1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * Copyright (c) 2018 Joyent, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/smp.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/proc.h> 42 #include <sys/sysctl.h> 43 44 #include <vm/vm.h> 45 #include <vm/pmap.h> 46 47 #include <machine/psl.h> 48 #include <machine/cpufunc.h> 49 #include <machine/md_var.h> 50 #include <machine/reg.h> 51 #include <machine/segments.h> 52 #include <machine/smp.h> 53 #include <machine/specialreg.h> 54 #include <machine/vmparam.h> 55 56 #include <machine/vmm.h> 57 #include <machine/vmm_dev.h> 58 #include <machine/vmm_instruction_emul.h> 59 #include "vmm_lapic.h" 60 #include "vmm_host.h" 61 #include "vmm_ioport.h" 62 #include "vmm_ktr.h" 63 #include "vmm_stat.h" 64 #include "vatpic.h" 65 #include "vlapic.h" 66 #include "vlapic_priv.h" 67 68 #include "ept.h" 69 #include "vmx_cpufunc.h" 70 #include "vmx.h" 71 #include "vmx_msr.h" 72 #include "x86.h" 73 #include "vmx_controls.h" 74 75 #define PINBASED_CTLS_ONE_SETTING \ 76 (PINBASED_EXTINT_EXITING | \ 77 PINBASED_NMI_EXITING | \ 78 PINBASED_VIRTUAL_NMI) 79 #define PINBASED_CTLS_ZERO_SETTING 0 80 81 #define PROCBASED_CTLS_WINDOW_SETTING \ 82 (PROCBASED_INT_WINDOW_EXITING | \ 83 PROCBASED_NMI_WINDOW_EXITING) 84 85 #define PROCBASED_CTLS_ONE_SETTING \ 86 (PROCBASED_SECONDARY_CONTROLS | \ 87 PROCBASED_MWAIT_EXITING | \ 88 PROCBASED_MONITOR_EXITING | \ 89 PROCBASED_IO_EXITING | \ 90 PROCBASED_MSR_BITMAPS | \ 91 PROCBASED_CTLS_WINDOW_SETTING | \ 92 PROCBASED_CR8_LOAD_EXITING | \ 93 PROCBASED_CR8_STORE_EXITING) 94 #define PROCBASED_CTLS_ZERO_SETTING \ 95 (PROCBASED_CR3_LOAD_EXITING | \ 96 PROCBASED_CR3_STORE_EXITING | \ 97 PROCBASED_IO_BITMAPS) 98 99 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 100 #define PROCBASED_CTLS2_ZERO_SETTING 0 101 102 #define VM_EXIT_CTLS_ONE_SETTING \ 103 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 104 VM_EXIT_HOST_LMA | \ 105 VM_EXIT_SAVE_EFER | \ 106 VM_EXIT_LOAD_EFER | \ 107 VM_EXIT_ACKNOWLEDGE_INTERRUPT) 108 109 #define VM_EXIT_CTLS_ZERO_SETTING 0 110 111 #define VM_ENTRY_CTLS_ONE_SETTING \ 112 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 113 VM_ENTRY_LOAD_EFER) 114 115 #define VM_ENTRY_CTLS_ZERO_SETTING \ 116 (VM_ENTRY_INTO_SMM | \ 117 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 118 119 #define HANDLED 1 120 #define UNHANDLED 0 121 122 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 123 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 124 125 SYSCTL_DECL(_hw_vmm); 126 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); 127 128 int vmxon_enabled[MAXCPU]; 129 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 130 131 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 132 static uint32_t exit_ctls, entry_ctls; 133 134 static uint64_t cr0_ones_mask, cr0_zeros_mask; 135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 136 &cr0_ones_mask, 0, NULL); 137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 138 &cr0_zeros_mask, 0, NULL); 139 140 static uint64_t cr4_ones_mask, cr4_zeros_mask; 141 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 142 &cr4_ones_mask, 0, NULL); 143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 144 &cr4_zeros_mask, 0, NULL); 145 146 static int vmx_initialized; 147 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 148 &vmx_initialized, 0, "Intel VMX initialized"); 149 150 /* 151 * Optional capabilities 152 */ 153 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL); 154 155 static int cap_halt_exit; 156 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 157 "HLT triggers a VM-exit"); 158 159 static int cap_pause_exit; 160 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 161 0, "PAUSE triggers a VM-exit"); 162 163 static int cap_unrestricted_guest; 164 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 165 &cap_unrestricted_guest, 0, "Unrestricted guests"); 166 167 static int cap_monitor_trap; 168 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 169 &cap_monitor_trap, 0, "Monitor trap flag"); 170 171 static int cap_invpcid; 172 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 173 0, "Guests are allowed to use INVPCID"); 174 175 static int virtual_interrupt_delivery; 176 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 177 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 178 179 static int posted_interrupts; 180 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 181 &posted_interrupts, 0, "APICv posted interrupt support"); 182 183 static int pirvec = -1; 184 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 185 &pirvec, 0, "APICv posted interrupt vector"); 186 187 static struct unrhdr *vpid_unr; 188 static u_int vpid_alloc_failed; 189 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 190 &vpid_alloc_failed, 0, NULL); 191 192 int guest_l1d_flush; 193 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD, 194 &guest_l1d_flush, 0, NULL); 195 int guest_l1d_flush_sw; 196 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD, 197 &guest_l1d_flush_sw, 0, NULL); 198 199 static struct msr_entry msr_load_list[1] __aligned(16); 200 201 /* 202 * The definitions of SDT probes for VMX. 203 */ 204 205 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry, 206 "struct vmx *", "int", "struct vm_exit *"); 207 208 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch, 209 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *"); 210 211 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess, 212 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 213 214 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr, 215 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 216 217 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr, 218 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t"); 219 220 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt, 221 "struct vmx *", "int", "struct vm_exit *"); 222 223 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap, 224 "struct vmx *", "int", "struct vm_exit *"); 225 226 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause, 227 "struct vmx *", "int", "struct vm_exit *"); 228 229 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow, 230 "struct vmx *", "int", "struct vm_exit *"); 231 232 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt, 233 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 234 235 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow, 236 "struct vmx *", "int", "struct vm_exit *"); 237 238 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout, 239 "struct vmx *", "int", "struct vm_exit *"); 240 241 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid, 242 "struct vmx *", "int", "struct vm_exit *"); 243 244 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception, 245 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int"); 246 247 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault, 248 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t"); 249 250 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault, 251 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 252 253 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi, 254 "struct vmx *", "int", "struct vm_exit *"); 255 256 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess, 257 "struct vmx *", "int", "struct vm_exit *"); 258 259 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite, 260 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *"); 261 262 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv, 263 "struct vmx *", "int", "struct vm_exit *"); 264 265 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor, 266 "struct vmx *", "int", "struct vm_exit *"); 267 268 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait, 269 "struct vmx *", "int", "struct vm_exit *"); 270 271 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn, 272 "struct vmx *", "int", "struct vm_exit *"); 273 274 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown, 275 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 276 277 SDT_PROBE_DEFINE4(vmm, vmx, exit, return, 278 "struct vmx *", "int", "struct vm_exit *", "int"); 279 280 /* 281 * Use the last page below 4GB as the APIC access address. This address is 282 * occupied by the boot firmware so it is guaranteed that it will not conflict 283 * with a page in system memory. 284 */ 285 #define APIC_ACCESS_ADDRESS 0xFFFFF000 286 287 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 288 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); 289 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 290 static void vmx_inject_pir(struct vlapic *vlapic); 291 292 #ifdef KTR 293 static const char * 294 exit_reason_to_str(int reason) 295 { 296 static char reasonbuf[32]; 297 298 switch (reason) { 299 case EXIT_REASON_EXCEPTION: 300 return "exception"; 301 case EXIT_REASON_EXT_INTR: 302 return "extint"; 303 case EXIT_REASON_TRIPLE_FAULT: 304 return "triplefault"; 305 case EXIT_REASON_INIT: 306 return "init"; 307 case EXIT_REASON_SIPI: 308 return "sipi"; 309 case EXIT_REASON_IO_SMI: 310 return "iosmi"; 311 case EXIT_REASON_SMI: 312 return "smi"; 313 case EXIT_REASON_INTR_WINDOW: 314 return "intrwindow"; 315 case EXIT_REASON_NMI_WINDOW: 316 return "nmiwindow"; 317 case EXIT_REASON_TASK_SWITCH: 318 return "taskswitch"; 319 case EXIT_REASON_CPUID: 320 return "cpuid"; 321 case EXIT_REASON_GETSEC: 322 return "getsec"; 323 case EXIT_REASON_HLT: 324 return "hlt"; 325 case EXIT_REASON_INVD: 326 return "invd"; 327 case EXIT_REASON_INVLPG: 328 return "invlpg"; 329 case EXIT_REASON_RDPMC: 330 return "rdpmc"; 331 case EXIT_REASON_RDTSC: 332 return "rdtsc"; 333 case EXIT_REASON_RSM: 334 return "rsm"; 335 case EXIT_REASON_VMCALL: 336 return "vmcall"; 337 case EXIT_REASON_VMCLEAR: 338 return "vmclear"; 339 case EXIT_REASON_VMLAUNCH: 340 return "vmlaunch"; 341 case EXIT_REASON_VMPTRLD: 342 return "vmptrld"; 343 case EXIT_REASON_VMPTRST: 344 return "vmptrst"; 345 case EXIT_REASON_VMREAD: 346 return "vmread"; 347 case EXIT_REASON_VMRESUME: 348 return "vmresume"; 349 case EXIT_REASON_VMWRITE: 350 return "vmwrite"; 351 case EXIT_REASON_VMXOFF: 352 return "vmxoff"; 353 case EXIT_REASON_VMXON: 354 return "vmxon"; 355 case EXIT_REASON_CR_ACCESS: 356 return "craccess"; 357 case EXIT_REASON_DR_ACCESS: 358 return "draccess"; 359 case EXIT_REASON_INOUT: 360 return "inout"; 361 case EXIT_REASON_RDMSR: 362 return "rdmsr"; 363 case EXIT_REASON_WRMSR: 364 return "wrmsr"; 365 case EXIT_REASON_INVAL_VMCS: 366 return "invalvmcs"; 367 case EXIT_REASON_INVAL_MSR: 368 return "invalmsr"; 369 case EXIT_REASON_MWAIT: 370 return "mwait"; 371 case EXIT_REASON_MTF: 372 return "mtf"; 373 case EXIT_REASON_MONITOR: 374 return "monitor"; 375 case EXIT_REASON_PAUSE: 376 return "pause"; 377 case EXIT_REASON_MCE_DURING_ENTRY: 378 return "mce-during-entry"; 379 case EXIT_REASON_TPR: 380 return "tpr"; 381 case EXIT_REASON_APIC_ACCESS: 382 return "apic-access"; 383 case EXIT_REASON_GDTR_IDTR: 384 return "gdtridtr"; 385 case EXIT_REASON_LDTR_TR: 386 return "ldtrtr"; 387 case EXIT_REASON_EPT_FAULT: 388 return "eptfault"; 389 case EXIT_REASON_EPT_MISCONFIG: 390 return "eptmisconfig"; 391 case EXIT_REASON_INVEPT: 392 return "invept"; 393 case EXIT_REASON_RDTSCP: 394 return "rdtscp"; 395 case EXIT_REASON_VMX_PREEMPT: 396 return "vmxpreempt"; 397 case EXIT_REASON_INVVPID: 398 return "invvpid"; 399 case EXIT_REASON_WBINVD: 400 return "wbinvd"; 401 case EXIT_REASON_XSETBV: 402 return "xsetbv"; 403 case EXIT_REASON_APIC_WRITE: 404 return "apic-write"; 405 default: 406 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 407 return (reasonbuf); 408 } 409 } 410 #endif /* KTR */ 411 412 static int 413 vmx_allow_x2apic_msrs(struct vmx *vmx) 414 { 415 int i, error; 416 417 error = 0; 418 419 /* 420 * Allow readonly access to the following x2APIC MSRs from the guest. 421 */ 422 error += guest_msr_ro(vmx, MSR_APIC_ID); 423 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 424 error += guest_msr_ro(vmx, MSR_APIC_LDR); 425 error += guest_msr_ro(vmx, MSR_APIC_SVR); 426 427 for (i = 0; i < 8; i++) 428 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 429 430 for (i = 0; i < 8; i++) 431 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 432 433 for (i = 0; i < 8; i++) 434 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 435 436 error += guest_msr_ro(vmx, MSR_APIC_ESR); 437 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 438 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 439 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 440 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 441 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 442 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 443 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 444 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 445 error += guest_msr_ro(vmx, MSR_APIC_ICR); 446 447 /* 448 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 449 * 450 * These registers get special treatment described in the section 451 * "Virtualizing MSR-Based APIC Accesses". 452 */ 453 error += guest_msr_rw(vmx, MSR_APIC_TPR); 454 error += guest_msr_rw(vmx, MSR_APIC_EOI); 455 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 456 457 return (error); 458 } 459 460 u_long 461 vmx_fix_cr0(u_long cr0) 462 { 463 464 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 465 } 466 467 u_long 468 vmx_fix_cr4(u_long cr4) 469 { 470 471 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 472 } 473 474 static void 475 vpid_free(int vpid) 476 { 477 if (vpid < 0 || vpid > 0xffff) 478 panic("vpid_free: invalid vpid %d", vpid); 479 480 /* 481 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 482 * the unit number allocator. 483 */ 484 485 if (vpid > VM_MAXCPU) 486 free_unr(vpid_unr, vpid); 487 } 488 489 static void 490 vpid_alloc(uint16_t *vpid, int num) 491 { 492 int i, x; 493 494 if (num <= 0 || num > VM_MAXCPU) 495 panic("invalid number of vpids requested: %d", num); 496 497 /* 498 * If the "enable vpid" execution control is not enabled then the 499 * VPID is required to be 0 for all vcpus. 500 */ 501 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 502 for (i = 0; i < num; i++) 503 vpid[i] = 0; 504 return; 505 } 506 507 /* 508 * Allocate a unique VPID for each vcpu from the unit number allocator. 