xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ktr.h"
59 #include "vmm_stat.h"
60 #include "vatpic.h"
61 #include "vlapic.h"
62 #include "vlapic_priv.h"
63 
64 #include "ept.h"
65 #include "vmx_cpufunc.h"
66 #include "vmx.h"
67 #include "vmx_msr.h"
68 #include "x86.h"
69 #include "vmx_controls.h"
70 
71 #define	PINBASED_CTLS_ONE_SETTING					\
72 	(PINBASED_EXTINT_EXITING	|				\
73 	 PINBASED_NMI_EXITING		|				\
74 	 PINBASED_VIRTUAL_NMI)
75 #define	PINBASED_CTLS_ZERO_SETTING	0
76 
77 #define PROCBASED_CTLS_WINDOW_SETTING					\
78 	(PROCBASED_INT_WINDOW_EXITING	|				\
79 	 PROCBASED_NMI_WINDOW_EXITING)
80 
81 #define	PROCBASED_CTLS_ONE_SETTING 					\
82 	(PROCBASED_SECONDARY_CONTROLS	|				\
83 	 PROCBASED_MWAIT_EXITING	|				\
84 	 PROCBASED_MONITOR_EXITING	|				\
85 	 PROCBASED_IO_EXITING		|				\
86 	 PROCBASED_MSR_BITMAPS		|				\
87 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
88 	 PROCBASED_CR8_LOAD_EXITING	|				\
89 	 PROCBASED_CR8_STORE_EXITING)
90 #define	PROCBASED_CTLS_ZERO_SETTING	\
91 	(PROCBASED_CR3_LOAD_EXITING |	\
92 	PROCBASED_CR3_STORE_EXITING |	\
93 	PROCBASED_IO_BITMAPS)
94 
95 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
96 #define	PROCBASED_CTLS2_ZERO_SETTING	0
97 
98 #define	VM_EXIT_CTLS_ONE_SETTING					\
99 	(VM_EXIT_HOST_LMA			|			\
100 	VM_EXIT_SAVE_EFER			|			\
101 	VM_EXIT_LOAD_EFER			|			\
102 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
103 
104 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
105 
106 #define	VM_ENTRY_CTLS_ONE_SETTING	(VM_ENTRY_LOAD_EFER)
107 
108 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
109 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
110 	VM_ENTRY_INTO_SMM			|			\
111 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112 
113 #define	HANDLED		1
114 #define	UNHANDLED	0
115 
116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
118 
119 SYSCTL_DECL(_hw_vmm);
120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
121 
122 int vmxon_enabled[MAXCPU];
123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124 
125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
126 static uint32_t exit_ctls, entry_ctls;
127 
128 static uint64_t cr0_ones_mask, cr0_zeros_mask;
129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
130 	     &cr0_ones_mask, 0, NULL);
131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
132 	     &cr0_zeros_mask, 0, NULL);
133 
134 static uint64_t cr4_ones_mask, cr4_zeros_mask;
135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
136 	     &cr4_ones_mask, 0, NULL);
137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
138 	     &cr4_zeros_mask, 0, NULL);
139 
140 static int vmx_initialized;
141 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
142 	   &vmx_initialized, 0, "Intel VMX initialized");
143 
144 /*
145  * Optional capabilities
146  */
147 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
148 
149 static int cap_halt_exit;
150 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
151     "HLT triggers a VM-exit");
152 
153 static int cap_pause_exit;
154 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
155     0, "PAUSE triggers a VM-exit");
156 
157 static int cap_unrestricted_guest;
158 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
159     &cap_unrestricted_guest, 0, "Unrestricted guests");
160 
161 static int cap_monitor_trap;
162 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
163     &cap_monitor_trap, 0, "Monitor trap flag");
164 
165 static int cap_invpcid;
166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
167     0, "Guests are allowed to use INVPCID");
168 
169 static int virtual_interrupt_delivery;
170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
171     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
172 
173 static int posted_interrupts;
174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
175     &posted_interrupts, 0, "APICv posted interrupt support");
176 
177 static int pirvec = -1;
178 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
179     &pirvec, 0, "APICv posted interrupt vector");
180 
181 static struct unrhdr *vpid_unr;
182 static u_int vpid_alloc_failed;
183 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
184 	    &vpid_alloc_failed, 0, NULL);
185 
186 /*
187  * Use the last page below 4GB as the APIC access address. This address is
188  * occupied by the boot firmware so it is guaranteed that it will not conflict
189  * with a page in system memory.
190  */
191 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
192 
193 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
194 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
195 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
196 static void vmx_inject_pir(struct vlapic *vlapic);
197 
198 #ifdef KTR
199 static const char *
200 exit_reason_to_str(int reason)
201 {
202 	static char reasonbuf[32];
203 
204 	switch (reason) {
205 	case EXIT_REASON_EXCEPTION:
206 		return "exception";
207 	case EXIT_REASON_EXT_INTR:
208 		return "extint";
209 	case EXIT_REASON_TRIPLE_FAULT:
210 		return "triplefault";
211 	case EXIT_REASON_INIT:
212 		return "init";
213 	case EXIT_REASON_SIPI:
214 		return "sipi";
215 	case EXIT_REASON_IO_SMI:
216 		return "iosmi";
217 	case EXIT_REASON_SMI:
218 		return "smi";
219 	case EXIT_REASON_INTR_WINDOW:
220 		return "intrwindow";
221 	case EXIT_REASON_NMI_WINDOW:
222 		return "nmiwindow";
223 	case EXIT_REASON_TASK_SWITCH:
224 		return "taskswitch";
225 	case EXIT_REASON_CPUID:
226 		return "cpuid";
227 	case EXIT_REASON_GETSEC:
228 		return "getsec";
229 	case EXIT_REASON_HLT:
230 		return "hlt";
231 	case EXIT_REASON_INVD:
232 		return "invd";
233 	case EXIT_REASON_INVLPG:
234 		return "invlpg";
235 	case EXIT_REASON_RDPMC:
236 		return "rdpmc";
237 	case EXIT_REASON_RDTSC:
238 		return "rdtsc";
239 	case EXIT_REASON_RSM:
240 		return "rsm";
241 	case EXIT_REASON_VMCALL:
242 		return "vmcall";
243 	case EXIT_REASON_VMCLEAR:
244 		return "vmclear";
245 	case EXIT_REASON_VMLAUNCH:
246 		return "vmlaunch";
247 	case EXIT_REASON_VMPTRLD:
248 		return "vmptrld";
249 	case EXIT_REASON_VMPTRST:
250 		return "vmptrst";
251 	case EXIT_REASON_VMREAD:
252 		return "vmread";
253 	case EXIT_REASON_VMRESUME:
254 		return "vmresume";
255 	case EXIT_REASON_VMWRITE:
256 		return "vmwrite";
257 	case EXIT_REASON_VMXOFF:
258 		return "vmxoff";
259 	case EXIT_REASON_VMXON:
260 		return "vmxon";
261 	case EXIT_REASON_CR_ACCESS:
262 		return "craccess";
263 	case EXIT_REASON_DR_ACCESS:
264 		return "draccess";
265 	case EXIT_REASON_INOUT:
266 		return "inout";
267 	case EXIT_REASON_RDMSR:
268 		return "rdmsr";
269 	case EXIT_REASON_WRMSR:
270 		return "wrmsr";
271 	case EXIT_REASON_INVAL_VMCS:
272 		return "invalvmcs";
273 	case EXIT_REASON_INVAL_MSR:
274 		return "invalmsr";
275 	case EXIT_REASON_MWAIT:
276 		return "mwait";
277 	case EXIT_REASON_MTF:
278 		return "mtf";
279 	case EXIT_REASON_MONITOR:
280 		return "monitor";
281 	case EXIT_REASON_PAUSE:
282 		return "pause";
283 	case EXIT_REASON_MCE_DURING_ENTRY:
284 		return "mce-during-entry";
285 	case EXIT_REASON_TPR:
286 		return "tpr";
287 	case EXIT_REASON_APIC_ACCESS:
288 		return "apic-access";
289 	case EXIT_REASON_GDTR_IDTR:
290 		return "gdtridtr";
291 	case EXIT_REASON_LDTR_TR:
292 		return "ldtrtr";
293 	case EXIT_REASON_EPT_FAULT:
294 		return "eptfault";
295 	case EXIT_REASON_EPT_MISCONFIG:
296 		return "eptmisconfig";
297 	case EXIT_REASON_INVEPT:
298 		return "invept";
299 	case EXIT_REASON_RDTSCP:
300 		return "rdtscp";
301 	case EXIT_REASON_VMX_PREEMPT:
302 		return "vmxpreempt";
303 	case EXIT_REASON_INVVPID:
304 		return "invvpid";
305 	case EXIT_REASON_WBINVD:
306 		return "wbinvd";
307 	case EXIT_REASON_XSETBV:
308 		return "xsetbv";
309 	case EXIT_REASON_APIC_WRITE:
310 		return "apic-write";
311 	default:
312 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
313 		return (reasonbuf);
314 	}
315 }
316 #endif	/* KTR */
317 
318 static int
319 vmx_allow_x2apic_msrs(struct vmx *vmx)
320 {
321 	int i, error;
322 
323 	error = 0;
324 
325 	/*
326 	 * Allow readonly access to the following x2APIC MSRs from the guest.
327 	 */
328 	error += guest_msr_ro(vmx, MSR_APIC_ID);
329 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
330 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
331 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
332 
333 	for (i = 0; i < 8; i++)
334 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
335 
336 	for (i = 0; i < 8; i++)
337 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
338 
339 	for (i = 0; i < 8; i++)
340 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
341 
342 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
343 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
344 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
345 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
346 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
347 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
348 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
349 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
350 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
351 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
352 
353 	/*
354 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
355 	 *
356 	 * These registers get special treatment described in the section
357 	 * "Virtualizing MSR-Based APIC Accesses".
358 	 */
359 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
360 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
361 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
362 
363 	return (error);
364 }
365 
366 u_long
367 vmx_fix_cr0(u_long cr0)
368 {
369 
370 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
371 }
372 
373 u_long
374 vmx_fix_cr4(u_long cr4)
375 {
376 
377 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
378 }
379 
380 static void
381 vpid_free(int vpid)
382 {
383 	if (vpid < 0 || vpid > 0xffff)
384 		panic("vpid_free: invalid vpid %d", vpid);
385 
386 	/*
387 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
388 	 * the unit number allocator.
389 	 */
390 
391 	if (vpid > VM_MAXCPU)
392 		free_unr(vpid_unr, vpid);
393 }
394 
395 static void
396 vpid_alloc(uint16_t *vpid, int num)
397 {
398 	int i, x;
399 
400 	if (num <= 0 || num > VM_MAXCPU)
401 		panic("invalid number of vpids requested: %d", num);
402 
403 	/*
404 	 * If the "enable vpid" execution control is not enabled then the
405 	 * VPID is required to be 0 for all vcpus.
406 	 */
407 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
408 		for (i = 0; i < num; i++)
409 			vpid[i] = 0;
410 		return;
411 	}
412 
413 	/*
414 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
415 	 */
416 	for (i = 0; i < num; i++) {
417 		x = alloc_unr(vpid_unr);
418 		if (x == -1)
419 			break;
420 		else
421 			vpid[i] = x;
422 	}
423 
424 	if (i < num) {
425 		atomic_add_int(&vpid_alloc_failed, 1);
426 
427 		/*
428 		 * If the unit number allocator does not have enough unique
429 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
430 		 *
431 		 * These VPIDs are not be unique across VMs but this does not
432 		 * affect correctness because the combined mappings are also
433 		 * tagged with the EP4TA which is unique for each VM.
434 		 *
435 		 * It is still sub-optimal because the invvpid will invalidate
436 		 * combined mappings for a particular VPID across all EP4TAs.
437 		 */
438 		while (i-- > 0)
439 			vpid_free(vpid[i]);
440 
441 		for (i = 0; i < num; i++)
442 			vpid[i] = i + 1;
443 	}
444 }
445 
446 static void
447 vpid_init(void)
448 {
449 	/*
450 	 * VPID 0 is required when the "enable VPID" execution control is
451 	 * disabled.
452 	 *
453 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
454 	 * unit number allocator does not have sufficient unique VPIDs to
455 	 * satisfy the allocation.
456 	 *
457 	 * The remaining VPIDs are managed by the unit number allocator.
