.
862 	 * XXX Writes would be implemented with a wrmsr trap, and
863 	 * then modifying the TSC offset in the VMCS.
864 	 */
865 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
866 	    guest_msr_rw(vmx, MSR_FSBASE) ||
867 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
868 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
869 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
870 	    guest_msr_rw(vmx, MSR_EFER) ||
871 	    guest_msr_ro(vmx, MSR_TSC))
872 		panic("vmx_vminit: error setting guest msr access");
873 
874 	vpid_alloc(vpid, VM_MAXCPU);
875 
876 	if (virtual_interrupt_delivery) {
877 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
878 		    APIC_ACCESS_ADDRESS);
879 		/* XXX this should really return an error to the caller */
880 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
881 	}
882 
883 	for (i = 0; i < VM_MAXCPU; i++) {
884 		vmcs = &vmx->vmcs[i];
885 		vmcs->identifier = vmx_revision();
886 		error = vmclear(vmcs);
887 		if (error != 0) {
888 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
889 			      error, i);
890 		}
891 
892 		vmx_msr_guest_init(vmx, i);
893 
894 		error = vmcs_init(vmcs);
895 		KASSERT(error == 0, ("vmcs_init error %d", error));
896 
897 		VMPTRLD(vmcs);
898 		error = 0;
899 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
900 		error += vmwrite(VMCS_EPTP, vmx->eptp);
901 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
902 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
903 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
904 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
905 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
906 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
907 		error += vmwrite(VMCS_VPID, vpid[i]);
908 
909 		/* exception bitmap */
910 		if (vcpu_trace_exceptions(vm, i))
911 			exc_bitmap = 0xffffffff;
912 		else
913 			exc_bitmap = 1 << IDT_MC;
914 		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
915 
916 		if (virtual_interrupt_delivery) {
917 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
918 			error += vmwrite(VMCS_VIRTUAL_APIC,
919 			    vtophys(&vmx->apic_page[i]));
920 			error += vmwrite(VMCS_EOI_EXIT0, 0);
921 			error += vmwrite(VMCS_EOI_EXIT1, 0);
922 			error += vmwrite(VMCS_EOI_EXIT2, 0);
923 			error += vmwrite(VMCS_EOI_EXIT3, 0);
924 		}
925 		if (posted_interrupts) {
926 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
927 			error += vmwrite(VMCS_PIR_DESC,
928 			    vtophys(&vmx->pir_desc[i]));
929 		}
930 		VMCLEAR(vmcs);
931 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
932 
933 		vmx->cap[i].set = 0;
934 		vmx->cap[i].proc_ctls = procbased_ctls;
935 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
936 
937 		vmx->state[i].nextrip = ~0;
938 		vmx->state[i].lastcpu = NOCPU;
939 		vmx->state[i].vpid = vpid[i];
940 
941 		/*
942 		 * Set up the CR0/4 shadows, and init the read shadow
943 		 * to the power-on register value from the Intel Sys Arch.
944 		 *  CR0 - 0x60000010
945 		 *  CR4 - 0
946 		 */
947 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
948 		if (error != 0)
949 			panic("vmx_setup_cr0_shadow %d", error);
950 
951 		error = vmx_setup_cr4_shadow(vmcs, 0);
952 		if (error != 0)
953 			panic("vmx_setup_cr4_shadow %d", error);
954 
955 		vmx->ctx[i].pmap = pmap;
956 	}
957 
958 	return (vmx);
959 }
960 
961 static int
962 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
963 {
964 	int handled, func;
965 
966 	func = vmxctx->guest_rax;
967 
968 	handled = x86_emulate_cpuid(vm, vcpu,
969 				    (uint32_t*)(&vmxctx->guest_rax),
970 				    (uint32_t*)(&vmxctx->guest_rbx),
971 				    (uint32_t*)(&vmxctx->guest_rcx),
972 				    (uint32_t*)(&vmxctx->guest_rdx));
973 	return (handled);
974 }
975 
976 static __inline void
977 vmx_run_trace(struct vmx *vmx, int vcpu)
978 {
979 #ifdef KTR
980 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
981 #endif
982 }
983 
984 static __inline void
985 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
986 	       int handled)
987 {
988 #ifdef KTR
989 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
990 		 handled ? "handled" : "unhandled",
991 		 exit_reason_to_str(exit_reason), rip);
992 #endif
993 }
994 
995 static __inline void
996 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
997 {
998 #ifdef KTR
999 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1000 #endif
1001 }
1002 
1003 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1004 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1005 
1006 /*
1007  * Invalidate guest mappings identified by its vpid from the TLB.
1008  */
1009 static __inline void
1010 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1011 {
1012 	struct vmxstate *vmxstate;
1013 	struct invvpid_desc invvpid_desc;
1014 
1015 	vmxstate = &vmx->state[vcpu];
1016 	if (vmxstate->vpid == 0)
1017 		return;
1018 
1019 	if (!running) {
1020 		/*
1021 		 * Set the 'lastcpu' to an invalid host cpu.
1022 		 *
1023 		 * This will invalidate TLB entries tagged with the vcpu's
1024 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1025 		 */
1026 		vmxstate->lastcpu = NOCPU;
1027 		return;
1028 	}
1029 
1030 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1031 	    "critical section", __func__, vcpu));
1032 
1033 	/*
1034 	 * Invalidate all mappings tagged with 'vpid'
1035 	 *
1036 	 * We do this because this vcpu was executing on a different host
1037 	 * cpu when it last ran. We do not track whether it invalidated
1038 	 * mappings associated with its 'vpid' during that run. So we must
1039 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1040 	 * stale and invalidate them.
1041 	 *
1042 	 * Note that we incur this penalty only when the scheduler chooses to
1043 	 * move the thread associated with this vcpu between host cpus.
1044 	 *
1045 	 * Note also that this will invalidate mappings tagged with 'vpid'
1046 	 * for "all" EP4TAs.
1047 	 */
1048 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1049 		invvpid_desc._res1 = 0;
1050 		invvpid_desc._res2 = 0;
1051 		invvpid_desc.vpid = vmxstate->vpid;
1052 		invvpid_desc.linear_addr = 0;
1053 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1054 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1055 	} else {
1056 		/*
1057 		 * The invvpid can be skipped if an invept is going to
1058 		 * be performed before entering the guest. The invept
1059 		 * will invalidate combined mappings tagged with
1060 		 * 'vmx->eptp' for all vpids.
1061 		 */
1062 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1063 	}
1064 }
1065 
1066 static void
1067 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1068 {
1069 	struct vmxstate *vmxstate;
1070 
1071 	vmxstate = &vmx->state[vcpu];
1072 	if (vmxstate->lastcpu == curcpu)
1073 		return;
1074 
1075 	vmxstate->lastcpu = curcpu;
1076 
1077 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1078 
1079 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1080 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1081 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1082 	vmx_invvpid(vmx, vcpu, pmap, 1);
1083 }
1084 
1085 /*
1086  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1087  */
1088 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1089 
1090 static void __inline
1091 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1092 {
1093 
1094 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1095 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1096 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1097 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1098 	}
1099 }
1100 
1101 static void __inline
1102 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1103 {
1104 
1105 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1106 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1107 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1108 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1109 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1110 }
1111 
1112 static void __inline
1113 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1114 {
1115 
1116 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1117 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1118 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1119 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1120 	}
1121 }
1122 
1123 static void __inline
1124 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1125 {
1126 
1127 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1128 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1129 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1130 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1131 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1132 }
1133 
1134 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1135 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1136 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1137 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1138 
1139 static void
1140 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1141 {
1142 	uint32_t gi, info;
1143 
1144 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1145 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1146 	    "interruptibility-state %#x", gi));
1147 
1148 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1149 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1150 	    "VM-entry interruption information %#x", info));
1151 
1152 	/*
1153 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1154 	 * or the VMCS entry check will fail.
1155 	 */
1156 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1157 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1158 
1159 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1160 
1161 	/* Clear the request */
1162 	vm_nmi_clear(vmx->vm, vcpu);
1163 }
1164 
1165 static void
1166 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1167     uint64_t guestrip)
1168 {
1169 	int vector, need_nmi_exiting, extint_pending;
1170 	uint64_t rflags, entryinfo;
1171 	uint32_t gi, info;
1172 
1173 	if (vmx->state[vcpu].nextrip != guestrip) {
1174 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1175 		if (gi & HWINTR_BLOCKING) {
1176 			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1177 			    "cleared due to rip change: %#lx/%#lx",
1178 			    vmx->state[vcpu].nextrip, guestrip);
1179 			gi &= ~HWINTR_BLOCKING;
1180 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1181 		}
1182 	}
1183 
1184 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1185 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1186 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1187 
1188 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1189 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1190 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1191 
1192 		info = entryinfo;
1193 		vector = info & 0xff;
1194 		if (vector == IDT_BP || vector == IDT_OF) {
1195 			/*
1196 			 * VT-x requires #BP and #OF to be injected as software
1197 			 * exceptions.
1198 			 */
1199 			info &= ~VMCS_INTR_T_MASK;
1200 			info |= VMCS_INTR_T_SWEXCEPTION;
1201 		}
1202 
1203 		if (info & VMCS_INTR_DEL_ERRCODE)
1204 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1205 
1206 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1207 	}
1208 
1209 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1210 		/*
1211 		 * If there are no conditions blocking NMI injection then
1212 		 * inject it directly here otherwise enable "NMI window
1213 		 * exiting" to inject it as soon as we can.