509 */ 510 for (i = 0; i < num; i++) { 511 x = alloc_unr(vpid_unr); 512 if (x == -1) 513 break; 514 else 515 vpid[i] = x; 516 } 517 518 if (i < num) { 519 atomic_add_int(&vpid_alloc_failed, 1); 520 521 /* 522 * If the unit number allocator does not have enough unique 523 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 524 * 525 * These VPIDs are not be unique across VMs but this does not 526 * affect correctness because the combined mappings are also 527 * tagged with the EP4TA which is unique for each VM. 528 * 529 * It is still sub-optimal because the invvpid will invalidate 530 * combined mappings for a particular VPID across all EP4TAs. 531 */ 532 while (i-- > 0) 533 vpid_free(vpid[i]); 534 535 for (i = 0; i < num; i++) 536 vpid[i] = i + 1; 537 } 538 } 539 540 static void 541 vpid_init(void) 542 { 543 /* 544 * VPID 0 is required when the "enable VPID" execution control is 545 * disabled. 546 * 547 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 548 * unit number allocator does not have sufficient unique VPIDs to 549 * satisfy the allocation. 550 * 551 * The remaining VPIDs are managed by the unit number allocator. 552 */ 553 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 554 } 555 556 static void 557 vmx_disable(void *arg __unused) 558 { 559 struct invvpid_desc invvpid_desc = { 0 }; 560 struct invept_desc invept_desc = { 0 }; 561 562 if (vmxon_enabled[curcpu]) { 563 /* 564 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 565 * 566 * VMXON or VMXOFF are not required to invalidate any TLB 567 * caching structures. This prevents potential retention of 568 * cached information in the TLB between distinct VMX episodes. 569 */ 570 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 571 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 572 vmxoff(); 573 } 574 load_cr4(rcr4() & ~CR4_VMXE); 575 } 576 577 static int 578 vmx_cleanup(void) 579 { 580 581 if (pirvec >= 0) 582 lapic_ipi_free(pirvec); 583 584 if (vpid_unr != NULL) { 585 delete_unrhdr(vpid_unr); 586 vpid_unr = NULL; 587 } 588 589 if (nmi_flush_l1d_sw == 1) 590 nmi_flush_l1d_sw = 0; 591 592 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 593 594 return (0); 595 } 596 597 static void 598 vmx_enable(void *arg __unused) 599 { 600 int error; 601 uint64_t feature_control; 602 603 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 604 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 605 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 606 wrmsr(MSR_IA32_FEATURE_CONTROL, 607 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 608 IA32_FEATURE_CONTROL_LOCK); 609 } 610 611 load_cr4(rcr4() | CR4_VMXE); 612 613 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 614 error = vmxon(vmxon_region[curcpu]); 615 if (error == 0) 616 vmxon_enabled[curcpu] = 1; 617 } 618 619 static void 620 vmx_restore(void) 621 { 622 623 if (vmxon_enabled[curcpu]) 624 vmxon(vmxon_region[curcpu]); 625 } 626 627 static int 628 vmx_init(int ipinum) 629 { 630 int error, use_tpr_shadow; 631 uint64_t basic, fixed0, fixed1, feature_control; 632 uint32_t tmp, procbased2_vid_bits; 633 634 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 635 if (!(cpu_feature2 & CPUID2_VMX)) { 636 printf("vmx_init: processor does not support VMX operation\n"); 637 return (ENXIO); 638 } 639 640 /* 641 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 642 * are set (bits 0 and 2 respectively). 643 */ 644 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 645 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 646 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 647 printf("vmx_init: VMX operation disabled by BIOS\n"); 648 return (ENXIO); 649 } 650 651 /* 652 * Verify capabilities MSR_VMX_BASIC: 653 * - bit 54 indicates support for INS/OUTS decoding 654 */ 655 basic = rdmsr(MSR_VMX_BASIC); 656 if ((basic & (1UL << 54)) == 0) { 657 printf("vmx_init: processor does not support desired basic " 658 "capabilities\n"); 659 return (EINVAL); 660 } 661 662 /* Check support for primary processor-based VM-execution controls */ 663 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 664 MSR_VMX_TRUE_PROCBASED_CTLS, 665 PROCBASED_CTLS_ONE_SETTING, 666 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 667 if (error) { 668 printf("vmx_init: processor does not support desired primary " 669 "processor-based controls\n"); 670 return (error); 671 } 672 673 /* Clear the processor-based ctl bits that are set on demand */ 674 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 675 676 /* Check support for secondary processor-based VM-execution controls */ 677 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 678 MSR_VMX_PROCBASED_CTLS2, 679 PROCBASED_CTLS2_ONE_SETTING, 680 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 681 if (error) { 682 printf("vmx_init: processor does not support desired secondary " 683 "processor-based controls\n"); 684 return (error); 685 } 686 687 /* Check support for VPID */ 688 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 689 PROCBASED2_ENABLE_VPID, 0, &tmp); 690 if (error == 0) 691 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 692 693 /* Check support for pin-based VM-execution controls */ 694 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 695 MSR_VMX_TRUE_PINBASED_CTLS, 696 PINBASED_CTLS_ONE_SETTING, 697 