458 	 */
459 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
460 }
461 
462 static void
463 vmx_disable(void *arg __unused)
464 {
465 	struct invvpid_desc invvpid_desc = { 0 };
466 	struct invept_desc invept_desc = { 0 };
467 
468 	if (vmxon_enabled[curcpu]) {
469 		/*
470 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
471 		 *
472 		 * VMXON or VMXOFF are not required to invalidate any TLB
473 		 * caching structures. This prevents potential retention of
474 		 * cached information in the TLB between distinct VMX episodes.
475 		 */
476 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
477 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
478 		vmxoff();
479 	}
480 	load_cr4(rcr4() & ~CR4_VMXE);
481 }
482 
483 static int
484 vmx_cleanup(void)
485 {
486 
487 	if (pirvec >= 0)
488 		lapic_ipi_free(pirvec);
489 
490 	if (vpid_unr != NULL) {
491 		delete_unrhdr(vpid_unr);
492 		vpid_unr = NULL;
493 	}
494 
495 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
496 
497 	return (0);
498 }
499 
500 static void
501 vmx_enable(void *arg __unused)
502 {
503 	int error;
504 	uint64_t feature_control;
505 
506 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
507 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
508 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
509 		wrmsr(MSR_IA32_FEATURE_CONTROL,
510 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
511 		    IA32_FEATURE_CONTROL_LOCK);
512 	}
513 
514 	load_cr4(rcr4() | CR4_VMXE);
515 
516 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
517 	error = vmxon(vmxon_region[curcpu]);
518 	if (error == 0)
519 		vmxon_enabled[curcpu] = 1;
520 }
521 
522 static void
523 vmx_restore(void)
524 {
525 
526 	if (vmxon_enabled[curcpu])
527 		vmxon(vmxon_region[curcpu]);
528 }
529 
530 static int
531 vmx_init(int ipinum)
532 {
533 	int error, use_tpr_shadow;
534 	uint64_t basic, fixed0, fixed1, feature_control;
535 	uint32_t tmp, procbased2_vid_bits;
536 
537 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
538 	if (!(cpu_feature2 & CPUID2_VMX)) {
539 		printf("vmx_init: processor does not support VMX operation\n");
540 		return (ENXIO);
541 	}
542 
543 	/*
544 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
545 	 * are set (bits 0 and 2 respectively).
546 	 */
547 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
548 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
549 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
550 		printf("vmx_init: VMX operation disabled by BIOS\n");
551 		return (ENXIO);
552 	}
553 
554 	/*
555 	 * Verify capabilities MSR_VMX_BASIC:
556 	 * - bit 54 indicates support for INS/OUTS decoding
557 	 */
558 	basic = rdmsr(MSR_VMX_BASIC);
559 	if ((basic & (1UL << 54)) == 0) {
560 		printf("vmx_init: processor does not support desired basic "
561 		    "capabilities\n");
562 		return (EINVAL);
563 	}
564 
565 	/* Check support for primary processor-based VM-execution controls */
566 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
567 			       MSR_VMX_TRUE_PROCBASED_CTLS,
568 			       PROCBASED_CTLS_ONE_SETTING,
569 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
570 	if (error) {
571 		printf("vmx_init: processor does not support desired primary "
572 		       "processor-based controls\n");
573 		return (error);
574 	}
575 
576 	/* Clear the processor-based ctl bits that are set on demand */
577 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
578 
579 	/* Check support for secondary processor-based VM-execution controls */
580 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
581 			       MSR_VMX_PROCBASED_CTLS2,
582 			       PROCBASED_CTLS2_ONE_SETTING,
583 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
584 	if (error) {
585 		printf("vmx_init: processor does not support desired secondary "
586 		       "processor-based controls\n");
587 		return (error);
588 	}
589 
590 	/* Check support for VPID */
591 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
592 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
593 	if (error == 0)
594 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
595 
596 	/* Check support for pin-based VM-execution controls */
597 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
598 			       MSR_VMX_TRUE_PINBASED_CTLS,
599 			       PINBASED_CTLS_ONE_SETTING,
600 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
601 	if (error) {
602 		printf("vmx_init: processor does not support desired "
603 		       "pin-based controls\n");
604 		return (error);
605 	}
606 
607 	/* Check support for VM-exit controls */
608 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
609 			       VM_EXIT_CTLS_ONE_SETTING,
610 			       VM_EXIT_CTLS_ZERO_SETTING,
611 			       &exit_ctls);
612 	if (error) {
613 		printf("vmx_init: processor does not support desired "
614 		    "exit controls\n");
615 		return (error);
616 	}
617 
618 	/* Check support for VM-entry controls */
619 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
620 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
621 	    &entry_ctls);
622 	if (error) {
623 		printf("vmx_init: processor does not support desired "
624 		    "entry controls\n");
625 		return (error);
626 	}
627 
628 	/*
629 	 * Check support for optional features by testing them
630 	 * as individual bits
631 	 */
632 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
633 					MSR_VMX_TRUE_PROCBASED_CTLS,
634 					PROCBASED_HLT_EXITING, 0,
635 					&tmp) == 0);
636 
637 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
638 					MSR_VMX_PROCBASED_CTLS,
639 					PROCBASED_MTF, 0,
640 					&tmp) == 0);
641 
642 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
643 					 MSR_VMX_TRUE_PROCBASED_CTLS,
644 					 PROCBASED_PAUSE_EXITING, 0,
645 					 &tmp) == 0);
646 
647 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
648 					MSR_VMX_PROCBASED_CTLS2,
649 					PROCBASED2_UNRESTRICTED_GUEST, 0,
650 				        &tmp) == 0);
651 
652 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
653 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
654 	    &tmp) == 0);
655 
656 	/*
657 	 * Check support for virtual interrupt delivery.
658 	 */
659 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
660 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
661 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
662 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
663 
664 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
665 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
666 	    &tmp) == 0);
667 
668 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
669 	    procbased2_vid_bits, 0, &tmp);
670 	if (error == 0 && use_tpr_shadow) {
671 		virtual_interrupt_delivery = 1;
672 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
673 		    &virtual_interrupt_delivery);
674 	}
675 
676 	if (virtual_interrupt_delivery) {
677 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
678 		procbased_ctls2 |= procbased2_vid_bits;
679 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
680 
681 		/*
682 		 * No need to emulate accesses to %CR8 if virtual
683 		 * interrupt delivery is enabled.
684 		 */
685 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
686 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
687 
688 		/*
689 		 * Check for Posted Interrupts only if Virtual Interrupt
690 		 * Delivery is enabled.
691 		 */
692 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
693 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
694 		    &tmp);
695 		if (error == 0) {
696 			pirvec = lapic_ipi_alloc(&IDTVEC(justreturn));
697 			if (pirvec < 0) {
698 				if (bootverbose) {
699 					printf("vmx_init: unable to allocate "
700 					    "posted interrupt vector\n");
701 				}
702 			} else {
703 				posted_interrupts = 1;
704 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
705 				    &posted_interrupts);
706 			}
707 		}
708 	}
709 
710 	if (posted_interrupts)
711 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
712 
713 	/* Initialize EPT */
714 	error = ept_init(ipinum);
715 	if (error) {
716 		printf("vmx_init: ept initialization failed (%d)\n", error);
717 		return (error);
718 	}
719 
720 	/*
721 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
722 	 */
723 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
724 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
725 	cr0_ones_mask = fixed0 & fixed1;
726 	cr0_zeros_mask = ~fixed0 & ~fixed1;
727 
728 	/*
729 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
730 	 * if unrestricted guest execution is allowed.
731 	 */
732 	if (cap_unrestricted_guest)
733 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
734 
735 	/*
736 	 * Do not allow the guest to set CR0_NW or CR0_CD.
737 	 */
738 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
739 
740 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
741 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
742 	cr4_ones_mask = fixed0 & fixed1;
743 	cr4_zeros_mask = ~fixed0 & ~fixed1;
744 
745 	vpid_init();
746 
747 	vmx_msr_init();
748 
749 	/* enable VMX operation */
750 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
751 
752 	vmx_initialized = 1;
753 
754 	return (0);
755 }
756 
757 static void
758 vmx_trigger_hostintr(int vector)
759 {
760 	uintptr_t func;
761 	struct gate_descriptor *gd;
762 
763 	gd = &idt[vector];
764 
765 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
766 	    "invalid vector %d", vector));
767 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
768 	    vector));
769 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
770 	    "has invalid type %d", vector, gd->gd_type));
771 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
772 	    "has invalid dpl %d", vector, gd->gd_dpl));
773 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
774 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
775 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
776 	    "IST %d", vector, gd->gd_ist));
777 
778 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
779 	vmx_call_isr(func);
780 }
781 
782 static int
783 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
784 {
785 	int error, mask_ident, shadow_ident;
786 	uint64_t mask_value;
787 
788 	if (which != 0 && which != 4)
789 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
790 
791 	if (which == 0) {
792 		mask_ident = VMCS_CR0_MASK;
793 		mask_value = cr0_ones_mask | cr0_zeros_mask;
794 		shadow_ident = VMCS_CR0_SHADOW;
795 	} else {
796 		mask_ident = VMCS_CR4_MASK;
797 		mask_value = cr4_ones_mask | cr4_zeros_mask;
798 		shadow_ident = VMCS_CR4_SHADOW;
799 	}
800 
801 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
802 	if (error)
803 		return (error);
804 
805 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
806 	if (error)
807 		return (error);
808 
809 	return (0);
810 }
811 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
812 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
813 
814 static void *
815 vmx_vminit(struct vm *vm, pmap_t pmap)
816 {
817 	uint16_t vpid[VM_MAXCPU];
818 	int i, error;
819 	struct vmx *vmx;
820 	struct vmcs *vmcs;
821 	uint32_t exc_bitmap;
822 
823 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
824 	if ((uintptr_t)vmx & PAGE_MASK) {
825 		panic("malloc of struct vmx not aligned on %d byte boundary",
826 		      PAGE_SIZE);
827 	}
828 	vmx->vm = vm;
829 
830 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
831 
832 	/*
833 	 * Clean up EPTP-tagged guest physical and combined mappings
834 	 *
835 	 * VMX transitions are not required to invalidate any guest physical
836 	 * mappings. So, it may be possible for stale guest physical mappings
837 	 * to be present in the processor TLBs.
838 	 *
839 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
840 	 */
841 	ept_invalidate_mappings(vmx->eptp);
842 
843 	msr_bitmap_initialize(vmx->msr_bitmap);
844 
845 	/*
846 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
847 	 * The guest FSBASE and GSBASE are saved and restored during
848 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
849 	 * always restored from the vmcs host state area on vm-exit.
850 	 *
851 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
852 	 * how they are saved/restored so can be directly accessed by the
853 	 * guest.
854 	 *
855 	 * MSR_EFER is saved and restored in the guest VMCS area on a
856 	 * VM exit and entry respectively. It is also restored from the
857 	 * host VMCS area on a VM exit.
858 	 *
859 	 * The TSC MSR is exposed read-only. Writes are disallowed as
860 	 * that will impact the host TSC.  If the guest does a write
861 	 * the "use TSC offsetting" execution control is enabled and the
862 	 * difference between the host TSC and the guest TSC is written
863 	 * into the TSC offset in the VMCS.