1214 		 *
1215 		 * We also check for STI_BLOCKING because some implementations
1216 		 * don't allow NMI injection in this case. If we are running
1217 		 * on a processor that doesn't have this restriction it will
1218 		 * immediately exit and the NMI will be injected in the
1219 		 * "NMI window exiting" handler.
1220 		 */
1221 		need_nmi_exiting = 1;
1222 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1223 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1224 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1225 			if ((info & VMCS_INTR_VALID) == 0) {
1226 				vmx_inject_nmi(vmx, vcpu);
1227 				need_nmi_exiting = 0;
1228 			} else {
1229 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1230 				    "due to VM-entry intr info %#x", info);
1231 			}
1232 		} else {
1233 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1234 			    "Guest Interruptibility-state %#x", gi);
1235 		}
1236 
1237 		if (need_nmi_exiting)
1238 			vmx_set_nmi_window_exiting(vmx, vcpu);
1239 	}
1240 
1241 	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1242 
1243 	if (!extint_pending && virtual_interrupt_delivery) {
1244 		vmx_inject_pir(vlapic);
1245 		return;
1246 	}
1247 
1248 	/*
1249 	 * If interrupt-window exiting is already in effect then don't bother
1250 	 * checking for pending interrupts. This is just an optimization and
1251 	 * not needed for correctness.
1252 	 */
1253 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1254 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1255 		    "pending int_window_exiting");
1256 		return;
1257 	}
1258 
1259 	if (!extint_pending) {
1260 		/* Ask the local apic for a vector to inject */
1261 		if (!vlapic_pending_intr(vlapic, &vector))
1262 			return;
1263 
1264 		/*
1265 		 * From the Intel SDM, Volume 3, Section "Maskable
1266 		 * Hardware Interrupts":
1267 		 * - maskable interrupt vectors [16,255] can be delivered
1268 		 *   through the local APIC.
1269 		*/
1270 		KASSERT(vector >= 16 && vector <= 255,
1271 		    ("invalid vector %d from local APIC", vector));
1272 	} else {
1273 		/* Ask the legacy pic for a vector to inject */
1274 		vatpic_pending_intr(vmx->vm, &vector);
1275 
1276 		/*
1277 		 * From the Intel SDM, Volume 3, Section "Maskable
1278 		 * Hardware Interrupts":
1279 		 * - maskable interrupt vectors [0,255] can be delivered
1280 		 *   through the INTR pin.
1281 		 */
1282 		KASSERT(vector >= 0 && vector <= 255,
1283 		    ("invalid vector %d from INTR", vector));
1284 	}
1285 
1286 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1287 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1288 	if ((rflags & PSL_I) == 0) {
1289 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1290 		    "rflags %#lx", vector, rflags);
1291 		goto cantinject;
1292 	}
1293 
1294 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1295 	if (gi & HWINTR_BLOCKING) {
1296 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1297 		    "Guest Interruptibility-state %#x", vector, gi);
1298 		goto cantinject;
1299 	}
1300 
1301 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1302 	if (info & VMCS_INTR_VALID) {
1303 		/*
1304 		 * This is expected and could happen for multiple reasons:
1305 		 * - A vectoring VM-entry was aborted due to astpending
1306 		 * - A VM-exit happened during event injection.
1307 		 * - An exception was injected above.
1308 		 * - An NMI was injected above or after "NMI window exiting"
1309 		 */
1310 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1311 		    "VM-entry intr info %#x", vector, info);
1312 		goto cantinject;
1313 	}
1314 
1315 	/* Inject the interrupt */
1316 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1317 	info |= vector;
1318 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1319 
1320 	if (!extint_pending) {
1321 		/* Update the Local APIC ISR */
1322 		vlapic_intr_accepted(vlapic, vector);
1323 	} else {
1324 		vm_extint_clear(vmx->vm, vcpu);
1325 		vatpic_intr_accepted(vmx->vm, vector);
1326 
1327 		/*
1328 		 * After we accepted the current ExtINT the PIC may
1329 		 * have posted another one.  If that is the case, set
1330 		 * the Interrupt Window Exiting execution control so
1331 		 * we can inject that one too.
1332 		 *
1333 		 * Also, interrupt window exiting allows us to inject any
1334 		 * pending APIC vector that was preempted by the ExtINT
1335 		 * as soon as possible. This applies both for the software
1336 		 * emulated vlapic and the hardware assisted virtual APIC.
1337 		 */
1338 		vmx_set_int_window_exiting(vmx, vcpu);
1339 	}
1340 
1341 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1342 
1343 	return;
1344 
1345 cantinject:
1346 	/*
1347 	 * Set the Interrupt Window Exiting execution control so we can inject
1348 	 * the interrupt as soon as blocking condition goes away.
1349 	 */
1350 	vmx_set_int_window_exiting(vmx, vcpu);
1351 }
1352 
1353 /*
1354  * If the Virtual NMIs execution control is '1' then the logical processor
1355  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1356  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1357  * virtual-NMI blocking.
1358  *
1359  * This unblocking occurs even if the IRET causes a fault. In this case the
1360  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1361  */
1362 static void
1363 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1364 {
1365 	uint32_t gi;
1366 
1367 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1368 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1369 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1370 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1371 }
1372 
1373 static void
1374 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1375 {
1376 	uint32_t gi;
1377 
1378 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1379 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1380 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1381 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1382 }
1383 
1384 static void
1385 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1386 {
1387 	uint32_t gi;
1388 
1389 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1390 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1391 	    ("NMI blocking is not in effect %#x", gi));
1392 }
1393 
1394 static int
1395 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1396 {
1397 	struct vmxctx *vmxctx;
1398 	uint64_t xcrval;
1399 	const struct xsave_limits *limits;
1400 
1401 	vmxctx = &vmx->ctx[vcpu];
1402 	limits = vmm_get_xsave_limits();
1403 
1404 	/*
1405 	 * Note that the processor raises a GP# fault on its own if
1406 	 * xsetbv is executed for CPL != 0, so we do not have to
1407 	 * emulate that fault here.
1408 	 */
1409 
1410 	/* Only xcr0 is supported. */
1411 	if (vmxctx->guest_rcx != 0) {
1412 		vm_inject_gp(vmx->vm, vcpu);
1413 		return (HANDLED);
1414 	}
1415 
1416 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1417 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1418 		vm_inject_ud(vmx->vm, vcpu);
1419 		return (HANDLED);
1420 	}
1421 
1422 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1423 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1424 		vm_inject_gp(vmx->vm, vcpu);
1425 		return (HANDLED);
1426 	}
1427 
1428 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1429 		vm_inject_gp(vmx->vm, vcpu);
1430 		return (HANDLED);
1431 	}
1432 
1433 	/* AVX (YMM_Hi128) requires SSE. */
1434 	if (xcrval & XFEATURE_ENABLED_AVX &&
1435 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1436 		vm_inject_gp(vmx->vm, vcpu);
1437 		return (HANDLED);
1438 	}
1439 
1440 	/*
1441 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1442 	 * ZMM_Hi256, and Hi16_ZMM.
1443 	 */
1444 	if (xcrval & XFEATURE_AVX512 &&
1445 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1446 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1447 		vm_inject_gp(vmx->vm, vcpu);
1448 		return (HANDLED);
1449 	}
1450 
1451 	/*
1452 	 * Intel MPX requires both bound register state flags to be
1453 	 * set.
1454 	 */
1455 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1456 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1457 		vm_inject_gp(vmx->vm, vcpu);
1458 		return (HANDLED);
1459 	}
1460 
1461 	/*
1462 	 * This runs "inside" vmrun() with the guest's FPU state, so
1463 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1464 	 * host's.