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 698 if (error) { 699 printf("vmx_init: processor does not support desired " 700 "pin-based controls\n"); 701 return (error); 702 } 703 704 /* Check support for VM-exit controls */ 705 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 706 VM_EXIT_CTLS_ONE_SETTING, 707 VM_EXIT_CTLS_ZERO_SETTING, 708 &exit_ctls); 709 if (error) { 710 printf("vmx_init: processor does not support desired " 711 "exit controls\n"); 712 return (error); 713 } 714 715 /* Check support for VM-entry controls */ 716 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 717 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 718 &entry_ctls); 719 if (error) { 720 printf("vmx_init: processor does not support desired " 721 "entry controls\n"); 722 return (error); 723 } 724 725 /* 726 * Check support for optional features by testing them 727 * as individual bits 728 */ 729 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 730 MSR_VMX_TRUE_PROCBASED_CTLS, 731 PROCBASED_HLT_EXITING, 0, 732 &tmp) == 0); 733 734 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 735 MSR_VMX_PROCBASED_CTLS, 736 PROCBASED_MTF, 0, 737 &tmp) == 0); 738 739 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 740 MSR_VMX_TRUE_PROCBASED_CTLS, 741 PROCBASED_PAUSE_EXITING, 0, 742 &tmp) == 0); 743 744 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 745 MSR_VMX_PROCBASED_CTLS2, 746 PROCBASED2_UNRESTRICTED_GUEST, 0, 747 &tmp) == 0); 748 749 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 750 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 751 &tmp) == 0); 752 753 /* 754 * Check support for virtual interrupt delivery. 755 */ 756 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 757 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 758 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 759 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 760 761 use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 762 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 763 &tmp) == 0); 764 765 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 766 procbased2_vid_bits, 0, &tmp); 767 if (error == 0 && use_tpr_shadow) { 768 virtual_interrupt_delivery = 1; 769 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 770 &virtual_interrupt_delivery); 771 } 772 773 if (virtual_interrupt_delivery) { 774 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 775 procbased_ctls2 |= procbased2_vid_bits; 776 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 777 778 /* 779 * No need to emulate accesses to %CR8 if virtual 780 * interrupt delivery is enabled. 781 */ 782 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 783 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 784 785 /* 786 * Check for Posted Interrupts only if Virtual Interrupt 787 * Delivery is enabled. 788 */ 789 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 790 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 791 &tmp); 792 if (error == 0) { 793 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 794 &IDTVEC(justreturn)); 795 if (pirvec < 0) { 796 if (bootverbose) { 797 printf("vmx_init: unable to allocate " 798 "posted interrupt vector\n"); 799 } 800 } else { 801 posted_interrupts = 1; 802 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 803 &posted_interrupts); 804 } 805 } 806 } 807 808 if (posted_interrupts) 809 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 810 811 /* Initialize EPT */ 812 error = ept_init(ipinum); 813 if (error) { 814 printf("vmx_init: ept initialization failed (%d)\n", error); 815 return (error); 816 } 817 818 guest_l1d_flush = (cpu_ia32_arch_caps & 819 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0; 820 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush); 821 822 /* 823 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when 824 * available. Otherwise fall back to the software flush 825 * method which loads enough data from the kernel text to 826 * flush existing L1D content, both on VMX entry and on NMI 827 * return. 828 */ 829 if (guest_l1d_flush) { 830 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) { 831 guest_l1d_flush_sw = 1; 832 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw", 833 &guest_l1d_flush_sw); 834 } 835 if (guest_l1d_flush_sw) { 836 if (nmi_flush_l1d_sw <= 1) 837 nmi_flush_l1d_sw = 1; 838 } else { 839 msr_load_list[0].index = MSR_IA32_FLUSH_CMD; 840 msr_load_list[0].val = IA32_FLUSH_CMD_L1D; 841 } 842 } 843 844 /* 845 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 846 */ 847 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 848 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 849 cr0_ones_mask = fixed0 & fixed1; 850 cr0_zeros_mask = ~fixed0 & ~fixed1; 851 852 /* 853 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 854 * if unrestricted guest execution is allowed. 