864 	 */
865 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
866 	    guest_msr_rw(vmx, MSR_FSBASE) ||
867 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
868 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
869 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
870 	    guest_msr_rw(vmx, MSR_EFER) ||
871 	    guest_msr_ro(vmx, MSR_TSC))
872 		panic("vmx_vminit: error setting guest msr access");
873 
874 	vpid_alloc(vpid, VM_MAXCPU);
875 
876 	if (virtual_interrupt_delivery) {
877 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
878 		    APIC_ACCESS_ADDRESS);
879 		/* XXX this should really return an error to the caller */
880 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
881 	}
882 
883 	for (i = 0; i < VM_MAXCPU; i++) {
884 		vmcs = &vmx->vmcs[i];
885 		vmcs->identifier = vmx_revision();
886 		error = vmclear(vmcs);
887 		if (error != 0) {
888 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
889 			      error, i);
890 		}
891 
892 		vmx_msr_guest_init(vmx, i);
893 
894 		error = vmcs_init(vmcs);
895 		KASSERT(error == 0, ("vmcs_init error %d", error));
896 
897 		VMPTRLD(vmcs);
898 		error = 0;
899 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
900 		error += vmwrite(VMCS_EPTP, vmx->eptp);
901 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
902 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
903 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
904 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
905 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
906 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
907 		error += vmwrite(VMCS_VPID, vpid[i]);
908 
909 		/* exception bitmap */
910 		if (vcpu_trace_exceptions(vm, i))
911 			exc_bitmap = 0xffffffff;
912 		else
913 			exc_bitmap = 1 << IDT_MC;
914 		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
915 
916 		if (virtual_interrupt_delivery) {
917 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
918 			error += vmwrite(VMCS_VIRTUAL_APIC,
919 			    vtophys(&vmx->apic_page[i]));
920 			error += vmwrite(VMCS_EOI_EXIT0, 0);
921 			error += vmwrite(VMCS_EOI_EXIT1, 0);
922 			error += vmwrite(VMCS_EOI_EXIT2, 0);
923 			error += vmwrite(VMCS_EOI_EXIT3, 0);
924 		}
925 		if (posted_interrupts) {
926 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
927 			error += vmwrite(VMCS_PIR_DESC,
928 			    vtophys(&vmx->pir_desc[i]));
929 		}
930 		VMCLEAR(vmcs);
931 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
932 
933 		vmx->cap[i].set = 0;
934 		vmx->cap[i].proc_ctls = procbased_ctls;
935 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
936 
937 		vmx->state[i].nextrip = ~0;
938 		vmx->state[i].lastcpu = NOCPU;
939 		vmx->state[i].vpid = vpid[i];
940 
941 		/*
942 		 * Set up the CR0/4 shadows, and init the read shadow
943 		 * to the power-on register value from the Intel Sys Arch.
944 		 *  CR0 - 0x60000010
945 		 *  CR4 - 0
946 		 */
947 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
948 		if (error != 0)
949 			panic("vmx_setup_cr0_shadow %d", error);
950 
951 		error = vmx_setup_cr4_shadow(vmcs, 0);
952 		if (error != 0)
953 			panic("vmx_setup_cr4_shadow %d", error);
954 
955 		vmx->ctx[i].pmap = pmap;
956 	}
957 
958 	return (vmx);
959 }
960 
961 static int
962 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
963 {
964 	int handled, func;
965 
966 	func = vmxctx->guest_rax;
967 
968 	handled = x86_emulate_cpuid(vm, vcpu,
969 				    (uint32_t*)(&vmxctx->guest_rax),
970 				    (uint32_t*)(&vmxctx->guest_rbx),
971 				    (uint32_t*)(&vmxctx->guest_rcx),
972 				    (uint32_t*)(&vmxctx->guest_rdx));
973 	return (handled);
974 }
975 
976 static __inline void
977 vmx_run_trace(struct vmx *vmx, int vcpu)
978 {
979 #ifdef KTR
980 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
981 #endif
982 }
983 
984 static __inline void
985 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
986 	       int handled)
987 {
988 #ifdef KTR
989 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
990 		 handled ? "handled" : "unhandled",
991 		 exit_reason_to_str(exit_reason), rip);
992 #endif
993 }
994 
995 static __inline void
996 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
997 {
998 #ifdef KTR
999 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1000 #endif
1001 }
1002 
1003 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1004 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1005 
1006 /*
1007  * Invalidate guest mappings identified by its vpid from the TLB.
1008  */
1009 static __inline void
1010 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1011 {
1012 	struct vmxstate *vmxstate;
1013 	struct invvpid_desc invvpid_desc;
1014 
1015 	vmxstate = &vmx->state[vcpu];
1016 	if (vmxstate->vpid == 0)
1017 		return;
1018 
1019 	if (!running) {
1020 		/*
1021 		 * Set the 'lastcpu' to an invalid host cpu.
1022 		 *
1023 		 * This will invalidate TLB entries tagged with the vcpu's
1024 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1025 		 */
1026 		vmxstate->lastcpu = NOCPU;
1027 		return;
1028 	}
1029 
1030 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1031 	    "critical section", __func__, vcpu));
1032 
1033 	/*
1034 	 * Invalidate all mappings tagged with 'vpid'
1035 	 *
1036 	 * We do this because this vcpu was executing on a different host
1037 	 * cpu when it last ran. We do not track whether it invalidated
1038 	 * mappings associated with its 'vpid' during that run. So we must
1039 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1040 	 * stale and invalidate them.
1041 	 *
1042 	 * Note that we incur this penalty only when the scheduler chooses to
1043 	 * move the thread associated with this vcpu between host cpus.
1044 	 *
1045 	 * Note also that this will invalidate mappings tagged with 'vpid'
1046 	 * for "all" EP4TAs.
1047 	 */
1048 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1049 		invvpid_desc._res1 = 0;
1050 		invvpid_desc._res2 = 0;
1051 		invvpid_desc.vpid = vmxstate->vpid;
1052 		invvpid_desc.linear_addr = 0;
1053 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1054 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1055 	} else {
1056 		/*
1057 		 * The invvpid can be skipped if an invept is going to
1058 		 * be performed before entering the guest. The invept
1059 		 * will invalidate combined mappings tagged with
1060 		 * 'vmx->eptp' for all vpids.
1061 		 */
1062 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1063 	}
1064 }
1065 
1066 static void
1067 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1068 {
1069 	struct vmxstate *vmxstate;
1070 
1071 	vmxstate = &vmx->state[vcpu];
1072 	if (vmxstate->lastcpu == curcpu)
1073 		return;
1074 
1075 	vmxstate->lastcpu = curcpu;
1076 
1077 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1078 
1079 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1080 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1081 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1082 	vmx_invvpid(vmx, vcpu, pmap, 1);
1083 }
1084 
1085 /*
1086  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1087  */
1088 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1089 
1090 static void __inline
1091 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1092 {
1093 
1094 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1095 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1096 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1097 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1098 	}
1099 }
1100 
1101 static void __inline
1102 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1103 {
1104 
1105 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1106 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1107 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1108 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1109 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1110 }
1111 
1112 static void __inline
1113 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1114 {
1115 
1116 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1117 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1118 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1119 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1120 	}
1121 }
1122 
1123 static void __inline
1124 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1125 {
1126 
1127 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1128 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1129 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1130 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1131 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1132 }
1133 
1134 int
1135 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1136 {
1137 	int error;
1138 
1139 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1140 		vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1141 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1142 		VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1143 	}
1144 
1145 	error = vmwrite(VMCS_TSC_OFFSET, offset);
1146 
1147 	return (error);
1148 }
1149 
1150 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1151 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1152 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1153 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1154 
1155 static void
1156 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1157 {
1158 	uint32_t gi, info;
1159 
1160 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1161 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1162 	    "interruptibility-state %#x", gi));
1163 
1164 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1165 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1166 	    "VM-entry interruption information %#x", info));
1167 
1168 	/*
1169 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1170 	 * or the VMCS entry check will fail.
1171 	 */
1172 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1173 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1174 
1175 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1176 
1177 	/* Clear the request */
1178 	vm_nmi_clear(vmx->vm, vcpu);
1179 }
1180 
1181 static void
1182 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1183     uint64_t guestrip)
1184 {
1185 	int vector, need_nmi_exiting, extint_pending;
1186 	uint64_t rflags, entryinfo;
1187 	uint32_t gi, info;
1188 
1189 	if (vmx->state[vcpu].nextrip != guestrip) {
1190 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1191 		if (gi & HWINTR_BLOCKING) {
1192 			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1193 			    "cleared due to rip change: %#lx/%#lx",
1194 			    vmx->state[vcpu].nextrip, guestrip);
1195 			gi &= ~HWINTR_BLOCKING;
1196 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1197 		}
1198 	}
1199 
1200 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1201 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1202 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1203 
1204 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1205 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1206 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1207 
1208 		info = entryinfo;
1209 		vector = info & 0xff;
1210 		if (vector == IDT_BP || vector == IDT_OF) {
1211 			/*
1212 			 * VT-x requires #BP and #OF to be injected as software
1213 			 * exceptions.
1214 			 */
1215 			info &= ~VMCS_INTR_T_MASK;
1216 			info |= VMCS_INTR_T_SWEXCEPTION;
1217 		}
1218 
1219 		if (info & VMCS_INTR_DEL_ERRCODE)
1220 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1221 
1222 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1223 	}
1224 
1225 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1226 		/*
1227 		 * If there are no conditions blocking NMI injection then
1228 		 * inject it directly here otherwise enable "NMI window
1229 		 * exiting" to inject it as soon as we can.
1230 		 *
1231 		 * We also check for STI_BLOCKING because some implementations
1232 		 * don't allow NMI injection in this case. If we are running
1233 		 * on a processor that doesn't have this restriction it will
1234 		 * immediately exit and the NMI will be injected in the
1235 		 * "NMI window exiting" handler.
1236 		 */
1237 		need_nmi_exiting = 1;
1238 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1239 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1240 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1241 			if ((info & VMCS_INTR_VALID) == 0) {
1242 				vmx_inject_nmi(vmx, vcpu);
1243 				need_nmi_exiting = 0;
1244 			} else {
1245 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1246 				    "due to VM-entry intr info %#x", info);
1247 			}
1248 		} else {
1249 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1250 			    "Guest Interruptibility-state %#x", gi);
1251 		}
1252 
1253 		if (need_nmi_exiting)
1254 			vmx_set_nmi_window_exiting(vmx, vcpu);
1255 	}
1256 
1257 	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1258 
1259 	if (!extint_pending && virtual_interrupt_delivery) {
1260 		vmx_inject_pir(vlapic);
1261 		return;
1262 	}
1263 
1264 	/*
1265 	 * If interrupt-window exiting is already in effect then don't bother
1266 	 * checking for pending interrupts. This is just an optimization and
1267 	 * not needed for correctness.
1268 	 */
1269 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1270 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1271 		    "pending int_window_exiting");
1272 		return;
1273 	}
1274 
1275 	if (!extint_pending) {
1276 		/* Ask the local apic for a vector to inject */
1277 		if (!vlapic_pending_intr(vlapic, &vector))
1278 			return;
1279 
1280 		/*
1281 		 * From the Intel SDM, Volume 3, Section "Maskable
1282 		 * Hardware Interrupts":
1283 		 * - maskable interrupt vectors [16,255] can be delivered
1284 		 *   through the local APIC.
1285 		*/
1286 		KASSERT(vector >= 16 && vector <= 255,
1287 		    ("invalid vector %d from local APIC", vector));
1288 	} else {
1289 		/* Ask the legacy pic for a vector to inject */
1290 		vatpic_pending_intr(vmx->vm, &vector);
1291 
1292 		/*
1293 		 * From the Intel SDM, Volume 3, Section "Maskable
1294 		 * Hardware Interrupts":
1295 		 * - maskable interrupt vectors [0,255] can be delivered
1296 		 *   through the INTR pin.
1297 		 */
1298 		KASSERT(vector >= 0 && vector <= 255,
1299 		    ("invalid vector %d from INTR", vector));
1300 	}
1301 
1302 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1303 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1304 	if ((rflags & PSL_I) == 0) {
1305 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1306 		    "rflags %#lx", vector, rflags);
1307 		goto cantinject;
1308 	}
1309 
1310 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1311 	if (gi & HWINTR_BLOCKING) {
1312 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1313 		    "Guest Interruptibility-state %#x", vector, gi);
1314 		goto cantinject;
1315 	}
1316 
1317 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1318 	if (info & VMCS_INTR_VALID) {
1319 		/*
1320 		 * This is expected and could happen for multiple reasons:
1321 		 * - A vectoring VM-entry was aborted due to astpending
1322 		 * - A VM-exit happened during event injection.
1323 		 * - An exception was injected above.
1324 		 * - An NMI was injected above or after "NMI window exiting"
1325 		 */
1326 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1327 		    "VM-entry intr info %#x", vector, info);
1328 		goto cantinject;
1329 	}
1330 
1331 	/* Inject the interrupt */
1332 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1333 	info |= vector;
1334 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1335 
1336 	if (!extint_pending) {
1337 		/* Update the Local APIC ISR */
1338 		vlapic_intr_accepted(vlapic, vector);
1339 	} else {
1340 		vm_extint_clear(vmx->vm, vcpu);
1341 		vatpic_intr_accepted(vmx->vm, vector);
1342 
1343 		/*
1344 		 * After we accepted the current ExtINT the PIC may
1345 		 * have posted another one.  If that is the case, set
1346 		 * the Interrupt Window Exiting execution control so
1347 		 * we can inject that one too.