1465 	 */
1466 	load_xcr(0, xcrval);
1467 	return (HANDLED);
1468 }
1469 
1470 static uint64_t
1471 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1472 {
1473 	const struct vmxctx *vmxctx;
1474 
1475 	vmxctx = &vmx->ctx[vcpu];
1476 
1477 	switch (ident) {
1478 	case 0:
1479 		return (vmxctx->guest_rax);
1480 	case 1:
1481 		return (vmxctx->guest_rcx);
1482 	case 2:
1483 		return (vmxctx->guest_rdx);
1484 	case 3:
1485 		return (vmxctx->guest_rbx);
1486 	case 4:
1487 		return (vmcs_read(VMCS_GUEST_RSP));
1488 	case 5:
1489 		return (vmxctx->guest_rbp);
1490 	case 6:
1491 		return (vmxctx->guest_rsi);
1492 	case 7:
1493 		return (vmxctx->guest_rdi);
1494 	case 8:
1495 		return (vmxctx->guest_r8);
1496 	case 9:
1497 		return (vmxctx->guest_r9);
1498 	case 10:
1499 		return (vmxctx->guest_r10);
1500 	case 11:
1501 		return (vmxctx->guest_r11);
1502 	case 12:
1503 		return (vmxctx->guest_r12);
1504 	case 13:
1505 		return (vmxctx->guest_r13);
1506 	case 14:
1507 		return (vmxctx->guest_r14);
1508 	case 15:
1509 		return (vmxctx->guest_r15);
1510 	default:
1511 		panic("invalid vmx register %d", ident);
1512 	}
1513 }
1514 
1515 static void
1516 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1517 {
1518 	struct vmxctx *vmxctx;
1519 
1520 	vmxctx = &vmx->ctx[vcpu];
1521 
1522 	switch (ident) {
1523 	case 0:
1524 		vmxctx->guest_rax = regval;
1525 		break;
1526 	case 1:
1527 		vmxctx->guest_rcx = regval;
1528 		break;
1529 	case 2:
1530 		vmxctx->guest_rdx = regval;
1531 		break;
1532 	case 3:
1533 		vmxctx->guest_rbx = regval;
1534 		break;
1535 	case 4:
1536 		vmcs_write(VMCS_GUEST_RSP, regval);
1537 		break;
1538 	case 5:
1539 		vmxctx->guest_rbp = regval;
1540 		break;
1541 	case 6:
1542 		vmxctx->guest_rsi = regval;
1543 		break;
1544 	case 7:
1545 		vmxctx->guest_rdi = regval;
1546 		break;
1547 	case 8:
1548 		vmxctx->guest_r8 = regval;
1549 		break;
1550 	case 9:
1551 		vmxctx->guest_r9 = regval;
1552 		break;
1553 	case 10:
1554 		vmxctx->guest_r10 = regval;
1555 		break;
1556 	case 11:
1557 		vmxctx->guest_r11 = regval;
1558 		break;
1559 	case 12:
1560 		vmxctx->guest_r12 = regval;
1561 		break;
1562 	case 13:
1563 		vmxctx->guest_r13 = regval;
1564 		break;
1565 	case 14:
1566 		vmxctx->guest_r14 = regval;
1567 		break;
1568 	case 15:
1569 		vmxctx->guest_r15 = regval;
1570 		break;
1571 	default:
1572 		panic("invalid vmx register %d", ident);
1573 	}
1574 }
1575 
1576 static int
1577 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1578 {
1579 	uint64_t crval, regval;
1580 
1581 	/* We only handle mov to %cr0 at this time */
1582 	if ((exitqual & 0xf0) != 0x00)
1583 		return (UNHANDLED);
1584 
1585 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1586 
1587 	vmcs_write(VMCS_CR0_SHADOW, regval);
1588 
1589 	crval = regval | cr0_ones_mask;
1590 	crval &= ~cr0_zeros_mask;
1591 	vmcs_write(VMCS_GUEST_CR0, crval);
1592 
1593 	if (regval & CR0_PG) {
1594 		uint64_t efer, entry_ctls;
1595 
1596 		/*
1597 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1598 		 * the "IA-32e mode guest" bit in VM-entry control must be
1599 		 * equal.
1600 		 */
1601 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1602 		if (efer & EFER_LME) {
1603 			efer |= EFER_LMA;
1604 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1605 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1606 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1607 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1608 		}
1609 	}
1610 
1611 	return (HANDLED);
1612 }
1613 
1614 static int
1615 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1616 {
1617 	uint64_t crval, regval;
1618 
1619 	/* We only handle mov to %cr4 at this time */
1620 	if ((exitqual & 0xf0) != 0x00)
1621 		return (UNHANDLED);
1622 
1623 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1624 
1625 	vmcs_write(VMCS_CR4_SHADOW, regval);
1626 
1627 	crval = regval | cr4_ones_mask;
1628 	crval &= ~cr4_zeros_mask;
1629 	vmcs_write(VMCS_GUEST_CR4, crval);
1630 
1631 	return (HANDLED);
1632 }
1633 
1634 static int
1635 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1636 {
1637 	struct vlapic *vlapic;
1638 	uint64_t cr8;
1639 	int regnum;
1640 
1641 	/* We only handle mov %cr8 to/from a register at this time. */
1642 	if ((exitqual & 0xe0) != 0x00) {
1643 		return (UNHANDLED);
1644 	}
1645 
1646 	vlapic = vm_lapic(vmx->vm, vcpu);
1647 	regnum = (exitqual >> 8) & 0xf;
1648 	if (exitqual & 0x10) {
1649 		cr8 = vlapic_get_cr8(vlapic);
1650 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1651 	} else {
1652 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1653 		vlapic_set_cr8(vlapic, cr8);
1654 	}
1655 
1656 	return (HANDLED);
1657 }
1658 
1659 /*
1660  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1661  */
1662 static int
1663 vmx_cpl(void)
1664 {
1665 	uint32_t ssar;
1666 
1667 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1668 	return ((ssar >> 5) & 0x3);
1669 }
1670 
1671 static enum vm_cpu_mode
1672 vmx_cpu_mode(void)
1673 {
1674 	uint32_t csar;
1675 
1676 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1677 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1678 		if (csar & 0x2000)
1679 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1680 		else
1681 			return (CPU_MODE_COMPATIBILITY);
1682 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1683 		return (CPU_MODE_PROTECTED);
1684 	} else {
1685 		return (CPU_MODE_REAL);
1686 	}
1687 }
1688 
1689 static enum vm_paging_mode
1690 vmx_paging_mode(void)
1691 {
1692 
1693 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1694 		return (PAGING_MODE_FLAT);
1695 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1696 		return (PAGING_MODE_32);
1697 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1698 		return (PAGING_MODE_64);
1699 	else
1700 		return (PAGING_MODE_PAE);
1701 }
1702 
1703 static uint64_t
1704 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1705 {
1706 	uint64_t val;
1707 	int error;
1708 	enum vm_reg_name reg;
1709 
1710 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1711 	error = vmx_getreg(vmx, vcpuid, reg, &val);
1712 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1713 	return (val);
1714 }
1715 
1716 static uint64_t
1717 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1718 {
1719 	uint64_t val;
1720 	int error;
1721 
1722 	if (rep) {
1723 		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1724 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1725 	} else {
1726 		val = 1;
1727 	}
1728 	return (val);
1729 }
1730 
1731 static int
1732 inout_str_addrsize(uint32_t inst_info)
1733 {
1734 	uint32_t size;
1735 
1736 	size = (inst_info >> 7) & 0x7;
1737 	switch (size) {
1738 	case 0:
1739 		return (2);	/* 16 bit */
1740 	case 1:
1741 		return (4);	/* 32 bit */
1742 	case 2:
1743 		return (8);	/* 64 bit */
1744 	default:
1745 		panic("%s: invalid size encoding %d", __func__, size);
1746 	}
1747 }
1748 
1749 static void
1750 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1751     struct vm_inout_str *vis)
1752 {
1753 	int error, s;
1754 
1755 	if (in) {
1756 		vis->seg_name = VM_REG_GUEST_ES;
1757 	} else {
1758 		s = (inst_info >> 15) & 0x7;
1759 		vis->seg_name = vm_segment_name(s);
1760 	}
1761 
1762 	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1763 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1764 }
1765 
1766 static void
1767 vmx_paging_info(struct vm_guest_paging *paging)
1768 {
1769 	paging->cr3 = vmcs_guest_cr3();
1770 	paging->cpl = vmx_cpl();
1771 	paging->cpu_mode = vmx_cpu_mode();
1772 	paging->paging_mode = vmx_paging_mode();
1773 }
1774 
1775 static void
1776 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1777 {
1778 	struct vm_guest_paging *paging;
1779 	uint32_t csar;
1780 
1781 	paging = &vmexit->u.inst_emul.paging;
1782 
1783 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1784 	vmexit->u.inst_emul.gpa = gpa;
1785 	vmexit->u.inst_emul.gla = gla;
1786 	vmx_paging_info(paging);
1787 	switch (paging->cpu_mode) {
1788 	case CPU_MODE_PROTECTED:
1789 	case CPU_MODE_COMPATIBILITY:
1790 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1791 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1792 		break;
1793 	default:
1794 		vmexit->u.inst_emul.cs_d = 0;
1795 		break;
1796 	}
1797 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1798 }
1799 
1800 static int
1801 ept_fault_type(uint64_t ept_qual)
1802 {
1803 	int fault_type;
1804 
1805 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1806 		fault_type = VM_PROT_WRITE;
1807 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1808 		fault_type = VM_PROT_EXECUTE;
1809 	else
1810 		fault_type= VM_PROT_READ;
1811 
1812 	return (fault_type);
1813 }
1814 
1815 static boolean_t
1816 ept_emulation_fault(uint64_t ept_qual)
1817 {
1818 	int read, write;
1819 
1820 	/* EPT fault on an instruction fetch doesn't make sense here */
1821 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1822 		return (FALSE);
1823 
1824 	/* EPT fault must be a read fault or a write fault */
1825 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1826 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1827 	if ((read | write) == 0)
1828 		return (FALSE);
1829 
1830 	/*
1831 	 * The EPT violation must have been caused by accessing a
1832 	 * guest-physical address that is a translation of a guest-linear
1833 	 * address.
1834 	 */
1835 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1836 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1837 		return (FALSE);
1838 	}
1839 
1840 	return (TRUE);
1841 }
1842 
1843 static __inline int
1844 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1845 {
1846 	uint32_t proc_ctls2;
1847 
1848 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1849 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1850 }
1851 
1852 static __inline int
1853 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1854 {
1855 	uint32_t proc_ctls2;
1856 
1857 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1858 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1859 }
1860 
1861 static int
1862 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1863     uint64_t qual)
1864 {
1865 	int error, handled, offset;
1866 	uint32_t *apic_regs, vector;
1867 	bool retu;
1868 
1869 	handled = HANDLED;
1870 	offset = APIC_WRITE_OFFSET(qual);
1871 
1872 	if (!apic_access_virtualization(vmx, vcpuid)) {
1873 		/*
1874 		 * In general there should not be any APIC write VM-exits
1875 		 * unless APIC-access virtualization is enabled.