855 */ 856 if (cap_unrestricted_guest) 857 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 858 859 /* 860 * Do not allow the guest to set CR0_NW or CR0_CD. 861 */ 862 cr0_zeros_mask |= (CR0_NW | CR0_CD); 863 864 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 865 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 866 cr4_ones_mask = fixed0 & fixed1; 867 cr4_zeros_mask = ~fixed0 & ~fixed1; 868 869 vpid_init(); 870 871 vmx_msr_init(); 872 873 /* enable VMX operation */ 874 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 875 876 vmx_initialized = 1; 877 878 return (0); 879 } 880 881 static void 882 vmx_trigger_hostintr(int vector) 883 { 884 uintptr_t func; 885 struct gate_descriptor *gd; 886 887 gd = &idt[vector]; 888 889 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 890 "invalid vector %d", vector)); 891 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 892 vector)); 893 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 894 "has invalid type %d", vector, gd->gd_type)); 895 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 896 "has invalid dpl %d", vector, gd->gd_dpl)); 897 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 898 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 899 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 900 "IST %d", vector, gd->gd_ist)); 901 902 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 903 vmx_call_isr(func); 904 } 905 906 static int 907 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 908 { 909 int error, mask_ident, shadow_ident; 910 uint64_t mask_value; 911 912 if (which != 0 && which != 4) 913 panic("vmx_setup_cr_shadow: unknown cr%d", which); 914 915 if (which == 0) { 916 mask_ident = VMCS_CR0_MASK; 917 mask_value = cr0_ones_mask | cr0_zeros_mask; 918 shadow_ident = VMCS_CR0_SHADOW; 919 } else { 920 mask_ident = VMCS_CR4_MASK; 921 mask_value = cr4_ones_mask | cr4_zeros_mask; 922 shadow_ident = VMCS_CR4_SHADOW; 923 } 924 925 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 926 if (error) 927 return (error); 928 929 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 930 if (error) 931 return (error); 932 933 return (0); 934 } 935 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 936 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 937 938 static void * 939 vmx_vminit(struct vm *vm, pmap_t pmap) 940 { 941 uint16_t vpid[VM_MAXCPU]; 942 int i, error; 943 struct vmx *vmx; 944 struct vmcs *vmcs; 945 uint32_t exc_bitmap; 946 uint16_t maxcpus; 947 948 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 949 if ((uintptr_t)vmx & PAGE_MASK) { 950 panic("malloc of struct vmx not aligned on %d byte boundary", 951 PAGE_SIZE); 952 } 953 vmx->vm = vm; 954 955 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 956 957 /* 958 * Clean up EPTP-tagged guest physical and combined mappings 959 * 960 * VMX transitions are not required to invalidate any guest physical 961 * mappings. So, it may be possible for stale guest physical mappings 962 * to be present in the processor TLBs. 963 * 964 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 965 */ 966 ept_invalidate_mappings(vmx->eptp); 967 968 msr_bitmap_initialize(vmx->msr_bitmap); 969 970 /* 971 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 972 * The guest FSBASE and GSBASE are saved and restored during 973 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 974 * always restored from the vmcs host state area on vm-exit. 975 * 976 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 977 * how they are saved/restored so can be directly accessed by the 978 * guest. 979 * 980 * MSR_EFER is saved and restored in the guest VMCS area on a 981 * VM exit and entry respectively. It is also restored from the 982 * host VMCS area on a VM exit. 983 * 984 * The TSC MSR is exposed read-only. Writes are disallowed as 985 * that will impact the host TSC. If the guest does a write 986 * the "use TSC offsetting" execution control is enabled and the 987 * difference between the host TSC and the guest TSC is written 988 * into the TSC offset in the VMCS. 989 */ 990 if (guest_msr_rw(vmx, MSR_GSBASE) || 991 guest_msr_rw(vmx, MSR_FSBASE) || 992 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 993 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 994 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 995 guest_msr_rw(vmx, MSR_EFER) || 996 guest_msr_ro(vmx, MSR_TSC)) 997 panic("vmx_vminit: error setting guest msr access"); 998 999 vpid_alloc(vpid, VM_MAXCPU); 1000 1001 if (virtual_interrupt_delivery) { 1002 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 1003 APIC_ACCESS_ADDRESS); 1004 /* XXX this should really return an error to the caller */ 1005 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 1006 } 1007 1008 maxcpus = vm_get_maxcpus(vm); 1009 for (i = 0; i < maxcpus; i++) { 1010 vmcs = &vmx->vmcs[i]; 1011 vmcs->identifier = vmx_revision(); 1012 error = vmclear(vmcs); 1013 if (error != 0) { 1014 