1348 		 *
1349 		 * Also, interrupt window exiting allows us to inject any
1350 		 * pending APIC vector that was preempted by the ExtINT
1351 		 * as soon as possible. This applies both for the software
1352 		 * emulated vlapic and the hardware assisted virtual APIC.
1353 		 */
1354 		vmx_set_int_window_exiting(vmx, vcpu);
1355 	}
1356 
1357 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1358 
1359 	return;
1360 
1361 cantinject:
1362 	/*
1363 	 * Set the Interrupt Window Exiting execution control so we can inject
1364 	 * the interrupt as soon as blocking condition goes away.
1365 	 */
1366 	vmx_set_int_window_exiting(vmx, vcpu);
1367 }
1368 
1369 /*
1370  * If the Virtual NMIs execution control is '1' then the logical processor
1371  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1372  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1373  * virtual-NMI blocking.
1374  *
1375  * This unblocking occurs even if the IRET causes a fault. In this case the
1376  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1377  */
1378 static void
1379 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1380 {
1381 	uint32_t gi;
1382 
1383 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1384 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1385 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1386 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1387 }
1388 
1389 static void
1390 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1391 {
1392 	uint32_t gi;
1393 
1394 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1395 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1396 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1397 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1398 }
1399 
1400 static void
1401 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1402 {
1403 	uint32_t gi;
1404 
1405 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1406 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1407 	    ("NMI blocking is not in effect %#x", gi));
1408 }
1409 
1410 static int
1411 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1412 {
1413 	struct vmxctx *vmxctx;
1414 	uint64_t xcrval;
1415 	const struct xsave_limits *limits;
1416 
1417 	vmxctx = &vmx->ctx[vcpu];
1418 	limits = vmm_get_xsave_limits();
1419 
1420 	/*
1421 	 * Note that the processor raises a GP# fault on its own if
1422 	 * xsetbv is executed for CPL != 0, so we do not have to
1423 	 * emulate that fault here.
1424 	 */
1425 
1426 	/* Only xcr0 is supported. */
1427 	if (vmxctx->guest_rcx != 0) {
1428 		vm_inject_gp(vmx->vm, vcpu);
1429 		return (HANDLED);
1430 	}
1431 
1432 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1433 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1434 		vm_inject_ud(vmx->vm, vcpu);
1435 		return (HANDLED);
1436 	}
1437 
1438 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1439 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1440 		vm_inject_gp(vmx->vm, vcpu);
1441 		return (HANDLED);
1442 	}
1443 
1444 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1445 		vm_inject_gp(vmx->vm, vcpu);
1446 		return (HANDLED);
1447 	}
1448 
1449 	/* AVX (YMM_Hi128) requires SSE. */
1450 	if (xcrval & XFEATURE_ENABLED_AVX &&
1451 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1452 		vm_inject_gp(vmx->vm, vcpu);
1453 		return (HANDLED);
1454 	}
1455 
1456 	/*
1457 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1458 	 * ZMM_Hi256, and Hi16_ZMM.
1459 	 */
1460 	if (xcrval & XFEATURE_AVX512 &&
1461 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1462 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1463 		vm_inject_gp(vmx->vm, vcpu);
1464 		return (HANDLED);
1465 	}
1466 
1467 	/*
1468 	 * Intel MPX requires both bound register state flags to be
1469 	 * set.
1470 	 */
1471 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1472 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1473 		vm_inject_gp(vmx->vm, vcpu);
1474 		return (HANDLED);
1475 	}
1476 
1477 	/*
1478 	 * This runs "inside" vmrun() with the guest's FPU state, so
1479 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1480 	 * host's.
1481 	 */
1482 	load_xcr(0, xcrval);
1483 	return (HANDLED);
1484 }
1485 
1486 static uint64_t
1487 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1488 {
1489 	const struct vmxctx *vmxctx;
1490 
1491 	vmxctx = &vmx->ctx[vcpu];
1492 
1493 	switch (ident) {
1494 	case 0:
1495 		return (vmxctx->guest_rax);
1496 	case 1:
1497 		return (vmxctx->guest_rcx);
1498 	case 2:
1499 		return (vmxctx->guest_rdx);
1500 	case 3:
1501 		return (vmxctx->guest_rbx);
1502 	case 4:
1503 		return (vmcs_read(VMCS_GUEST_RSP));
1504 	case 5:
1505 		return (vmxctx->guest_rbp);
1506 	case 6:
1507 		return (vmxctx->guest_rsi);
1508 	case 7:
1509 		return (vmxctx->guest_rdi);
1510 	case 8:
1511 		return (vmxctx->guest_r8);
1512 	case 9:
1513 		return (vmxctx->guest_r9);
1514 	case 10:
1515 		return (vmxctx->guest_r10);
1516 	case 11:
1517 		return (vmxctx->guest_r11);
1518 	case 12:
1519 		return (vmxctx->guest_r12);
1520 	case 13:
1521 		return (vmxctx->guest_r13);
1522 	case 14:
1523 		return (vmxctx->guest_r14);
1524 	case 15:
1525 		return (vmxctx->guest_r15);
1526 	default:
1527 		panic("invalid vmx register %d", ident);
1528 	}
1529 }
1530 
1531 static void
1532 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1533 {
1534 	struct vmxctx *vmxctx;
1535 
1536 	vmxctx = &vmx->ctx[vcpu];
1537 
1538 	switch (ident) {
1539 	case 0:
1540 		vmxctx->guest_rax = regval;
1541 		break;
1542 	case 1:
1543 		vmxctx->guest_rcx = regval;
1544 		break;
1545 	case 2:
1546 		vmxctx->guest_rdx = regval;
1547 		break;
1548 	case 3:
1549 		vmxctx->guest_rbx = regval;
1550 		break;
1551 	case 4:
1552 		vmcs_write(VMCS_GUEST_RSP, regval);
1553 		break;
1554 	case 5:
1555 		vmxctx->guest_rbp = regval;
1556 		break;
1557 	case 6:
1558 		vmxctx->guest_rsi = regval;
1559 		break;
1560 	case 7:
1561 		vmxctx->guest_rdi = regval;
1562 		break;
1563 	case 8:
1564 		vmxctx->guest_r8 = regval;
1565 		break;
1566 	case 9:
1567 		vmxctx->guest_r9 = regval;
1568 		break;
1569 	case 10:
1570 		vmxctx->guest_r10 = regval;
1571 		break;
1572 	case 11:
1573 		vmxctx->guest_r11 = regval;
1574 		break;
1575 	case 12:
1576 		vmxctx->guest_r12 = regval;
1577 		break;
1578 	case 13:
1579 		vmxctx->guest_r13 = regval;
1580 		break;
1581 	case 14:
1582 		vmxctx->guest_r14 = regval;
1583 		break;
1584 	case 15:
1585 		vmxctx->guest_r15 = regval;
1586 		break;
1587 	default:
1588 		panic("invalid vmx register %d", ident);
1589 	}
1590 }
1591 
1592 static int
1593 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1594 {
1595 	uint64_t crval, regval;
1596 
1597 	/* We only handle mov to %cr0 at this time */
1598 	if ((exitqual & 0xf0) != 0x00)
1599 		return (UNHANDLED);
1600 
1601 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1602 
1603 	vmcs_write(VMCS_CR0_SHADOW, regval);
1604 
1605 	crval = regval | cr0_ones_mask;
1606 	crval &= ~cr0_zeros_mask;
1607 	vmcs_write(VMCS_GUEST_CR0, crval);
1608 
1609 	if (regval & CR0_PG) {
1610 		uint64_t efer, entry_ctls;
1611 
1612 		/*
1613 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1614 		 * the "IA-32e mode guest" bit in VM-entry control must be
1615 		 * equal.
1616 		 */
1617 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1618 		if (efer & EFER_LME) {
1619 			efer |= EFER_LMA;
1620 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1621 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1622 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1623 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1624 		}
1625 	}
1626 
1627 	return (HANDLED);
1628 }
1629 
1630 static int
1631 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1632 {
1633 	uint64_t crval, regval;
1634 
1635 	/* We only handle mov to %cr4 at this time */
1636 	if ((exitqual & 0xf0) != 0x00)
1637 		return (UNHANDLED);
1638 
1639 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1640 
1641 	vmcs_write(VMCS_CR4_SHADOW, regval);
1642 
1643 	crval = regval | cr4_ones_mask;
1644 	crval &= ~cr4_zeros_mask;
1645 	vmcs_write(VMCS_GUEST_CR4, crval);
1646 
1647 	return (HANDLED);
1648 }
1649 
1650 static int
1651 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1652 {
1653 	struct vlapic *vlapic;
1654 	uint64_t cr8;
1655 	int regnum;
1656 
1657 	/* We only handle mov %cr8 to/from a register at this time. */
1658 	if ((exitqual & 0xe0) != 0x00) {
1659 		return (UNHANDLED);
1660 	}
1661 
1662 	vlapic = vm_lapic(vmx->vm, vcpu);
1663 	regnum = (exitqual >> 8) & 0xf;
1664 	if (exitqual & 0x10) {
1665 		cr8 = vlapic_get_cr8(vlapic);
1666 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1667 	} else {
1668 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1669 		vlapic_set_cr8(vlapic, cr8);
1670 	}
1671 
1672 	return (HANDLED);
1673 }
1674 
1675 /*
1676  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1677  */
1678 static int
1679 vmx_cpl(void)
1680 {
1681 	uint32_t ssar;
1682 
1683 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1684 	return ((ssar >> 5) & 0x3);
1685 }
1686 
1687 static enum vm_cpu_mode
1688 vmx_cpu_mode(void)
1689 {
1690 	uint32_t csar;
1691 
1692 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1693 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1694 		if (csar & 0x2000)
1695 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1696 		else
1697 			return (CPU_MODE_COMPATIBILITY);
1698 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1699 		return (CPU_MODE_PROTECTED);
1700 	} else {
1701 		return (CPU_MODE_REAL);
1702 	}
1703 }
1704 
1705 static enum vm_paging_mode
1706 vmx_paging_mode(void)
1707 {
1708 
1709 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1710 		return (PAGING_MODE_FLAT);
1711 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1712 		return (PAGING_MODE_32);
1713 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1714 		return (PAGING_MODE_64);
1715 	else
1716 		return (PAGING_MODE_PAE);
1717 }
1718 
1719 static uint64_t
1720 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1721 {
1722 	uint64_t val;
1723 	int error;
1724 	enum vm_reg_name reg;
1725 
1726 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1727 	error = vmx_getreg(vmx, vcpuid, reg, &val);
1728 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1729 	return (val);
1730 }
1731 
1732 static uint64_t
1733 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1734 {
1735 	uint64_t val;
1736 	int error;
1737 
1738 	if (rep) {
1739 		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1740 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1741 	} else {
1742 		val = 1;
1743 	}
1744 	return (val);
1745 }
1746 
1747 static int
1748 inout_str_addrsize(uint32_t inst_info)
1749 {
1750 	uint32_t size;
1751 
1752 	size = (inst_info >> 7) & 0x7;
1753 	switch (size) {
1754 	case 0:
1755 		return (2);	/* 16 bit */
1756 	case 1:
1757 		return (4);	/* 32 bit */
1758 	case 2:
1759 		return (8);	/* 64 bit */
1760 	default:
1761 		panic("%s: invalid size encoding %d", __func__, size);
1762 	}
1763 }
1764 
1765 static void
1766 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1767     struct vm_inout_str *vis)
1768 {
1769 	int error, s;
1770 
1771 	if (in) {
1772 		vis->seg_name = VM_REG_GUEST_ES;
1773 	} else {
1774 		s = (inst_info >> 15) & 0x7;
1775 		vis->seg_name = vm_segment_name(s);
1776 	}
1777 
1778 	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1779 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1780 }
1781 
1782 static void
1783 vmx_paging_info(struct vm_guest_paging *paging)
1784 {
1785 	paging->cr3 = vmcs_guest_cr3();
1786 	paging->cpl = vmx_cpl();
1787 	paging->cpu_mode = vmx_cpu_mode();
1788 	paging->paging_mode = vmx_paging_mode();
1789 }
1790 
1791 static void
1792 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1793 {
1794 	struct vm_guest_paging *paging;
1795 	uint32_t csar;
1796 
1797 	paging = &vmexit->u.inst_emul.paging;
1798 
1799 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1800 	vmexit->inst_length = 0;
1801 	vmexit->u.inst_emul.gpa = gpa;
1802 	vmexit->u.inst_emul.gla = gla;
1803 	vmx_paging_info(paging);
1804 	switch (paging->cpu_mode) {
1805 	case CPU_MODE_REAL:
1806 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1807 		vmexit->u.inst_emul.cs_d = 0;
1808 		break;
1809 	case CPU_MODE_PROTECTED:
1810 	case CPU_MODE_COMPATIBILITY:
1811 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1812 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1813 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1814 		break;
1815 	default:
1816 		vmexit->u.inst_emul.cs_base = 0;
1817 		vmexit->u.inst_emul.cs_d = 0;
1818 		break;
1819 	}
1820 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1821 }
1822 
1823 static int
1824 ept_fault_type(uint64_t ept_qual)
1825 {
1826 	int fault_type;
1827 
1828 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1829 		fault_type = VM_PROT_WRITE;
1830 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1831 		fault_type = VM_PROT_EXECUTE;
1832 	else
1833 		fault_type= VM_PROT_READ;
1834 
1835 	return (fault_type);
1836 }
1837 
1838 static boolean_t
1839 ept_emulation_fault(uint64_t ept_qual)
1840 {
1841 	int read, write;
1842 
1843 	/* EPT fault on an instruction fetch doesn't make sense here */
1844 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1845 		return (FALSE);
1846 
1847 	/* EPT fault must be a read fault or a write fault */
1848 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1849 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1850 	if ((read | write) == 0)
1851 		return (FALSE);
1852 
1853 	/*
1854 	 * The EPT violation must have been caused by accessing a
1855 	 * guest-physical address that is a translation of a guest-linear
1856 	 * address.