1876 		 *
1877 		 * However self-IPI virtualization can legitimately trigger
1878 		 * an APIC-write VM-exit so treat it specially.
1879 		 */
1880 		if (x2apic_virtualization(vmx, vcpuid) &&
1881 		    offset == APIC_OFFSET_SELF_IPI) {
1882 			apic_regs = (uint32_t *)(vlapic->apic_page);
1883 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1884 			vlapic_self_ipi_handler(vlapic, vector);
1885 			return (HANDLED);
1886 		} else
1887 			return (UNHANDLED);
1888 	}
1889 
1890 	switch (offset) {
1891 	case APIC_OFFSET_ID:
1892 		vlapic_id_write_handler(vlapic);
1893 		break;
1894 	case APIC_OFFSET_LDR:
1895 		vlapic_ldr_write_handler(vlapic);
1896 		break;
1897 	case APIC_OFFSET_DFR:
1898 		vlapic_dfr_write_handler(vlapic);
1899 		break;
1900 	case APIC_OFFSET_SVR:
1901 		vlapic_svr_write_handler(vlapic);
1902 		break;
1903 	case APIC_OFFSET_ESR:
1904 		vlapic_esr_write_handler(vlapic);
1905 		break;
1906 	case APIC_OFFSET_ICR_LOW:
1907 		retu = false;
1908 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1909 		if (error != 0 || retu)
1910 			handled = UNHANDLED;
1911 		break;
1912 	case APIC_OFFSET_CMCI_LVT:
1913 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1914 		vlapic_lvt_write_handler(vlapic, offset);
1915 		break;
1916 	case APIC_OFFSET_TIMER_ICR:
1917 		vlapic_icrtmr_write_handler(vlapic);
1918 		break;
1919 	case APIC_OFFSET_TIMER_DCR:
1920 		vlapic_dcr_write_handler(vlapic);
1921 		break;
1922 	default:
1923 		handled = UNHANDLED;
1924 		break;
1925 	}
1926 	return (handled);
1927 }
1928 
1929 static bool
1930 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1931 {
1932 
1933 	if (apic_access_virtualization(vmx, vcpuid) &&
1934 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1935 		return (true);
1936 	else
1937 		return (false);
1938 }
1939 
1940 static int
1941 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1942 {
1943 	uint64_t qual;
1944 	int access_type, offset, allowed;
1945 
1946 	if (!apic_access_virtualization(vmx, vcpuid))
1947 		return (UNHANDLED);
1948 
1949 	qual = vmexit->u.vmx.exit_qualification;
1950 	access_type = APIC_ACCESS_TYPE(qual);
1951 	offset = APIC_ACCESS_OFFSET(qual);
1952 
1953 	allowed = 0;
1954 	if (access_type == 0) {
1955 		/*
1956 		 * Read data access to the following registers is expected.
1957 		 */
1958 		switch (offset) {
1959 		case APIC_OFFSET_APR:
1960 		case APIC_OFFSET_PPR:
1961 		case APIC_OFFSET_RRR:
1962 		case APIC_OFFSET_CMCI_LVT:
1963 		case APIC_OFFSET_TIMER_CCR:
1964 			allowed = 1;
1965 			break;
1966 		default:
1967 			break;
1968 		}
1969 	} else if (access_type == 1) {
1970 		/*
1971 		 * Write data access to the following registers is expected.
1972 		 */
1973 		switch (offset) {
1974 		case APIC_OFFSET_VER:
1975 		case APIC_OFFSET_APR:
1976 		case APIC_OFFSET_PPR:
1977 		case APIC_OFFSET_RRR:
1978 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1979 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1980 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1981 		case APIC_OFFSET_CMCI_LVT:
1982 		case APIC_OFFSET_TIMER_CCR:
1983 			allowed = 1;
1984 			break;
1985 		default:
1986 			break;
1987 		}
1988 	}
1989 
1990 	if (allowed) {
1991 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
1992 		    VIE_INVALID_GLA);
1993 	}
1994 
1995 	/*
1996 	 * Regardless of whether the APIC-access is allowed this handler
1997 	 * always returns UNHANDLED:
1998 	 * - if the access is allowed then it is handled by emulating the
1999 	 *   instruction that caused the VM-exit (outside the critical section)
2000 	 * - if the access is not allowed then it will be converted to an
2001 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2002 	 */
2003 	return (UNHANDLED);
2004 }
2005 
2006 static enum task_switch_reason
2007 vmx_task_switch_reason(uint64_t qual)
2008 {
2009 	int reason;
2010 
2011 	reason = (qual >> 30) & 0x3;
2012 	switch (reason) {
2013 	case 0:
2014 		return (TSR_CALL);
2015 	case 1:
2016 		return (TSR_IRET);
2017 	case 2:
2018 		return (TSR_JMP);
2019 	case 3:
2020 		return (TSR_IDT_GATE);
2021 	default:
2022 		panic("%s: invalid reason %d", __func__, reason);
2023 	}
2024 }
2025 
2026 static int
2027 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2028 {
2029 	int error;
2030 
2031 	if (lapic_msr(num))
2032 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2033 	else
2034 		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2035 
2036 	return (error);
2037 }
2038 
2039 static int
2040 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2041 {
2042 	struct vmxctx *vmxctx;
2043 	uint64_t result;
2044 	uint32_t eax, edx;
2045 	int error;
2046 
2047 	if (lapic_msr(num))
2048 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2049 	else
2050 		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2051 
2052 	if (error == 0) {
2053 		eax = result;
2054 		vmxctx = &vmx->ctx[vcpuid];
2055 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2056 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2057 
2058 		edx = result >> 32;
2059 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2060 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2061 	}
2062 
2063 	return (error);
2064 }
2065 
2066 static int
2067 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2068 {
2069 	int error, errcode, errcode_valid, handled, in;
2070 	struct vmxctx *vmxctx;
2071 	struct vlapic *vlapic;
2072 	struct vm_inout_str *vis;
2073 	struct vm_task_switch *ts;
2074 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2075 	uint32_t intr_type, intr_vec, reason;
2076 	uint64_t exitintinfo, qual, gpa;
2077 	bool retu;
2078 
2079 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2080 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2081 
2082 	handled = UNHANDLED;
2083 	vmxctx = &vmx->ctx[vcpu];
2084 
2085 	qual = vmexit->u.vmx.exit_qualification;
2086 	reason = vmexit->u.vmx.exit_reason;
2087 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2088 
2089 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2090 
2091 	/*
2092 	 * VM-entry failures during or after loading guest state.
2093 	 *
2094 	 * These VM-exits are uncommon but must be handled specially
2095 	 * as most VM-exit fields are not populated as usual.
2096 	 */
2097 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2098 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2099 		__asm __volatile("int $18");
2100 		return (1);
2101 	}
2102 
2103 	/*
2104 	 * VM exits that can be triggered during event delivery need to
2105 	 * be handled specially by re-injecting the event if the IDT
2106 	 * vectoring information field's valid bit is set.
2107 	 *
2108 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2109 	 * for details.
2110 	 */
2111 	idtvec_info = vmcs_idt_vectoring_info();
2112 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2113 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2114 		exitintinfo = idtvec_info;
2115 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2116 			idtvec_err = vmcs_idt_vectoring_err();
2117 			exitintinfo |= (uint64_t)idtvec_err << 32;
2118 		}
2119 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2120 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2121 		    __func__, error));
2122 
2123 		/*
2124 		 * If 'virtual NMIs' are being used and the VM-exit
2125 		 * happened while injecting an NMI during the previous
2126 		 * VM-entry, then clear "blocking by NMI" in the
2127 		 * Guest Interruptibility-State so the NMI can be
2128 		 * reinjected on the subsequent VM-entry.
2129 		 *
2130 		 * However, if the NMI was being delivered through a task
2131 		 * gate, then the new task must start execution with NMIs
2132 		 * blocked so don't clear NMI blocking in this case.
2133 		 */
2134 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2135 		if (intr_type == VMCS_INTR_T_NMI) {
2136 			if (reason != EXIT_REASON_TASK_SWITCH)
2137 				vmx_clear_nmi_blocking(vmx, vcpu);
2138 			else
2139 				vmx_assert_nmi_blocking(vmx, vcpu);
2140 		}
2141 
2142 		/*
2143 		 * Update VM-entry instruction length if the event being
2144 		 * delivered was a software interrupt or software exception.
2145 		 */
2146 		if (intr_type == VMCS_INTR_T_SWINTR ||
2147 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2148 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2149 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2150 		}
2151 	}
2152 
2153 	switch (reason) {
2154 	case EXIT_REASON_TASK_SWITCH:
2155 		ts = &vmexit->u.task_switch;
2156 		ts->tsssel = qual & 0xffff;
2157 		ts->reason = vmx_task_switch_reason(qual);
2158 		ts->ext = 0;
2159 		ts->errcode_valid = 0;
2160 		vmx_paging_info(&ts->paging);
2161 		/*
2162 		 * If the task switch was due to a CALL, JMP, IRET, software
2163 		 * interrupt (INT n) or software exception (INT3, INTO),
2164 		 * then the saved %rip references the instruction that caused
2165 		 * the task switch. The instruction length field in the VMCS
2166 		 * is valid in this case.
2167 		 *
2168 		 * In all other cases (e.g., NMI, hardware exception) the
2169 		 * saved %rip is one that would have been saved in the old TSS
2170 		 * had the task switch completed normally so the instruction
2171 		 * length field is not needed in this case and is explicitly
2172 		 * set to 0.