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 1015 error, i); 1016 } 1017 1018 vmx_msr_guest_init(vmx, i); 1019 1020 error = vmcs_init(vmcs); 1021 KASSERT(error == 0, ("vmcs_init error %d", error)); 1022 1023 VMPTRLD(vmcs); 1024 error = 0; 1025 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 1026 error += vmwrite(VMCS_EPTP, vmx->eptp); 1027 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 1028 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 1029 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 1030 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 1031 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 1032 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 1033 error += vmwrite(VMCS_VPID, vpid[i]); 1034 1035 if (guest_l1d_flush && !guest_l1d_flush_sw) { 1036 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract( 1037 (vm_offset_t)&msr_load_list[0])); 1038 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT, 1039 nitems(msr_load_list)); 1040 vmcs_write(VMCS_EXIT_MSR_STORE, 0); 1041 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0); 1042 } 1043 1044 /* exception bitmap */ 1045 if (vcpu_trace_exceptions(vm, i)) 1046 exc_bitmap = 0xffffffff; 1047 else 1048 exc_bitmap = 1 << IDT_MC; 1049 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 1050 1051 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1; 1052 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1); 1053 1054 if (virtual_interrupt_delivery) { 1055 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 1056 error += vmwrite(VMCS_VIRTUAL_APIC, 1057 vtophys(&vmx->apic_page[i])); 1058 error += vmwrite(VMCS_EOI_EXIT0, 0); 1059 error += vmwrite(VMCS_EOI_EXIT1, 0); 1060 error += vmwrite(VMCS_EOI_EXIT2, 0); 1061 error += vmwrite(VMCS_EOI_EXIT3, 0); 1062 } 1063 if (posted_interrupts) { 1064 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 1065 error += vmwrite(VMCS_PIR_DESC, 1066 vtophys(&vmx->pir_desc[i])); 1067 } 1068 VMCLEAR(vmcs); 1069 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); 1070 1071 vmx->cap[i].set = 0; 1072 vmx->cap[i].proc_ctls = procbased_ctls; 1073 vmx->cap[i].proc_ctls2 = procbased_ctls2; 1074 1075 vmx->state[i].nextrip = ~0; 1076 vmx->state[i].lastcpu = NOCPU; 1077 vmx->state[i].vpid = vpid[i]; 1078 1079 /* 1080 * Set up the CR0/4 shadows, and init the read shadow 1081 * to the power-on register value from the Intel Sys Arch. 1082 * CR0 - 0x60000010 1083 * CR4 - 0 1084 */ 1085 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 1086 if (error != 0) 1087 panic("vmx_setup_cr0_shadow %d", error); 1088 1089 error = vmx_setup_cr4_shadow(vmcs, 0); 1090 if (error != 0) 1091 panic("vmx_setup_cr4_shadow %d", error); 1092 1093 vmx->ctx[i].pmap = pmap; 1094 } 1095 1096 return (vmx); 1097 } 1098 1099 static int 1100 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 1101 { 1102 int handled, func; 1103 1104 func = vmxctx->guest_rax; 1105 1106 handled = x86_emulate_cpuid(vm, vcpu, 1107 (uint32_t*)(&vmxctx->guest_rax), 1108 (uint32_t*)(&vmxctx->guest_rbx), 1109 (uint32_t*)(&vmxctx->guest_rcx), 1110 (uint32_t*)(&vmxctx->guest_rdx)); 1111 return (handled); 1112 } 1113 1114 static __inline void 1115 vmx_run_trace(struct vmx *vmx, int vcpu) 1116 { 1117 #ifdef KTR 1118 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 1119 #endif 1120 } 1121 1122 static __inline void 1123 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 1124 int handled) 1125 { 1126 #ifdef KTR 1127 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 1128 handled ? "handled" : "unhandled", 1129 exit_reason_to_str(exit_reason), rip); 1130 #endif 1131 } 1132 1133 static __inline void 1134 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 1135 { 1136 #ifdef KTR 1137 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 1138 #endif 1139 } 1140 1141 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1142 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1143 1144 /* 1145 * Invalidate guest mappings identified by its vpid from the TLB. 1146 */ 1147 static __inline void 1148 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) 1149 { 1150 struct vmxstate *vmxstate; 1151 struct invvpid_desc invvpid_desc; 1152 1153 vmxstate = &vmx->state[vcpu]; 1154 if (vmxstate->vpid == 0) 1155 return; 1156 1157 if (!running) { 1158 /* 1159 * Set the 'lastcpu' to an invalid host cpu. 1160 * 1161 * This will invalidate TLB entries tagged with the vcpu's 1162 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1163 */ 1164 vmxstate->lastcpu = NOCPU; 1165 return; 1166 } 1167 1168 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1169 "critical section", __func__, vcpu)); 1170 1171 /* 1172 * Invalidate all mappings tagged with 'vpid' 1173 * 1174 * We do this because this vcpu was executing on a different host 1175 * cpu when it last ran. We do not track whether it invalidated 1176 * mappings associated with its 'vpid' during that run. So we must 