1857 	 */
1858 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1859 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1860 		return (FALSE);
1861 	}
1862 
1863 	return (TRUE);
1864 }
1865 
1866 static __inline int
1867 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1868 {
1869 	uint32_t proc_ctls2;
1870 
1871 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1872 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1873 }
1874 
1875 static __inline int
1876 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1877 {
1878 	uint32_t proc_ctls2;
1879 
1880 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1881 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1882 }
1883 
1884 static int
1885 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1886     uint64_t qual)
1887 {
1888 	int error, handled, offset;
1889 	uint32_t *apic_regs, vector;
1890 	bool retu;
1891 
1892 	handled = HANDLED;
1893 	offset = APIC_WRITE_OFFSET(qual);
1894 
1895 	if (!apic_access_virtualization(vmx, vcpuid)) {
1896 		/*
1897 		 * In general there should not be any APIC write VM-exits
1898 		 * unless APIC-access virtualization is enabled.
1899 		 *
1900 		 * However self-IPI virtualization can legitimately trigger
1901 		 * an APIC-write VM-exit so treat it specially.
1902 		 */
1903 		if (x2apic_virtualization(vmx, vcpuid) &&
1904 		    offset == APIC_OFFSET_SELF_IPI) {
1905 			apic_regs = (uint32_t *)(vlapic->apic_page);
1906 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1907 			vlapic_self_ipi_handler(vlapic, vector);
1908 			return (HANDLED);
1909 		} else
1910 			return (UNHANDLED);
1911 	}
1912 
1913 	switch (offset) {
1914 	case APIC_OFFSET_ID:
1915 		vlapic_id_write_handler(vlapic);
1916 		break;
1917 	case APIC_OFFSET_LDR:
1918 		vlapic_ldr_write_handler(vlapic);
1919 		break;
1920 	case APIC_OFFSET_DFR:
1921 		vlapic_dfr_write_handler(vlapic);
1922 		break;
1923 	case APIC_OFFSET_SVR:
1924 		vlapic_svr_write_handler(vlapic);
1925 		break;
1926 	case APIC_OFFSET_ESR:
1927 		vlapic_esr_write_handler(vlapic);
1928 		break;
1929 	case APIC_OFFSET_ICR_LOW:
1930 		retu = false;
1931 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1932 		if (error != 0 || retu)
1933 			handled = UNHANDLED;
1934 		break;
1935 	case APIC_OFFSET_CMCI_LVT:
1936 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1937 		vlapic_lvt_write_handler(vlapic, offset);
1938 		break;
1939 	case APIC_OFFSET_TIMER_ICR:
1940 		vlapic_icrtmr_write_handler(vlapic);
1941 		break;
1942 	case APIC_OFFSET_TIMER_DCR:
1943 		vlapic_dcr_write_handler(vlapic);
1944 		break;
1945 	default:
1946 		handled = UNHANDLED;
1947 		break;
1948 	}
1949 	return (handled);
1950 }
1951 
1952 static bool
1953 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1954 {
1955 
1956 	if (apic_access_virtualization(vmx, vcpuid) &&
1957 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1958 		return (true);
1959 	else
1960 		return (false);
1961 }
1962 
1963 static int
1964 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1965 {
1966 	uint64_t qual;
1967 	int access_type, offset, allowed;
1968 
1969 	if (!apic_access_virtualization(vmx, vcpuid))
1970 		return (UNHANDLED);
1971 
1972 	qual = vmexit->u.vmx.exit_qualification;
1973 	access_type = APIC_ACCESS_TYPE(qual);
1974 	offset = APIC_ACCESS_OFFSET(qual);
1975 
1976 	allowed = 0;
1977 	if (access_type == 0) {
1978 		/*
1979 		 * Read data access to the following registers is expected.
1980 		 */
1981 		switch (offset) {
1982 		case APIC_OFFSET_APR:
1983 		case APIC_OFFSET_PPR:
1984 		case APIC_OFFSET_RRR:
1985 		case APIC_OFFSET_CMCI_LVT:
1986 		case APIC_OFFSET_TIMER_CCR:
1987 			allowed = 1;
1988 			break;
1989 		default:
1990 			break;
1991 		}
1992 	} else if (access_type == 1) {
1993 		/*
1994 		 * Write data access to the following registers is expected.
1995 		 */
1996 		switch (offset) {
1997 		case APIC_OFFSET_VER:
1998 		case APIC_OFFSET_APR:
1999 		case APIC_OFFSET_PPR:
2000 		case APIC_OFFSET_RRR:
2001 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2002 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2003 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2004 		case APIC_OFFSET_CMCI_LVT:
2005 		case APIC_OFFSET_TIMER_CCR:
2006 			allowed = 1;
2007 			break;
2008 		default:
2009 			break;
2010 		}
2011 	}
2012 
2013 	if (allowed) {
2014 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2015 		    VIE_INVALID_GLA);
2016 	}
2017 
2018 	/*
2019 	 * Regardless of whether the APIC-access is allowed this handler
2020 	 * always returns UNHANDLED:
2021 	 * - if the access is allowed then it is handled by emulating the
2022 	 *   instruction that caused the VM-exit (outside the critical section)
2023 	 * - if the access is not allowed then it will be converted to an
2024 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2025 	 */
2026 	return (UNHANDLED);
2027 }
2028 
2029 static enum task_switch_reason
2030 vmx_task_switch_reason(uint64_t qual)
2031 {
2032 	int reason;
2033 
2034 	reason = (qual >> 30) & 0x3;
2035 	switch (reason) {
2036 	case 0:
2037 		return (TSR_CALL);
2038 	case 1:
2039 		return (TSR_IRET);
2040 	case 2:
2041 		return (TSR_JMP);
2042 	case 3:
2043 		return (TSR_IDT_GATE);
2044 	default:
2045 		panic("%s: invalid reason %d", __func__, reason);
2046 	}
2047 }
2048 
2049 static int
2050 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2051 {
2052 	int error;
2053 
2054 	if (lapic_msr(num))
2055 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2056 	else
2057 		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2058 
2059 	return (error);
2060 }
2061 
2062 static int
2063 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2064 {
2065 	struct vmxctx *vmxctx;
2066 	uint64_t result;
2067 	uint32_t eax, edx;
2068 	int error;
2069 
2070 	if (lapic_msr(num))
2071 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2072 	else
2073 		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2074 
2075 	if (error == 0) {
2076 		eax = result;
2077 		vmxctx = &vmx->ctx[vcpuid];
2078 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2079 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2080 
2081 		edx = result >> 32;
2082 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2083 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2084 	}
2085 
2086 	return (error);
2087 }
2088 
2089 static int
2090 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2091 {
2092 	int error, errcode, errcode_valid, handled, in;
2093 	struct vmxctx *vmxctx;
2094 	struct vlapic *vlapic;
2095 	struct vm_inout_str *vis;
2096 	struct vm_task_switch *ts;
2097 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2098 	uint32_t intr_type, intr_vec, reason;
2099 	uint64_t exitintinfo, qual, gpa;
2100 	bool retu;
2101 
2102 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2103 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2104 
2105 	handled = UNHANDLED;
2106 	vmxctx = &vmx->ctx[vcpu];
2107 
2108 	qual = vmexit->u.vmx.exit_qualification;
2109 	reason = vmexit->u.vmx.exit_reason;
2110 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2111 
2112 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2113 
2114 	/*
2115 	 * VM-entry failures during or after loading guest state.
2116 	 *
2117 	 * These VM-exits are uncommon but must be handled specially
2118 	 * as most VM-exit fields are not populated as usual.
2119 	 */
2120 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2121 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2122 		__asm __volatile("int $18");
2123 		return (1);
2124 	}
2125 
2126 	/*
2127 	 * VM exits that can be triggered during event delivery need to
2128 	 * be handled specially by re-injecting the event if the IDT
2129 	 * vectoring information field's valid bit is set.
2130 	 *
2131 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2132 	 * for details.
2133 	 */
2134 	idtvec_info = vmcs_idt_vectoring_info();
2135 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2136 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2137 		exitintinfo = idtvec_info;
2138 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2139 			idtvec_err = vmcs_idt_vectoring_err();
2140 			exitintinfo |= (uint64_t)idtvec_err << 32;
2141 		}
2142 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2143 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2144 		    __func__, error));
2145 
2146 		/*
2147 		 * If 'virtual NMIs' are being used and the VM-exit
2148 		 * happened while injecting an NMI during the previous
2149 		 * VM-entry, then clear "blocking by NMI" in the
2150 		 * Guest Interruptibility-State so the NMI can be
2151 		 * reinjected on the subsequent VM-entry.
2152 		 *
2153 		 * However, if the NMI was being delivered through a task
2154 		 * gate, then the new task must start execution with NMIs
2155 		 * blocked so don't clear NMI blocking in this case.
2156 		 */
2157 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2158 		if (intr_type == VMCS_INTR_T_NMI) {
2159 			if (reason != EXIT_REASON_TASK_SWITCH)
2160 				vmx_clear_nmi_blocking(vmx, vcpu);
2161 			else
2162 				vmx_assert_nmi_blocking(vmx, vcpu);
2163 		}
2164 
2165 		/*
2166 		 * Update VM-entry instruction length if the event being
2167 		 * delivered was a software interrupt or software exception.
2168 		 */
2169 		if (intr_type == VMCS_INTR_T_SWINTR ||
2170 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2171 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2172 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2173 		}
2174 	}
2175 
2176 	switch (reason) {
2177 	case EXIT_REASON_TASK_SWITCH:
2178 		ts = &vmexit->u.task_switch;
2179 		ts->tsssel = qual & 0xffff;
2180 		ts->reason = vmx_task_switch_reason(qual);
2181 		ts->ext = 0;
2182 		ts->errcode_valid = 0;
2183 		vmx_paging_info(&ts->paging);
2184 		/*
2185 		 * If the task switch was due to a CALL, JMP, IRET, software
2186 		 * interrupt (INT n) or software exception (INT3, INTO),
2187 		 * then the saved %rip references the instruction that caused
2188 		 * the task switch. The instruction length field in the VMCS
2189 		 * is valid in this case.
2190 		 *
2191 		 * In all other cases (e.g., NMI, hardware exception) the
2192 		 * saved %rip is one that would have been saved in the old TSS
2193 		 * had the task switch completed normally so the instruction
2194 		 * length field is not needed in this case and is explicitly
2195 		 * set to 0.