2173 		 */
2174 		if (ts->reason == TSR_IDT_GATE) {
2175 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2176 			    ("invalid idtvec_info %#x for IDT task switch",
2177 			    idtvec_info));
2178 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2179 			if (intr_type != VMCS_INTR_T_SWINTR &&
2180 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2181 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2182 				/* Task switch triggered by external event */
2183 				ts->ext = 1;
2184 				vmexit->inst_length = 0;
2185 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2186 					ts->errcode_valid = 1;
2187 					ts->errcode = vmcs_idt_vectoring_err();
2188 				}
2189 			}
2190 		}
2191 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2192 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2193 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2194 		    ts->ext ? "external" : "internal",
2195 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2196 		break;
2197 	case EXIT_REASON_CR_ACCESS:
2198 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2199 		switch (qual & 0xf) {
2200 		case 0:
2201 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2202 			break;
2203 		case 4:
2204 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2205 			break;
2206 		case 8:
2207 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2208 			break;
2209 		}
2210 		break;
2211 	case EXIT_REASON_RDMSR:
2212 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2213 		retu = false;
2214 		ecx = vmxctx->guest_rcx;
2215 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2216 		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2217 		if (error) {
2218 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2219 			vmexit->u.msr.code = ecx;
2220 		} else if (!retu) {
2221 			handled = HANDLED;
2222 		} else {
2223 			/* Return to userspace with a valid exitcode */
2224 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2225 			    ("emulate_rdmsr retu with bogus exitcode"));
2226 		}
2227 		break;
2228 	case EXIT_REASON_WRMSR:
2229 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2230 		retu = false;
2231 		eax = vmxctx->guest_rax;
2232 		ecx = vmxctx->guest_rcx;
2233 		edx = vmxctx->guest_rdx;
2234 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2235 		    ecx, (uint64_t)edx << 32 | eax);
2236 		error = emulate_wrmsr(vmx, vcpu, ecx,
2237 		    (uint64_t)edx << 32 | eax, &retu);
2238 		if (error) {
2239 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2240 			vmexit->u.msr.code = ecx;
2241 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2242 		} else if (!retu) {
2243 			handled = HANDLED;
2244 		} else {
2245 			/* Return to userspace with a valid exitcode */
2246 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2247 			    ("emulate_wrmsr retu with bogus exitcode"));
2248 		}
2249 		break;
2250 	case EXIT_REASON_HLT:
2251 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2252 		vmexit->exitcode = VM_EXITCODE_HLT;
2253 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2254 		break;
2255 	case EXIT_REASON_MTF:
2256 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2257 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2258 		vmexit->inst_length = 0;
2259 		break;
2260 	case EXIT_REASON_PAUSE:
2261 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2262 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2263 		break;
2264 	case EXIT_REASON_INTR_WINDOW:
2265 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2266 		vmx_clear_int_window_exiting(vmx, vcpu);
2267 		return (1);
2268 	case EXIT_REASON_EXT_INTR:
2269 		/*
2270 		 * External interrupts serve only to cause VM exits and allow
2271 		 * the host interrupt handler to run.
2272 		 *
2273 		 * If this external interrupt triggers a virtual interrupt
2274 		 * to a VM, then that state will be recorded by the
2275 		 * host interrupt handler in the VM's softc. We will inject
2276 		 * this virtual interrupt during the subsequent VM enter.
2277 		 */
2278 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2279 
2280 		/*
2281 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2282 		 * This appears to be a bug in VMware Fusion?
2283 		 */
2284 		if (!(intr_info & VMCS_INTR_VALID))
2285 			return (1);
2286 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2287 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2288 		    ("VM exit interruption info invalid: %#x", intr_info));
2289 		vmx_trigger_hostintr(intr_info & 0xff);
2290 
2291 		/*
2292 		 * This is special. We want to treat this as an 'handled'
2293 		 * VM-exit but not increment the instruction pointer.
2294 		 */
2295 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2296 		return (1);
2297 	case EXIT_REASON_NMI_WINDOW:
2298 		/* Exit to allow the pending virtual NMI to be injected */
2299 		if (vm_nmi_pending(vmx->vm, vcpu))
2300 			vmx_inject_nmi(vmx, vcpu);
2301 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2302 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2303 		return (1);
2304 	case EXIT_REASON_INOUT:
2305 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2306 		vmexit->exitcode = VM_EXITCODE_INOUT;
2307 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2308 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2309 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2310 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2311 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2312 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2313 		if (vmexit->u.inout.string) {
2314 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2315 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2316 			vis = &vmexit->u.inout_str;
2317 			vmx_paging_info(&vis->paging);
2318 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2319 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2320 			vis->index = inout_str_index(vmx, vcpu, in);
2321 			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2322 			vis->addrsize = inout_str_addrsize(inst_info);
2323 			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2324 		}
2325 		break;
2326 	case EXIT_REASON_CPUID:
2327 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2328 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2329 		break;
2330 	case EXIT_REASON_EXCEPTION:
2331 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2332 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2333 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2334 		    ("VM exit interruption info invalid: %#x", intr_info));
2335 
2336 		intr_vec = intr_info & 0xff;
2337 		intr_type = intr_info & VMCS_INTR_T_MASK;
2338 
2339 		/*
2340 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2341 		 * fault encountered during the execution of IRET then we must
2342 		 * restore the state of "virtual-NMI blocking" before resuming
2343 		 * the guest.
2344 		 *
2345 		 * See "Resuming Guest Software after Handling an Exception".
2346 		 * See "Information for VM Exits Due to Vectored Events".
2347 		 */
2348 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2349 		    (intr_vec != IDT_DF) &&
2350 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2351 			vmx_restore_nmi_blocking(vmx, vcpu);
2352 
2353 		/*
2354 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2355 		 */
2356 		if (intr_type == VMCS_INTR_T_NMI)
2357 			return (1);
2358 
2359 		/*
2360 		 * Call the machine check handler by hand. Also don't reflect
2361 		 * the machine check back into the guest.
2362 		 */
2363 		if (intr_vec == IDT_MC) {
2364 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2365 			__asm __volatile("int $18");
2366 			return (1);
2367 		}
2368 
2369 		if (intr_vec == IDT_PF) {
2370 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2371 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2372 			    __func__, error));
2373 		}
2374 
2375 		/*
2376 		 * Software exceptions exhibit trap-like behavior. This in
2377 		 * turn requires populating the VM-entry instruction length
2378 		 * so that the %rip in the trap frame is past the INT3/INTO
2379 		 * instruction.
2380 		 */
2381 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2382 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2383 
2384 		/* Reflect all other exceptions back into the guest */
2385 		errcode_valid = errcode = 0;
2386 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2387 			errcode_valid = 1;
2388 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2389 		}
2390 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2391 		    "the guest", intr_vec, errcode);
2392 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2393 		    errcode_valid, errcode, 0);
2394 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2395 		    __func__, error));
2396 		return (1);
2397 
2398 	case EXIT_REASON_EPT_FAULT:
2399 		/*
2400 		 * If 'gpa' lies within the address space allocated to
2401 		 * memory then this must be a nested page fault otherwise
2402 		 * this must be an instruction that accesses MMIO space.
2403 		 */
2404 		gpa = vmcs_gpa();
2405 		if (vm_mem_allocated(vmx->vm, gpa) ||
2406 		    apic_access_fault(vmx, vcpu, gpa)) {
2407 			vmexit->exitcode = VM_EXITCODE_PAGING;
2408 			vmexit->inst_length = 0;
2409 			vmexit->u.paging.gpa = gpa;
2410 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2411 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2412 		} else if (ept_emulation_fault(qual)) {
2413 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2414 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2415 		}
2416 		/*
2417 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2418 		 * EPT fault during the execution of IRET then we must restore
2419 		 * the state of "virtual-NMI blocking" before resuming.
2420 		 *
2421 		 * See description of "NMI unblocking due to IRET" in
2422 		 * "Exit Qualification for EPT Violations".
2423 		 */
2424 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2425 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2426 			vmx_restore_nmi_blocking(vmx, vcpu);
2427 		break;
2428 	case EXIT_REASON_VIRTUALIZED_EOI:
2429 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2430 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2431 		vmexit->inst_length = 0;	/* trap-like */
2432 		break;
2433 	case EXIT_REASON_APIC_ACCESS:
2434 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2435 		break;
2436 	case EXIT_REASON_APIC_WRITE:
2437 		/*
2438 		 * APIC-write VM exit is trap-like so the %rip is already
2439 		 * pointing to the next instruction.
2440 		 */
2441 		vmexit->inst_length = 0;
2442 		vlapic = vm_lapic(vmx->vm, vcpu);
2443 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2444 		break;
2445 	case EXIT_REASON_XSETBV:
2446 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2447 		break;
2448 	case EXIT_REASON_MONITOR:
2449 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2450 		break;
2451 	case EXIT_REASON_MWAIT:
2452 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2453 		break;
2454 	default:
2455 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2456 		break;
2457 	}
2458 
2459 	if (handled) {
2460 		/*
2461 		 * It is possible that control is returned to userland
2462 		 * even though we were able to handle the VM exit in the
2463 		 * kernel.
2464 		 *
2465 		 * In such a case we want to make sure that the userland
2466 		 * restarts guest execution at the instruction *after*
2467 		 * the one we just processed. Therefore we update the
2468 		 * guest rip in the VMCS and in 'vmexit'.