2196 		 */
2197 		if (ts->reason == TSR_IDT_GATE) {
2198 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2199 			    ("invalid idtvec_info %#x for IDT task switch",
2200 			    idtvec_info));
2201 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2202 			if (intr_type != VMCS_INTR_T_SWINTR &&
2203 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2204 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2205 				/* Task switch triggered by external event */
2206 				ts->ext = 1;
2207 				vmexit->inst_length = 0;
2208 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2209 					ts->errcode_valid = 1;
2210 					ts->errcode = vmcs_idt_vectoring_err();
2211 				}
2212 			}
2213 		}
2214 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2215 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2216 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2217 		    ts->ext ? "external" : "internal",
2218 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2219 		break;
2220 	case EXIT_REASON_CR_ACCESS:
2221 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2222 		switch (qual & 0xf) {
2223 		case 0:
2224 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2225 			break;
2226 		case 4:
2227 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2228 			break;
2229 		case 8:
2230 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2231 			break;
2232 		}
2233 		break;
2234 	case EXIT_REASON_RDMSR:
2235 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2236 		retu = false;
2237 		ecx = vmxctx->guest_rcx;
2238 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2239 		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2240 		if (error) {
2241 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2242 			vmexit->u.msr.code = ecx;
2243 		} else if (!retu) {
2244 			handled = HANDLED;
2245 		} else {
2246 			/* Return to userspace with a valid exitcode */
2247 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2248 			    ("emulate_rdmsr retu with bogus exitcode"));
2249 		}
2250 		break;
2251 	case EXIT_REASON_WRMSR:
2252 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2253 		retu = false;
2254 		eax = vmxctx->guest_rax;
2255 		ecx = vmxctx->guest_rcx;
2256 		edx = vmxctx->guest_rdx;
2257 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2258 		    ecx, (uint64_t)edx << 32 | eax);
2259 		error = emulate_wrmsr(vmx, vcpu, ecx,
2260 		    (uint64_t)edx << 32 | eax, &retu);
2261 		if (error) {
2262 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2263 			vmexit->u.msr.code = ecx;
2264 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2265 		} else if (!retu) {
2266 			handled = HANDLED;
2267 		} else {
2268 			/* Return to userspace with a valid exitcode */
2269 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2270 			    ("emulate_wrmsr retu with bogus exitcode"));
2271 		}
2272 		break;
2273 	case EXIT_REASON_HLT:
2274 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2275 		vmexit->exitcode = VM_EXITCODE_HLT;
2276 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2277 		break;
2278 	case EXIT_REASON_MTF:
2279 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2280 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2281 		vmexit->inst_length = 0;
2282 		break;
2283 	case EXIT_REASON_PAUSE:
2284 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2285 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2286 		break;
2287 	case EXIT_REASON_INTR_WINDOW:
2288 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2289 		vmx_clear_int_window_exiting(vmx, vcpu);
2290 		return (1);
2291 	case EXIT_REASON_EXT_INTR:
2292 		/*
2293 		 * External interrupts serve only to cause VM exits and allow
2294 		 * the host interrupt handler to run.
2295 		 *
2296 		 * If this external interrupt triggers a virtual interrupt
2297 		 * to a VM, then that state will be recorded by the
2298 		 * host interrupt handler in the VM's softc. We will inject
2299 		 * this virtual interrupt during the subsequent VM enter.
2300 		 */
2301 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2302 
2303 		/*
2304 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2305 		 * This appears to be a bug in VMware Fusion?
2306 		 */
2307 		if (!(intr_info & VMCS_INTR_VALID))
2308 			return (1);
2309 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2310 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2311 		    ("VM exit interruption info invalid: %#x", intr_info));
2312 		vmx_trigger_hostintr(intr_info & 0xff);
2313 
2314 		/*
2315 		 * This is special. We want to treat this as an 'handled'
2316 		 * VM-exit but not increment the instruction pointer.
2317 		 */
2318 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2319 		return (1);
2320 	case EXIT_REASON_NMI_WINDOW:
2321 		/* Exit to allow the pending virtual NMI to be injected */
2322 		if (vm_nmi_pending(vmx->vm, vcpu))
2323 			vmx_inject_nmi(vmx, vcpu);
2324 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2325 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2326 		return (1);
2327 	case EXIT_REASON_INOUT:
2328 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2329 		vmexit->exitcode = VM_EXITCODE_INOUT;
2330 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2331 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2332 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2333 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2334 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2335 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2336 		if (vmexit->u.inout.string) {
2337 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2338 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2339 			vis = &vmexit->u.inout_str;
2340 			vmx_paging_info(&vis->paging);
2341 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2342 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2343 			vis->index = inout_str_index(vmx, vcpu, in);
2344 			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2345 			vis->addrsize = inout_str_addrsize(inst_info);
2346 			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2347 		}
2348 		break;
2349 	case EXIT_REASON_CPUID:
2350 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2351 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2352 		break;
2353 	case EXIT_REASON_EXCEPTION:
2354 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2355 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2356 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2357 		    ("VM exit interruption info invalid: %#x", intr_info));
2358 
2359 		intr_vec = intr_info & 0xff;
2360 		intr_type = intr_info & VMCS_INTR_T_MASK;
2361 
2362 		/*
2363 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2364 		 * fault encountered during the execution of IRET then we must
2365 		 * restore the state of "virtual-NMI blocking" before resuming
2366 		 * the guest.
2367 		 *
2368 		 * See "Resuming Guest Software after Handling an Exception".
2369 		 * See "Information for VM Exits Due to Vectored Events".
2370 		 */
2371 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2372 		    (intr_vec != IDT_DF) &&
2373 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2374 			vmx_restore_nmi_blocking(vmx, vcpu);
2375 
2376 		/*
2377 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2378 		 */
2379 		if (intr_type == VMCS_INTR_T_NMI)
2380 			return (1);
2381 
2382 		/*
2383 		 * Call the machine check handler by hand. Also don't reflect
2384 		 * the machine check back into the guest.
2385 		 */
2386 		if (intr_vec == IDT_MC) {
2387 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2388 			__asm __volatile("int $18");
2389 			return (1);
2390 		}
2391 
2392 		if (intr_vec == IDT_PF) {
2393 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2394 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2395 			    __func__, error));
2396 		}
2397 
2398 		/*
2399 		 * Software exceptions exhibit trap-like behavior. This in
2400 		 * turn requires populating the VM-entry instruction length
2401 		 * so that the %rip in the trap frame is past the INT3/INTO
2402 		 * instruction.
2403 		 */
2404 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2405 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2406 
2407 		/* Reflect all other exceptions back into the guest */
2408 		errcode_valid = errcode = 0;
2409 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2410 			errcode_valid = 1;
2411 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2412 		}
2413 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2414 		    "the guest", intr_vec, errcode);
2415 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2416 		    errcode_valid, errcode, 0);
2417 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2418 		    __func__, error));
2419 		return (1);
2420 
2421 	case EXIT_REASON_EPT_FAULT:
2422 		/*
2423 		 * If 'gpa' lies within the address space allocated to
2424 		 * memory then this must be a nested page fault otherwise
2425 		 * this must be an instruction that accesses MMIO space.
2426 		 */
2427 		gpa = vmcs_gpa();
2428 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2429 		    apic_access_fault(vmx, vcpu, gpa)) {
2430 			vmexit->exitcode = VM_EXITCODE_PAGING;
2431 			vmexit->inst_length = 0;
2432 			vmexit->u.paging.gpa = gpa;
2433 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2434 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2435 		} else if (ept_emulation_fault(qual)) {
2436 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2437 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2438 		}
2439 		/*
2440 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2441 		 * EPT fault during the execution of IRET then we must restore
2442 		 * the state of "virtual-NMI blocking" before resuming.
2443 		 *
2444 		 * See description of "NMI unblocking due to IRET" in
2445 		 * "Exit Qualification for EPT Violations".
2446 		 */
2447 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2448 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2449 			vmx_restore_nmi_blocking(vmx, vcpu);
2450 		break;
2451 	case EXIT_REASON_VIRTUALIZED_EOI:
2452 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2453 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2454 		vmexit->inst_length = 0;	/* trap-like */
2455 		break;
2456 	case EXIT_REASON_APIC_ACCESS:
2457 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2458 		break;
2459 	case EXIT_REASON_APIC_WRITE:
2460 		/*
2461 		 * APIC-write VM exit is trap-like so the %rip is already
2462 		 * pointing to the next instruction.
2463 		 */
2464 		vmexit->inst_length = 0;
2465 		vlapic = vm_lapic(vmx->vm, vcpu);
2466 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2467 		break;
2468 	case EXIT_REASON_XSETBV:
2469 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2470 		break;
2471 	case EXIT_REASON_MONITOR:
2472 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2473 		break;
2474 	case EXIT_REASON_MWAIT:
2475 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2476 		break;
2477 	default:
2478 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2479 		break;
2480 	}
2481 
2482 	if (handled) {
2483 		/*
2484 		 * It is possible that control is returned to userland
2485 		 * even though we were able to handle the VM exit in the
2486 		 * kernel.
2487 		 *
2488 		 * In such a case we want to make sure that the userland
2489 		 * restarts guest execution at the instruction *after*
2490 		 * the one we just processed. Therefore we update the
2491 		 * guest rip in the VMCS and in 'vmexit'.
2492 		 */
2493 		vmexit->rip += vmexit->inst_length;
2494 		vmexit->inst_length = 0;
2495 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2496 	} else {
2497 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2498 			/*
2499 			 * If this VM exit was not claimed by anybody then
2500 			 * treat it as a generic VMX exit.
2501 			 */
2502 			vmexit->exitcode = VM_EXITCODE_VMX;
2503 			vmexit->u.vmx.status = VM_SUCCESS;
2504 			vmexit->u.vmx.inst_type = 0;
2505 			vmexit->u.vmx.inst_error = 0;
2506 		} else {
2507 			/*
2508 			 * The exitcode and collateral have been populated.
2509 			 * The VM exit will be processed further in userland.
2510 			 */
2511 		}
2512 	}
2513 	return (handled);
2514 }
2515 
2516 static __inline void
2517 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2518 {
2519 
2520 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2521 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2522 	    vmxctx->inst_fail_status));
2523 
2524 	vmexit->inst_length = 0;
2525 	vmexit->exitcode = VM_EXITCODE_VMX;
2526 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2527 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2528 	vmexit->u.vmx.exit_reason = ~0;
2529 	vmexit->u.vmx.exit_qualification = ~0;
2530 
2531 	switch (rc) {
2532 	case VMX_VMRESUME_ERROR:
2533 	case VMX_VMLAUNCH_ERROR:
2534 	case VMX_INVEPT_ERROR:
2535 		vmexit->u.vmx.inst_type = rc;
2536 		break;
2537 	default:
2538 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2539 	}
2540 }
2541 
2542 /*
2543  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2544  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2545  * sufficient to simply vector to the NMI handler via a software interrupt.
2546  * However, this must be done before maskable interrupts are enabled
2547  * otherwise the "iret" issued by an interrupt handler will incorrectly
2548  * clear NMI blocking.
2549  */
2550 static __inline void
2551 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2552 {
2553 	uint32_t intr_info;
2554 
2555 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2556 
2557 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2558 		return;
2559 
2560 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2561 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2562 	    ("VM exit interruption info invalid: %#x", intr_info));
2563 
2564 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2565 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2566 		    "to NMI has invalid vector: %#x", intr_info));
2567 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2568 		__asm __volatile("int $2");
2569 	}
2570 }
2571 
2572 static int
2573 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2574     struct vm_eventinfo *evinfo)
2575 {
2576 	int rc, handled, launched;
2577 	struct vmx *vmx;
2578 	struct vm *vm;
2579 	struct vmxctx *vmxctx;
2580 	struct vmcs *vmcs;
2581 	struct vm_exit *vmexit;
2582 	struct vlapic *vlapic;
2583 	uint32_t exit_reason;
2584 
2585 	vmx = arg;
2586 	vm = vmx->vm;
2587 	vmcs = &vmx->vmcs[vcpu];
2588 	vmxctx = &vmx->ctx[vcpu];
2589 	vlapic = vm_lapic(vm, vcpu);
2590 	vmexit = vm_exitinfo(vm, vcpu);
2591 	launched = 0;
2592 
2593 	KASSERT(vmxctx->pmap == pmap,
2594 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2595 
2596 	vmx_msr_guest_enter(vmx, vcpu);
2597 
2598 	VMPTRLD(vmcs);
2599 
2600 	/*
2601 	 * XXX
2602 	 * We do this every time because we may setup the virtual machine
2603 	 * from a different process than the one that actually runs it.
2604 	 *
2605 	 * If the life of a virtual machine was spent entirely in the context
2606 	 * of a single process we could do this once in vmx_vminit().