2469 		 */
2470 		vmexit->rip += vmexit->inst_length;
2471 		vmexit->inst_length = 0;
2472 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2473 	} else {
2474 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2475 			/*
2476 			 * If this VM exit was not claimed by anybody then
2477 			 * treat it as a generic VMX exit.
2478 			 */
2479 			vmexit->exitcode = VM_EXITCODE_VMX;
2480 			vmexit->u.vmx.status = VM_SUCCESS;
2481 			vmexit->u.vmx.inst_type = 0;
2482 			vmexit->u.vmx.inst_error = 0;
2483 		} else {
2484 			/*
2485 			 * The exitcode and collateral have been populated.
2486 			 * The VM exit will be processed further in userland.
2487 			 */
2488 		}
2489 	}
2490 	return (handled);
2491 }
2492 
2493 static __inline void
2494 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2495 {
2496 
2497 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2498 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2499 	    vmxctx->inst_fail_status));
2500 
2501 	vmexit->inst_length = 0;
2502 	vmexit->exitcode = VM_EXITCODE_VMX;
2503 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2504 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2505 	vmexit->u.vmx.exit_reason = ~0;
2506 	vmexit->u.vmx.exit_qualification = ~0;
2507 
2508 	switch (rc) {
2509 	case VMX_VMRESUME_ERROR:
2510 	case VMX_VMLAUNCH_ERROR:
2511 	case VMX_INVEPT_ERROR:
2512 		vmexit->u.vmx.inst_type = rc;
2513 		break;
2514 	default:
2515 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2516 	}
2517 }
2518 
2519 /*
2520  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2521  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2522  * sufficient to simply vector to the NMI handler via a software interrupt.
2523  * However, this must be done before maskable interrupts are enabled
2524  * otherwise the "iret" issued by an interrupt handler will incorrectly
2525  * clear NMI blocking.
2526  */
2527 static __inline void
2528 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2529 {
2530 	uint32_t intr_info;
2531 
2532 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2533 
2534 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2535 		return;
2536 
2537 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2538 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2539 	    ("VM exit interruption info invalid: %#x", intr_info));
2540 
2541 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2542 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2543 		    "to NMI has invalid vector: %#x", intr_info));
2544 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2545 		__asm __volatile("int $2");
2546 	}
2547 }
2548 
2549 static int
2550 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2551     void *rendezvous_cookie, void *suspend_cookie)
2552 {
2553 	int rc, handled, launched;
2554 	struct vmx *vmx;
2555 	struct vm *vm;
2556 	struct vmxctx *vmxctx;
2557 	struct vmcs *vmcs;
2558 	struct vm_exit *vmexit;
2559 	struct vlapic *vlapic;
2560 	uint32_t exit_reason;
2561 
2562 	vmx = arg;
2563 	vm = vmx->vm;
2564 	vmcs = &vmx->vmcs[vcpu];
2565 	vmxctx = &vmx->ctx[vcpu];
2566 	vlapic = vm_lapic(vm, vcpu);
2567 	vmexit = vm_exitinfo(vm, vcpu);
2568 	launched = 0;
2569 
2570 	KASSERT(vmxctx->pmap == pmap,
2571 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2572 
2573 	vmx_msr_guest_enter(vmx, vcpu);
2574 
2575 	VMPTRLD(vmcs);
2576 
2577 	/*
2578 	 * XXX
2579 	 * We do this every time because we may setup the virtual machine
2580 	 * from a different process than the one that actually runs it.
2581 	 *
2582 	 * If the life of a virtual machine was spent entirely in the context
2583 	 * of a single process we could do this once in vmx_vminit().
2584 	 */
2585 	vmcs_write(VMCS_HOST_CR3, rcr3());
2586 
2587 	vmcs_write(VMCS_GUEST_RIP, rip);
2588 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2589 	do {
2590 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2591 		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2592 
2593 		handled = UNHANDLED;
2594 		/*
2595 		 * Interrupts are disabled from this point on until the
2596 		 * guest starts executing. This is done for the following
2597 		 * reasons:
2598 		 *
2599 		 * If an AST is asserted on this thread after the check below,
2600 		 * then the IPI_AST notification will not be lost, because it
2601 		 * will cause a VM exit due to external interrupt as soon as
2602 		 * the guest state is loaded.
2603 		 *
2604 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2605 		 * not be "lost" because it will be held pending in the host
2606 		 * APIC because interrupts are disabled. The pending interrupt
2607 		 * will be recognized as soon as the guest state is loaded.
2608 		 *
2609 		 * The same reasoning applies to the IPI generated by
2610 		 * pmap_invalidate_ept().
2611 		 */
2612 		disable_intr();
2613 		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2614 
2615 		/*
2616 		 * Check for vcpu suspension after injecting events because
2617 		 * vmx_inject_interrupts() can suspend the vcpu due to a
2618 		 * triple fault.
2619 		 */
2620 		if (vcpu_suspended(suspend_cookie)) {
2621 			enable_intr();
2622 			vm_exit_suspended(vmx->vm, vcpu, rip);
2623 			break;
2624 		}
2625 
2626 		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2627 			enable_intr();
2628 			vm_exit_rendezvous(vmx->vm, vcpu, rip);
2629 			break;
2630 		}
2631 
2632 		if (vcpu_should_yield(vm, vcpu)) {
2633 			enable_intr();
2634 			vm_exit_astpending(vmx->vm, vcpu, rip);
2635 			vmx_astpending_trace(vmx, vcpu, rip);
2636 			handled = HANDLED;
2637 			break;
2638 		}
2639 
2640 		vmx_run_trace(vmx, vcpu);
2641 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2642 
2643 		/* Collect some information for VM exit processing */
2644 		vmexit->rip = rip = vmcs_guest_rip();
2645 		vmexit->inst_length = vmexit_instruction_length();
2646 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2647 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2648 
2649 		/* Update 'nextrip' */
2650 		vmx->state[vcpu].nextrip = rip;
2651 
2652 		if (rc == VMX_GUEST_VMEXIT) {
2653 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2654 			enable_intr();
2655 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2656 		} else {
2657 			enable_intr();
2658 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2659 		}
2660 		launched = 1;
2661 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2662 		rip = vmexit->rip;
2663 	} while (handled);
2664 
2665 	/*
2666 	 * If a VM exit has been handled then the exitcode must be BOGUS
2667 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2668 	 */
2669 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2670 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2671 		panic("Mismatch between handled (%d) and exitcode (%d)",
2672 		      handled, vmexit->exitcode);
2673 	}
2674 
2675 	if (!handled)
2676 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2677 
2678 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2679 	    vmexit->exitcode);
2680 
2681 	VMCLEAR(vmcs);
2682 	vmx_msr_guest_exit(vmx, vcpu);
2683 
2684 	return (0);
2685 }
2686 
2687 static void
2688 vmx_vmcleanup(void *arg)
2689 {
2690 	int i;
2691 	struct vmx *vmx = arg;
2692 
2693 	if (apic_access_virtualization(vmx, 0))
2694 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2695 
2696 	for (i = 0; i < VM_MAXCPU; i++)
2697 		vpid_free(vmx->state[i].vpid);
2698 
2699 	free(vmx, M_VMX);
2700 
2701 	return;
2702 }
2703 
2704 static register_t *
2705 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2706 {
2707 
2708 	switch (reg) {
2709 	case VM_REG_GUEST_RAX:
2710 		return (&vmxctx->guest_rax);
2711 	case VM_REG_GUEST_RBX:
2712 		return (&vmxctx->guest_rbx);
2713 	case VM_REG_GUEST_RCX:
2714 		return (&vmxctx->guest_rcx);
2715 	case VM_REG_GUEST_RDX:
2716 		return (&vmxctx->guest_rdx);
2717 	case VM_REG_GUEST_RSI:
2718 		return (&vmxctx->guest_rsi);
2719 	case VM_REG_GUEST_RDI:
2720 		return (&vmxctx->guest_rdi);
2721 	case VM_REG_GUEST_RBP:
2722 		return (&vmxctx->guest_rbp);
2723 	case VM_REG_GUEST_R8:
2724 		return (&vmxctx->guest_r8);
2725 	case VM_REG_GUEST_R9:
2726 		return (&vmxctx->guest_r9);
2727 	case VM_REG_GUEST_R10:
2728 		return (&vmxctx->guest_r10);
2729 	case VM_REG_GUEST_R11:
2730 		return (&vmxctx->guest_r11);
2731 	case VM_REG_GUEST_R12:
2732 		return (&vmxctx->guest_r12);
2733 	case VM_REG_GUEST_R13:
2734 		return (&vmxctx->guest_r13);
2735 	case VM_REG_GUEST_R14:
2736 		return (&vmxctx->guest_r14);
2737 	case VM_REG_GUEST_R15:
2738 		return (&vmxctx->guest_r15);
2739 	case VM_REG_GUEST_CR2:
2740 		return (&vmxctx->guest_cr2);
2741 	default:
2742 		break;
2743 	}
2744 	return (NULL);
2745 }
2746 
2747 static int
2748 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2749 {
2750 	register_t *regp;
2751 
2752 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2753 		*retval = *regp;
2754 		return (0);
2755 	} else
2756 		return (EINVAL);
2757 }
2758 
2759 static int
2760 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2761 {
2762 	register_t *regp;
2763 
2764 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2765 		*regp = val;
2766 		return (0);
2767 	} else
2768 		return (EINVAL);
2769 }
2770 
2771 static int
2772 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2773 {
2774 	uint64_t gi;
2775 	int error;
2776 
2777 	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
2778 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2779 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2780 	return (error);
2781 }
2782 
2783 static int
2784 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2785 {
2786 	struct vmcs *vmcs;
2787 	uint64_t gi;
2788 	int error, ident;
2789 
2790 	/*
2791 	 * Forcing the vcpu into an interrupt shadow is not supported.
2792 	 */
2793 	if (val) {
2794 		error = EINVAL;
2795 		goto done;
2796 	}
2797 
2798 	vmcs = &vmx->vmcs[vcpu];
2799 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2800 	error = vmcs_getreg(vmcs, running, ident, &gi);
2801 	if (error == 0) {
2802 		gi &= ~HWINTR_BLOCKING;
2803 		error = vmcs_setreg(vmcs, running, ident, gi);
2804 	}
2805 done:
2806 	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2807 	    error ? "failed" : "succeeded");
2808 	return (error);
2809 }
2810 
2811 static int
2812 vmx_shadow_reg(int reg)
2813 {
2814 	int shreg;
2815 
2816 	shreg = -1;
2817 
2818 	switch (reg) {
2819 	case VM_REG_GUEST_CR0:
2820 		shreg = VMCS_CR0_SHADOW;
2821                 break;
2822         case VM_REG_GUEST_CR4:
2823 		shreg = VMCS_CR4_SHADOW;
2824 		break;
2825 	default:
2826 		break;
2827 	}
2828 
2829 	return (shreg);
2830 }
2831 
2832 static int
2833 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2834 {
2835 	int running, hostcpu;
2836 	struct vmx *vmx = arg;
2837 
2838 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2839 	if (running && hostcpu != curcpu)
2840 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2841 
2842 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2843 		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2844 
2845 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2846 		return (0);
2847 
2848 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2849 }
2850 
2851 static int
2852 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2853 {
2854 	int error, hostcpu, running, shadow;
2855 	uint64_t ctls;
2856 	pmap_t pmap;
2857 	struct vmx *vmx = arg;
2858 
2859 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2860 	if (running && hostcpu != curcpu)
2861 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2862 
2863 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2864 		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2865 
2866 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2867 		return (0);
2868 
2869 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2870 
2871 	if (error == 0) {
2872 		/*
2873 		 * If the "load EFER" VM-entry control is 1 then the
2874 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2875 		 * bit in the VM-entry control.
2876 		 */
2877 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2878 		    (reg == VM_REG_GUEST_EFER)) {
2879 			vmcs_getreg(&vmx->vmcs[vcpu], running,
2880 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2881 			if (val & EFER_LMA)
2882 				ctls |= VM_ENTRY_GUEST_LMA;
2883 			else
2884 				ctls &= ~VM_ENTRY_GUEST_LMA;
2885 			vmcs_setreg(&vmx->vmcs[vcpu], running,
2886 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2887 		}
2888 
2889 		shadow = vmx_shadow_reg(reg);
2890 		if (shadow > 0) {
2891 			/*
2892 			 * Store the unmodified value in the shadow
2893 			 */
2894 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2895 				    VMCS_IDENT(shadow), val);
2896 		}
2897 
2898 		if (reg == VM_REG_GUEST_CR3) {
2899 			/*
2900 			 * Invalidate the guest vcpu's TLB mappings to emulate
2901 			 * the behavior of updating %cr3.
2902 			 *
2903 			 * XXX the processor retains global mappings when %cr3
2904 			 * is updated but vmx_invvpid() does not.
2905 			 */
2906 			pmap = vmx->ctx[vcpu].pmap;
2907 			vmx_invvpid(vmx, vcpu, pmap, running);
2908 		}
2909 	}
2910 
2911 	return (error);
2912 }
2913 
2914 static int
2915 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2916 {
2917 	int hostcpu, running;
2918 	struct vmx *vmx = arg;
2919 
2920 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2921 	if (running && hostcpu != curcpu)
2922 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2923 
2924 	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2925 }
2926 
2927 static int
2928 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2929 {
2930 	int hostcpu, running;
2931 	struct vmx *vmx = arg;
2932 
2933 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2934 	if (running && hostcpu != curcpu)
2935 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2936 
2937 	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2938 }
2939 
2940 static int
2941 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2942 {
2943 	struct vmx *vmx = arg;
2944 	int vcap;
2945 	int ret;
2946 
2947 	ret = ENOENT;
2948 
2949 	vcap = vmx->cap[vcpu].set;
2950 
2951 	switch (type) {
2952 	case VM_CAP_HALT_EXIT:
2953 		if (cap_halt_exit)
2954 			ret = 0;
2955 		break;
2956 	case VM_CAP_PAUSE_EXIT:
2957 		if (cap_pause_exit)
2958 			ret = 0;
2959 		break;
2960 	case VM_CAP_MTRAP_EXIT:
2961 		if (cap_monitor_trap)
2962 			ret = 0;
2963 		break;
2964 	case VM_CAP_UNRESTRICTED_GUEST:
2965 		if (cap_unrestricted_guest)
2966 			ret = 0;
2967 		break;
2968 	case VM_CAP_ENABLE_INVPCID:
2969 		if (cap_invpcid)
2970 			ret = 0;
2971 		break;
2972 	default:
2973 		break;
2974 	}
2975 
2976 	if (ret == 0)
2977 		*retval = (vcap & (1 << type)) ? 1 : 0;
2978 
2979 	return (ret);
2980 }
2981 
2982 static int
2983 vmx_setcap(void *arg, int vcpu, int type, int val)
2984 {
2985 	struct vmx *vmx = arg;
2986 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2987 	uint32_t baseval;
2988 	uint32_t *pptr;
2989 	int error;
2990 	int flag;
2991 	int reg;
2992 	int retval;
2993 
2994 	retval = ENOENT;
2995 	pptr = NULL;
2996 
2997 	switch (type) {
2998 	case VM_CAP_HALT_EXIT:
2999 		if (cap_halt_exit) {
3000 			retval = 0;
3001 			pptr = &vmx->cap[vcpu].proc_ctls;
3002 			baseval = *pptr;
3003 			flag = PROCBASED_HLT_EXITING;
3004 			reg = VMCS_PRI_PROC_BASED_CTLS;
3005 		}
3006 		break;
3007 	case VM_CAP_MTRAP_EXIT:
3008 		if (cap_monitor_trap) {
3009 			retval = 0;
3010 			pptr = &vmx->cap[vcpu].proc_ctls;
3011 			baseval = *pptr;
3012 			flag = PROCBASED_MTF;
3013 			reg = VMCS_PRI_PROC_BASED_CTLS;
3014 		}
3015 		break;
3016 	case VM_CAP_PAUSE_EXIT:
3017 		if (cap_pause_exit) {
3018 			retval = 0;
3019 			pptr = &vmx->cap[vcpu].proc_ctls;
3020 			baseval = *pptr;
3021 			flag = PROCBASED_PAUSE_EXITING;
3022 			reg = VMCS_PRI_PROC_BASED_CTLS;
3023 		}
3024 		break;
3025 	case VM_CAP_UNRESTRICTED_GUEST:
3026 		if (cap_unrestricted_guest) {
3027 			retval = 0;
3028 			pptr = &vmx->cap[vcpu].proc_ctls2;
3029 			baseval = *pptr;
3030 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3031 			reg = VMCS_SEC_PROC_BASED_CTLS;
3032 		}
3033 		break;
3034 	case VM_CAP_ENABLE_INVPCID:
3035 		if (cap_invpcid) {
3036 			retval = 0;
3037 			pptr = &vmx->cap[vcpu].proc_ctls2;
3038 			baseval = *pptr;
3039 			flag = PROCBASED2_ENABLE_INVPCID;
3040 			reg = VMCS_SEC_PROC_BASED_CTLS;
3041 		}
3042 		break;
3043 	default:
3044 		break;
3045 	}
3046 
3047 	if (retval == 0) {
3048 		if (val) {
3049 			baseval |= flag;
3050 		} else {
3051 			baseval &= ~flag;
3052 		}
3053 		VMPTRLD(vmcs);
3054 		error = vmwrite(reg, baseval);
3055 		VMCLEAR(vmcs);
3056 
3057 		if (error) {
3058 			retval = error;
3059 		} else {
3060 			/*
3061 			 * Update optional stored flags, and record
3062 			 * setting
3063 			 */
3064 			if (pptr != NULL) {
3065 				*pptr = baseval;
3066 			}
3067 
3068 			if (val) {
3069 				vmx->cap[vcpu].set |= (1 << type);
3070 			} else {
3071 				vmx->cap[vcpu].set &= ~(1 << type);
3072 			}
3073 		}
3074 	}
3075 
3076         return (retval);
3077 }
3078 
3079 struct vlapic_vtx {
3080 	struct vlapic	vlapic;
3081 	struct pir_desc	*pir_desc;
3082 	struct vmx	*vmx;
3083 };
3084 
3085 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3086 do {									\
3087 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3088 	    level ? "level" : "edge", vector);				\
3089 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3090 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3091 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3092 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3093 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3094 } while (0)
3095 
3096 /*
3097  * vlapic->ops handlers that utilize the APICv hardware assist described in
3098  * Chapter 29 of the Intel SDM.