2607 	 */
2608 	vmcs_write(VMCS_HOST_CR3, rcr3());
2609 
2610 	vmcs_write(VMCS_GUEST_RIP, rip);
2611 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2612 	do {
2613 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2614 		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2615 
2616 		handled = UNHANDLED;
2617 		/*
2618 		 * Interrupts are disabled from this point on until the
2619 		 * guest starts executing. This is done for the following
2620 		 * reasons:
2621 		 *
2622 		 * If an AST is asserted on this thread after the check below,
2623 		 * then the IPI_AST notification will not be lost, because it
2624 		 * will cause a VM exit due to external interrupt as soon as
2625 		 * the guest state is loaded.
2626 		 *
2627 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2628 		 * not be "lost" because it will be held pending in the host
2629 		 * APIC because interrupts are disabled. The pending interrupt
2630 		 * will be recognized as soon as the guest state is loaded.
2631 		 *
2632 		 * The same reasoning applies to the IPI generated by
2633 		 * pmap_invalidate_ept().
2634 		 */
2635 		disable_intr();
2636 		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2637 
2638 		/*
2639 		 * Check for vcpu suspension after injecting events because
2640 		 * vmx_inject_interrupts() can suspend the vcpu due to a
2641 		 * triple fault.
2642 		 */
2643 		if (vcpu_suspended(evinfo)) {
2644 			enable_intr();
2645 			vm_exit_suspended(vmx->vm, vcpu, rip);
2646 			break;
2647 		}
2648 
2649 		if (vcpu_rendezvous_pending(evinfo)) {
2650 			enable_intr();
2651 			vm_exit_rendezvous(vmx->vm, vcpu, rip);
2652 			break;
2653 		}
2654 
2655 		if (vcpu_reqidle(evinfo)) {
2656 			enable_intr();
2657 			vm_exit_reqidle(vmx->vm, vcpu, rip);
2658 			break;
2659 		}
2660 
2661 		if (vcpu_should_yield(vm, vcpu)) {
2662 			enable_intr();
2663 			vm_exit_astpending(vmx->vm, vcpu, rip);
2664 			vmx_astpending_trace(vmx, vcpu, rip);
2665 			handled = HANDLED;
2666 			break;
2667 		}
2668 
2669 		vmx_run_trace(vmx, vcpu);
2670 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2671 
2672 		/* Collect some information for VM exit processing */
2673 		vmexit->rip = rip = vmcs_guest_rip();
2674 		vmexit->inst_length = vmexit_instruction_length();
2675 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2676 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2677 
2678 		/* Update 'nextrip' */
2679 		vmx->state[vcpu].nextrip = rip;
2680 
2681 		if (rc == VMX_GUEST_VMEXIT) {
2682 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2683 			enable_intr();
2684 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2685 		} else {
2686 			enable_intr();
2687 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2688 		}
2689 		launched = 1;
2690 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2691 		rip = vmexit->rip;
2692 	} while (handled);
2693 
2694 	/*
2695 	 * If a VM exit has been handled then the exitcode must be BOGUS
2696 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2697 	 */
2698 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2699 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2700 		panic("Mismatch between handled (%d) and exitcode (%d)",
2701 		      handled, vmexit->exitcode);
2702 	}
2703 
2704 	if (!handled)
2705 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2706 
2707 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2708 	    vmexit->exitcode);
2709 
2710 	VMCLEAR(vmcs);
2711 	vmx_msr_guest_exit(vmx, vcpu);
2712 
2713 	return (0);
2714 }
2715 
2716 static void
2717 vmx_vmcleanup(void *arg)
2718 {
2719 	int i;
2720 	struct vmx *vmx = arg;
2721 
2722 	if (apic_access_virtualization(vmx, 0))
2723 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2724 
2725 	for (i = 0; i < VM_MAXCPU; i++)
2726 		vpid_free(vmx->state[i].vpid);
2727 
2728 	free(vmx, M_VMX);
2729 
2730 	return;
2731 }
2732 
2733 static register_t *
2734 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2735 {
2736 
2737 	switch (reg) {
2738 	case VM_REG_GUEST_RAX:
2739 		return (&vmxctx->guest_rax);
2740 	case VM_REG_GUEST_RBX:
2741 		return (&vmxctx->guest_rbx);
2742 	case VM_REG_GUEST_RCX:
2743 		return (&vmxctx->guest_rcx);
2744 	case VM_REG_GUEST_RDX:
2745 		return (&vmxctx->guest_rdx);
2746 	case VM_REG_GUEST_RSI:
2747 		return (&vmxctx->guest_rsi);
2748 	case VM_REG_GUEST_RDI:
2749 		return (&vmxctx->guest_rdi);
2750 	case VM_REG_GUEST_RBP:
2751 		return (&vmxctx->guest_rbp);
2752 	case VM_REG_GUEST_R8:
2753 		return (&vmxctx->guest_r8);
2754 	case VM_REG_GUEST_R9:
2755 		return (&vmxctx->guest_r9);
2756 	case VM_REG_GUEST_R10:
2757 		return (&vmxctx->guest_r10);
2758 	case VM_REG_GUEST_R11:
2759 		return (&vmxctx->guest_r11);
2760 	case VM_REG_GUEST_R12:
2761 		return (&vmxctx->guest_r12);
2762 	case VM_REG_GUEST_R13:
2763 		return (&vmxctx->guest_r13);
2764 	case VM_REG_GUEST_R14:
2765 		return (&vmxctx->guest_r14);
2766 	case VM_REG_GUEST_R15:
2767 		return (&vmxctx->guest_r15);
2768 	case VM_REG_GUEST_CR2:
2769 		return (&vmxctx->guest_cr2);
2770 	default:
2771 		break;
2772 	}
2773 	return (NULL);
2774 }
2775 
2776 static int
2777 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2778 {
2779 	register_t *regp;
2780 
2781 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2782 		*retval = *regp;
2783 		return (0);
2784 	} else
2785 		return (EINVAL);
2786 }
2787 
2788 static int
2789 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2790 {
2791 	register_t *regp;
2792 
2793 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2794 		*regp = val;
2795 		return (0);
2796 	} else
2797 		return (EINVAL);
2798 }
2799 
2800 static int
2801 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2802 {
2803 	uint64_t gi;
2804 	int error;
2805 
2806 	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
2807 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2808 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2809 	return (error);
2810 }
2811 
2812 static int
2813 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2814 {
2815 	struct vmcs *vmcs;
2816 	uint64_t gi;
2817 	int error, ident;
2818 
2819 	/*
2820 	 * Forcing the vcpu into an interrupt shadow is not supported.
2821 	 */
2822 	if (val) {
2823 		error = EINVAL;
2824 		goto done;
2825 	}
2826 
2827 	vmcs = &vmx->vmcs[vcpu];
2828 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2829 	error = vmcs_getreg(vmcs, running, ident, &gi);
2830 	if (error == 0) {
2831 		gi &= ~HWINTR_BLOCKING;
2832 		error = vmcs_setreg(vmcs, running, ident, gi);
2833 	}
2834 done:
2835 	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2836 	    error ? "failed" : "succeeded");
2837 	return (error);
2838 }
2839 
2840 static int
2841 vmx_shadow_reg(int reg)
2842 {
2843 	int shreg;
2844 
2845 	shreg = -1;
2846 
2847 	switch (reg) {
2848 	case VM_REG_GUEST_CR0:
2849 		shreg = VMCS_CR0_SHADOW;
2850                 break;
2851         case VM_REG_GUEST_CR4:
2852 		shreg = VMCS_CR4_SHADOW;
2853 		break;
2854 	default:
2855 		break;
2856 	}
2857 
2858 	return (shreg);
2859 }
2860 
2861 static int
2862 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2863 {
2864 	int running, hostcpu;
2865 	struct vmx *vmx = arg;
2866 
2867 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2868 	if (running && hostcpu != curcpu)
2869 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2870 
2871 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2872 		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2873 
2874 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2875 		return (0);
2876 
2877 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2878 }
2879 
2880 static int
2881 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2882 {
2883 	int error, hostcpu, running, shadow;
2884 	uint64_t ctls;
2885 	pmap_t pmap;
2886 	struct vmx *vmx = arg;
2887 
2888 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2889 	if (running && hostcpu != curcpu)
2890 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2891 
2892 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2893 		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2894 
2895 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2896 		return (0);
2897 
2898 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2899 
2900 	if (error == 0) {
2901 		/*
2902 		 * If the "load EFER" VM-entry control is 1 then the
2903 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2904 		 * bit in the VM-entry control.
2905 		 */
2906 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2907 		    (reg == VM_REG_GUEST_EFER)) {
2908 			vmcs_getreg(&vmx->vmcs[vcpu], running,
2909 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2910 			if (val & EFER_LMA)
2911 				ctls |= VM_ENTRY_GUEST_LMA;
2912 			else
2913 				ctls &= ~VM_ENTRY_GUEST_LMA;
2914 			vmcs_setreg(&vmx->vmcs[vcpu], running,
2915 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2916 		}
2917 
2918 		shadow = vmx_shadow_reg(reg);
2919 		if (shadow > 0) {
2920 			/*
2921 			 * Store the unmodified value in the shadow
2922 			 */
2923 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2924 				    VMCS_IDENT(shadow), val);
2925 		}
2926 
2927 		if (reg == VM_REG_GUEST_CR3) {
2928 			/*
2929 			 * Invalidate the guest vcpu's TLB mappings to emulate
2930 			 * the behavior of updating %cr3.
2931 			 *
2932 			 * XXX the processor retains global mappings when %cr3
2933 			 * is updated but vmx_invvpid() does not.