3099  */
3100 static int
3101 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3102 {
3103 	struct vlapic_vtx *vlapic_vtx;
3104 	struct pir_desc *pir_desc;
3105 	uint64_t mask;
3106 	int idx, notify;
3107 
3108 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3109 	pir_desc = vlapic_vtx->pir_desc;
3110 
3111 	/*
3112 	 * Keep track of interrupt requests in the PIR descriptor. This is
3113 	 * because the virtual APIC page pointed to by the VMCS cannot be
3114 	 * modified if the vcpu is running.
3115 	 */
3116 	idx = vector / 64;
3117 	mask = 1UL << (vector % 64);
3118 	atomic_set_long(&pir_desc->pir[idx], mask);
3119 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3120 
3121 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3122 	    level, "vmx_set_intr_ready");
3123 	return (notify);
3124 }
3125 
3126 static int
3127 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3128 {
3129 	struct vlapic_vtx *vlapic_vtx;
3130 	struct pir_desc *pir_desc;
3131 	struct LAPIC *lapic;
3132 	uint64_t pending, pirval;
3133 	uint32_t ppr, vpr;
3134 	int i;
3135 
3136 	/*
3137 	 * This function is only expected to be called from the 'HLT' exit
3138 	 * handler which does not care about the vector that is pending.
3139 	 */
3140 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3141 
3142 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3143 	pir_desc = vlapic_vtx->pir_desc;
3144 
3145 	pending = atomic_load_acq_long(&pir_desc->pending);
3146 	if (!pending)
3147 		return (0);	/* common case */
3148 
3149 	/*
3150 	 * If there is an interrupt pending then it will be recognized only
3151 	 * if its priority is greater than the processor priority.
3152 	 *
3153 	 * Special case: if the processor priority is zero then any pending
3154 	 * interrupt will be recognized.
3155 	 */
3156 	lapic = vlapic->apic_page;
3157 	ppr = lapic->ppr & 0xf0;
3158 	if (ppr == 0)
3159 		return (1);
3160 
3161 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3162 	    lapic->ppr);
3163 
3164 	for (i = 3; i >= 0; i--) {
3165 		pirval = pir_desc->pir[i];
3166 		if (pirval != 0) {
3167 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3168 			return (vpr > ppr);
3169 		}
3170 	}
3171 	return (0);
3172 }
3173 
3174 static void
3175 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3176 {
3177 
3178 	panic("vmx_intr_accepted: not expected to be called");
3179 }
3180 
3181 static void
3182 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3183 {
3184 	struct vlapic_vtx *vlapic_vtx;
3185 	struct vmx *vmx;
3186 	struct vmcs *vmcs;
3187 	uint64_t mask, val;
3188 
3189 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3190 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3191 	    ("vmx_set_tmr: vcpu cannot be running"));
3192 
3193 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3194 	vmx = vlapic_vtx->vmx;
3195 	vmcs = &vmx->vmcs[vlapic->vcpuid];
3196 	mask = 1UL << (vector % 64);
3197 
3198 	VMPTRLD(vmcs);
3199 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3200 	if (level)
3201 		val |= mask;
3202 	else
3203 		val &= ~mask;
3204 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3205 	VMCLEAR(vmcs);
3206 }
3207 
3208 static void
3209 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3210 {
3211 	struct vmx *vmx;
3212 	struct vmcs *vmcs;
3213 	uint32_t proc_ctls2;
3214 	int vcpuid, error;
3215 
3216 	vcpuid = vlapic->vcpuid;
3217 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3218 	vmcs = &vmx->vmcs[vcpuid];
3219 
3220 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3221 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3222 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3223 
3224 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3225 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3226 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3227 
3228 	VMPTRLD(vmcs);
3229 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3230 	VMCLEAR(vmcs);
3231 
3232 	if (vlapic->vcpuid == 0) {
3233 		/*
3234 		 * The nested page table mappings are shared by all vcpus
3235 		 * so unmap the APIC access page just once.
3236 		 */
3237 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3238 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3239 		    __func__, error));
3240 
3241 		/*
3242 		 * The MSR bitmap is shared by all vcpus so modify it only
3243 		 * once in the context of vcpu 0.
3244 		 */
3245 		error = vmx_allow_x2apic_msrs(vmx);
3246 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3247 		    __func__, error));
3248 	}
3249 }
3250 
3251 static void
3252 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3253 {
3254 
3255 	ipi_cpu(hostcpu, pirvec);
3256 }
3257 
3258 /*
3259  * Transfer the pending interrupts in the PIR descriptor to the IRR
3260  * in the virtual APIC page.
3261  */
3262 static void
3263 vmx_inject_pir(struct vlapic *vlapic)
3264 {
3265 	struct vlapic_vtx *vlapic_vtx;
3266 	struct pir_desc *pir_desc;
3267 	struct LAPIC *lapic;
3268 	uint64_t val, pirval;
3269 	int rvi, pirbase = -1;
3270 	uint16_t intr_status_old, intr_status_new;
3271 
3272 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3273 	pir_desc = vlapic_vtx->pir_desc;
3274 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3275 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3276 		    "no posted interrupt pending");
3277 		return;
3278 	}
3279 
3280 	pirval = 0;
3281 	pirbase = -1;
3282 	lapic = vlapic->apic_page;
3283 
3284 	val = atomic_readandclear_long(&pir_desc->pir[0]);
3285 	if (val != 0) {
3286 		lapic->irr0 |= val;
3287 		lapic->irr1 |= val >> 32;
3288 		pirbase = 0;
3289 		pirval = val;
3290 	}
3291 
3292 	val = atomic_readandclear_long(&pir_desc->pir[1]);
3293 	if (val != 0) {
3294 		lapic->irr2 |= val;
3295 		lapic->irr3 |= val >> 32;
3296 		pirbase = 64;
3297 		pirval = val;
3298 	}
3299 
3300 	val = atomic_readandclear_long(&pir_desc->pir[2]);
3301 	if (val != 0) {
3302 		lapic->irr4 |= val;
3303 		lapic->irr5 |= val >> 32;
3304 		pirbase = 128;
3305 		pirval = val;
3306 	}
3307 
3308 	val = atomic_readandclear_long(&pir_desc->pir[3]);
3309 	if (val != 0) {
3310 		lapic->irr6 |= val;
3311 		lapic->irr7 |= val >> 32;
3312 		pirbase = 192;
3313 		pirval = val;
3314 	}
3315 
3316 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3317 
3318 	/*
3319 	 * Update RVI so the processor can evaluate pending virtual
3320 	 * interrupts on VM-entry.
3321 	 *
3322 	 * It is possible for pirval to be 0 here, even though the
3323 	 * pending bit has been set. The scenario is:
3324 	 * CPU-Y is sending a posted interrupt to CPU-X, which
3325 	 * is running a guest and processing posted interrupts in h/w.
3326 	 * CPU-X will eventually exit and the state seen in s/w is
3327 	 * the pending bit set, but no PIR bits set.
3328 	 *
3329 	 *      CPU-X                      CPU-Y
3330 	 *   (vm running)                (host running)
3331 	 *   rx posted interrupt
3332 	 *   CLEAR pending bit
3333 	 *				 SET PIR bit
3334 	 *   READ/CLEAR PIR bits
3335 	 *				 SET pending bit
3336 	 *   (vm exit)
3337 	 *   pending bit set, PIR 0
3338 	 */
3339 	if (pirval != 0) {
3340 		rvi = pirbase + flsl(pirval) - 1;
3341 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3342 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3343 		if (intr_status_new > intr_status_old) {
3344 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3345 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3346 			    "guest_intr_status changed from 0x%04x to 0x%04x",
3347 			    intr_status_old, intr_status_new);
3348 		}
3349 	}
3350 }
3351 
3352 static struct vlapic *
3353 vmx_vlapic_init(void *arg, int vcpuid)
3354 {
3355 	struct vmx *vmx;
3356 	struct vlapic *vlapic;
3357 	struct vlapic_vtx *vlapic_vtx;
3358 
3359 	vmx = arg;
3360 
3361 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3362 	vlapic->vm = vmx->vm;
3363 	vlapic->vcpuid = vcpuid;
3364 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3365 
3366 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3367 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3368 	vlapic_vtx->vmx = vmx;
3369 
3370 	if (virtual_interrupt_delivery) {
3371 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3372 		vlapic->ops.pending_intr = vmx_pending_intr;
3373 		vlapic->ops.intr_accepted = vmx_intr_accepted;
3374 		vlapic->ops.set_tmr = vmx_set_tmr;
3375 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3376 	}
3377 
3378 	if (posted_interrupts)
3379 		vlapic->ops.post_intr = vmx_post_intr;
3380 
3381 	vlapic_init(vlapic);
3382 
3383 	return (vlapic);
3384 }
3385 
3386 static void
3387 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3388 {
3389 
3390 	vlapic_cleanup(vlapic);
3391 	free(vlapic, M_VLAPIC);
3392 }
3393 
3394 struct vmm_ops vmm_ops_intel = {
3395 	vmx_init,
3396 	vmx_cleanup,
3397 	vmx_restore,
3398 	vmx_vminit,
3399 	vmx_run,
3400 	vmx_vmcleanup,
3401 	vmx_getreg,
3402 	vmx_setreg,
3403 	vmx_getdesc,
3404 	vmx_setdesc,
3405 	vmx_getcap,
3406 	vmx_setcap,
3407 	ept_vmspace_alloc,
3408 	ept_vmspace_free,
3409 	vmx_vlapic_init,
3410 	vmx_vlapic_cleanup,
3411 };
3412