2934 			 */
2935 			pmap = vmx->ctx[vcpu].pmap;
2936 			vmx_invvpid(vmx, vcpu, pmap, running);
2937 		}
2938 	}
2939 
2940 	return (error);
2941 }
2942 
2943 static int
2944 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2945 {
2946 	int hostcpu, running;
2947 	struct vmx *vmx = arg;
2948 
2949 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2950 	if (running && hostcpu != curcpu)
2951 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2952 
2953 	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2954 }
2955 
2956 static int
2957 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2958 {
2959 	int hostcpu, running;
2960 	struct vmx *vmx = arg;
2961 
2962 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2963 	if (running && hostcpu != curcpu)
2964 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2965 
2966 	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2967 }
2968 
2969 static int
2970 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2971 {
2972 	struct vmx *vmx = arg;
2973 	int vcap;
2974 	int ret;
2975 
2976 	ret = ENOENT;
2977 
2978 	vcap = vmx->cap[vcpu].set;
2979 
2980 	switch (type) {
2981 	case VM_CAP_HALT_EXIT:
2982 		if (cap_halt_exit)
2983 			ret = 0;
2984 		break;
2985 	case VM_CAP_PAUSE_EXIT:
2986 		if (cap_pause_exit)
2987 			ret = 0;
2988 		break;
2989 	case VM_CAP_MTRAP_EXIT:
2990 		if (cap_monitor_trap)
2991 			ret = 0;
2992 		break;
2993 	case VM_CAP_UNRESTRICTED_GUEST:
2994 		if (cap_unrestricted_guest)
2995 			ret = 0;
2996 		break;
2997 	case VM_CAP_ENABLE_INVPCID:
2998 		if (cap_invpcid)
2999 			ret = 0;
3000 		break;
3001 	default:
3002 		break;
3003 	}
3004 
3005 	if (ret == 0)
3006 		*retval = (vcap & (1 << type)) ? 1 : 0;
3007 
3008 	return (ret);
3009 }
3010 
3011 static int
3012 vmx_setcap(void *arg, int vcpu, int type, int val)
3013 {
3014 	struct vmx *vmx = arg;
3015 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
3016 	uint32_t baseval;
3017 	uint32_t *pptr;
3018 	int error;
3019 	int flag;
3020 	int reg;
3021 	int retval;
3022 
3023 	retval = ENOENT;
3024 	pptr = NULL;
3025 
3026 	switch (type) {
3027 	case VM_CAP_HALT_EXIT:
3028 		if (cap_halt_exit) {
3029 			retval = 0;
3030 			pptr = &vmx->cap[vcpu].proc_ctls;
3031 			baseval = *pptr;
3032 			flag = PROCBASED_HLT_EXITING;
3033 			reg = VMCS_PRI_PROC_BASED_CTLS;
3034 		}
3035 		break;
3036 	case VM_CAP_MTRAP_EXIT:
3037 		if (cap_monitor_trap) {
3038 			retval = 0;
3039 			pptr = &vmx->cap[vcpu].proc_ctls;
3040 			baseval = *pptr;
3041 			flag = PROCBASED_MTF;
3042 			reg = VMCS_PRI_PROC_BASED_CTLS;
3043 		}
3044 		break;
3045 	case VM_CAP_PAUSE_EXIT:
3046 		if (cap_pause_exit) {
3047 			retval = 0;
3048 			pptr = &vmx->cap[vcpu].proc_ctls;
3049 			baseval = *pptr;
3050 			flag = PROCBASED_PAUSE_EXITING;
3051 			reg = VMCS_PRI_PROC_BASED_CTLS;
3052 		}
3053 		break;
3054 	case VM_CAP_UNRESTRICTED_GUEST:
3055 		if (cap_unrestricted_guest) {
3056 			retval = 0;
3057 			pptr = &vmx->cap[vcpu].proc_ctls2;
3058 			baseval = *pptr;
3059 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3060 			reg = VMCS_SEC_PROC_BASED_CTLS;
3061 		}
3062 		break;
3063 	case VM_CAP_ENABLE_INVPCID:
3064 		if (cap_invpcid) {
3065 			retval = 0;
3066 			pptr = &vmx->cap[vcpu].proc_ctls2;
3067 			baseval = *pptr;
3068 			flag = PROCBASED2_ENABLE_INVPCID;
3069 			reg = VMCS_SEC_PROC_BASED_CTLS;
3070 		}
3071 		break;
3072 	default:
3073 		break;
3074 	}
3075 
3076 	if (retval == 0) {
3077 		if (val) {
3078 			baseval |= flag;
3079 		} else {
3080 			baseval &= ~flag;
3081 		}
3082 		VMPTRLD(vmcs);
3083 		error = vmwrite(reg, baseval);
3084 		VMCLEAR(vmcs);
3085 
3086 		if (error) {
3087 			retval = error;
3088 		} else {
3089 			/*
3090 			 * Update optional stored flags, and record
3091 			 * setting
3092 			 */
3093 			if (pptr != NULL) {
3094 				*pptr = baseval;
3095 			}
3096 
3097 			if (val) {
3098 				vmx->cap[vcpu].set |= (1 << type);
3099 			} else {
3100 				vmx->cap[vcpu].set &= ~(1 << type);
3101 			}
3102 		}
3103 	}
3104 
3105         return (retval);
3106 }
3107 
3108 struct vlapic_vtx {
3109 	struct vlapic	vlapic;
3110 	struct pir_desc	*pir_desc;
3111 	struct vmx	*vmx;
3112 };
3113 
3114 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3115 do {									\
3116 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3117 	    level ? "level" : "edge", vector);				\
3118 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3119 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3120 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3121 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3122 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3123 } while (0)
3124 
3125 /*
3126  * vlapic->ops handlers that utilize the APICv hardware assist described in
3127  * Chapter 29 of the Intel SDM.
3128  */
3129 static int
3130 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3131 {
3132 	struct vlapic_vtx *vlapic_vtx;
3133 	struct pir_desc *pir_desc;
3134 	uint64_t mask;
3135 	int idx, notify;
3136 
3137 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3138 	pir_desc = vlapic_vtx->pir_desc;
3139 
3140 	/*
3141 	 * Keep track of interrupt requests in the PIR descriptor. This is
3142 	 * because the virtual APIC page pointed to by the VMCS cannot be
3143 	 * modified if the vcpu is running.
3144 	 */
3145 	idx = vector / 64;
3146 	mask = 1UL << (vector % 64);
3147 	atomic_set_long(&pir_desc->pir[idx], mask);
3148 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3149 
3150 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3151 	    level, "vmx_set_intr_ready");
3152 	return (notify);
3153 }
3154 
3155 static int
3156 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3157 {
3158 	struct vlapic_vtx *vlapic_vtx;
3159 	struct pir_desc *pir_desc;
3160 	struct LAPIC *lapic;
3161 	uint64_t pending, pirval;
3162 	uint32_t ppr, vpr;
3163 	int i;
3164 
3165 	/*
3166 	 * This function is only expected to be called from the 'HLT' exit
3167 	 * handler which does not care about the vector that is pending.
3168 	 */
3169 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3170 
3171 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3172 	pir_desc = vlapic_vtx->pir_desc;
3173 
3174 	pending = atomic_load_acq_long(&pir_desc->pending);
3175 	if (!pending)
3176 		return (0);	/* common case */
3177 
3178 	/*
3179 	 * If there is an interrupt pending then it will be recognized only
3180 	 * if its priority is greater than the processor priority.
3181 	 *
3182 	 * Special case: if the processor priority is zero then any pending
3183 	 * interrupt will be recognized.
3184 	 */
3185 	lapic = vlapic->apic_page;
3186 	ppr = lapic->ppr & 0xf0;
3187 	if (ppr == 0)
3188 		return (1);
3189 
3190 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3191 	    lapic->ppr);
3192 
3193 	for (i = 3; i >= 0; i--) {
3194 		pirval = pir_desc->pir[i];
3195 		if (pirval != 0) {
3196 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3197 			return (vpr > ppr);
3198 		}
3199 	}
3200 	return (0);
3201 }
3202 
3203 static void
3204 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3205 {
3206 
3207 	panic("vmx_intr_accepted: not expected to be called");
3208 }
3209 
3210 static void
3211 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3212 {
3213 	struct vlapic_vtx *vlapic_vtx;
3214 	struct vmx *vmx;
3215 	struct vmcs *vmcs;
3216 	uint64_t mask, val;
3217 
3218 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3219 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3220 	    ("vmx_set_tmr: vcpu cannot be running"));
3221 
3222 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3223 	vmx = vlapic_vtx->vmx;
3224 	vmcs = &vmx->vmcs[vlapic->vcpuid];
3225 	mask = 1UL << (vector % 64);
3226 
3227 	VMPTRLD(vmcs);
3228 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3229 	if (level)
3230 		val |= mask;
3231 	else
3232 		val &= ~mask;
3233 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3234 	VMCLEAR(vmcs);
3235 }
3236 
3237 static void
3238 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3239 {
3240 	struct vmx *vmx;
3241 	struct vmcs *vmcs;
3242 	uint32_t proc_ctls2;
3243 	int vcpuid, error;
3244 
3245 	vcpuid = vlapic->vcpuid;
3246 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3247 	vmcs = &vmx->vmcs[vcpuid];
3248 
3249 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3250 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3251 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3252 
3253 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3254 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3255 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3256 
3257 	VMPTRLD(vmcs);
3258 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3259 	VMCLEAR(vmcs);
3260 
3261 	if (vlapic->vcpuid == 0) {
3262 		/*
3263 		 * The nested page table mappings are shared by all vcpus
3264 		 * so unmap the APIC access page just once.
3265 		 */
3266 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3267 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3268 		    __func__, error));
3269 
3270 		/*
3271 		 * The MSR bitmap is shared by all vcpus so modify it only
3272 		 * once in the context of vcpu 0.
3273 		 */
3274 		error = vmx_allow_x2apic_msrs(vmx);
3275 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3276 		    __func__, error));
3277 	}
3278 }
3279 
3280 static void
3281 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3282 {
3283 
3284 	ipi_cpu(hostcpu, pirvec);
3285 }
3286 
3287 /*
3288  * Transfer the pending interrupts in the PIR descriptor to the IRR
3289  * in the virtual APIC page.
3290  */
3291 static void
3292 vmx_inject_pir(struct vlapic *vlapic)
3293 {
3294 	struct vlapic_vtx *vlapic_vtx;
3295 	struct pir_desc *pir_desc;
3296 	struct LAPIC *lapic;
3297 	uint64_t val, pirval;
3298 	int rvi, pirbase = -1;
3299 	uint16_t intr_status_old, intr_status_new;
3300 
3301 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3302 	pir_desc = vlapic_vtx->pir_desc;
3303 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3304 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3305 		    "no posted interrupt pending");
3306 		return;
3307 	}
3308 
3309 	pirval = 0;
3310 	pirbase = -1;
3311 	lapic = vlapic->apic_page;
3312 
3313 	val = atomic_readandclear_long(&pir_desc->pir[0]);
3314 	if (val != 0) {
3315 		lapic->irr0 |= val;
3316 		lapic->irr1 |= val >> 32;
3317 		pirbase = 0;
3318 		pirval = val;
3319 	}
3320 
3321 	val = atomic_readandclear_long(&pir_desc->pir[1]);
3322 	if (val != 0) {
3323 		lapic->irr2 |= val;
3324 		lapic->irr3 |= val >> 32;
3325 		pirbase = 64;
3326 		pirval = val;
3327 	}
3328 
3329 	val = atomic_readandclear_long(&pir_desc->pir[2]);
3330 	if (val != 0) {
3331 		lapic->irr4 |= val;
3332 		lapic->irr5 |= val >> 32;
3333 		pirbase = 128;
3334 		pirval = val;
3335 	}
3336 
3337 	val = atomic_readandclear_long(&pir_desc->pir[3]);
3338 	if (val != 0) {
3339 		lapic->irr6 |= val;
3340 		lapic->irr7 |= val >> 32;
3341 		pirbase = 192;
3342 		pirval = val;
3343 	}
3344 
3345 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3346 
3347 	/*
3348 	 * Update RVI so the processor can evaluate pending virtual
3349 	 * interrupts on VM-entry.
3350 	 *
3351 	 * It is possible for pirval to be 0 here, even though the
3352 	 * pending bit has been set. The scenario is:
3353 	 * CPU-Y is sending a posted interrupt to CPU-X, which
3354 	 * is running a guest and processing posted interrupts in h/w.
3355 	 * CPU-X will eventually exit and the state seen in s/w is
3356 	 * the pending bit set, but no PIR bits set.
3357 	 *
3358 	 *      CPU-X                      CPU-Y
3359 	 *   (vm running)                (host running)
3360 	 *   rx posted interrupt
3361 	 *   CLEAR pending bit
3362 	 *				 SET PIR bit
3363 	 *   READ/CLEAR PIR bits
3364 	 *				 SET pending bit
3365 	 *   (vm exit)
3366 	 *   pending bit set, PIR 0
3367 	 */
3368 	if (pirval != 0) {
3369 		rvi = pirbase + flsl(pirval) - 1;
3370 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3371 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3372 		if (intr_status_new > intr_status_old) {
3373 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3374 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3375 			    "guest_intr_status changed from 0x%04x to 0x%04x",
3376 			    intr_status_old, intr_status_new);
3377 		}
3378 	}
3379 }
3380 
3381 static struct vlapic *
3382 vmx_vlapic_init(void *arg, int vcpuid)
3383 {
3384 	struct vmx *vmx;
3385 	struct vlapic *vlapic;
3386 	struct vlapic_vtx *vlapic_vtx;
3387 
3388 	vmx = arg;
3389 
3390 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3391 	vlapic->vm = vmx->vm;
3392 	vlapic->vcpuid = vcpuid;
3393 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3394 
3395 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3396 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3397 	vlapic_vtx->vmx = vmx;
3398 
3399 	if (virtual_interrupt_delivery) {
3400 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3401 		vlapic->ops.pending_intr = vmx_pending_intr;
3402 		vlapic->ops.intr_accepted = vmx_intr_accepted;
3403 		vlapic->ops.set_tmr = vmx_set_tmr;
3404 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3405 	}
3406 
3407 	if (posted_interrupts)
3408 		vlapic->ops.post_intr = vmx_post_intr;
3409 
3410 	vlapic_init(vlapic);
3411 
3412 	return (vlapic);
3413 }
3414 
3415 static void
3416 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3417 {
3418 
3419 	vlapic_cleanup(vlapic);
3420 	free(vlapic, M_VLAPIC);
3421 }
3422 
3423 struct vmm_ops vmm_ops_intel = {
3424 	vmx_init,
3425 	vmx_cleanup,
3426 	vmx_restore,
3427 	vmx_vminit,
3428 	vmx_run,
3429 	vmx_vmcleanup,
3430 	vmx_getreg,
3431 	vmx_setreg,
3432 	vmx_getdesc,
3433 	vmx_setdesc,
3434 	vmx_getcap,
3435 	vmx_setcap,
3436 	ept_vmspace_alloc,
3437 	ept_vmspace_free,
3438 	vmx_vlapic_init,
3439 	vmx_vlapic_cleanup,
3440 };
3441