1177 * assume that the mappings associated with 'vpid' on 'curcpu' are 1178 * stale and invalidate them. 1179 * 1180 * Note that we incur this penalty only when the scheduler chooses to 1181 * move the thread associated with this vcpu between host cpus. 1182 * 1183 * Note also that this will invalidate mappings tagged with 'vpid' 1184 * for "all" EP4TAs. 1185 */ 1186 if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { 1187 invvpid_desc._res1 = 0; 1188 invvpid_desc._res2 = 0; 1189 invvpid_desc.vpid = vmxstate->vpid; 1190 invvpid_desc.linear_addr = 0; 1191 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1192 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); 1193 } else { 1194 /* 1195 * The invvpid can be skipped if an invept is going to 1196 * be performed before entering the guest. The invept 1197 * will invalidate combined mappings tagged with 1198 * 'vmx->eptp' for all vpids. 1199 */ 1200 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); 1201 } 1202 } 1203 1204 static void 1205 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) 1206 { 1207 struct vmxstate *vmxstate; 1208 1209 vmxstate = &vmx->state[vcpu]; 1210 if (vmxstate->lastcpu == curcpu) 1211 return; 1212 1213 vmxstate->lastcpu = curcpu; 1214 1215 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 1216 1217 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1218 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1219 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1220 vmx_invvpid(vmx, vcpu, pmap, 1); 1221 } 1222 1223 /* 1224 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1225 */ 1226 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1227 1228 static void __inline 1229 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1230 { 1231 1232 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1233 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1234 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1235 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1236 } 1237 } 1238 1239 static void __inline 1240 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1241 { 1242 1243 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1244 ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); 1245 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1246 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1247 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1248 } 1249 1250 static void __inline 1251 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1252 { 1253 1254 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1255 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1256 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1257 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1258 } 1259 } 1260 1261 static void __inline 1262 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1263 { 1264 1265 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1266 ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); 1267 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1268 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1269 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1270 } 1271 1272 int 1273 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset) 1274 { 1275 int error; 1276 1277 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) { 1278 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET; 1279 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1280 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting"); 1281 } 1282 1283 error = vmwrite(VMCS_TSC_OFFSET, offset); 1284 1285 return (error); 1286 } 1287 1288 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1289 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1290 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1291 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1292 1293 static void 1294 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1295 { 1296 uint32_t gi, info; 1297 1298 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1299 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1300 "interruptibility-state %#x", gi)); 1301 1302 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1303 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1304 "VM-entry interruption information %#x", info)); 1305 1306 /* 1307 * Inject the virtual NMI. The vector must be the NMI IDT entry 1308 * or the VMCS entry check will fail. 1309 */ 1310 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1311 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1312 1313 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1314 1315 /* Clear the request */ 1316 vm_nmi_clear(vmx->vm, vcpu); 1317 } 1318 1319 static void 1320 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic, 1321 uint64_t guestrip) 1322 { 1323 int vector, need_nmi_exiting, extint_pending; 1324 uint64_t rflags, entryinfo; 1325 uint32_t gi, info; 1326 1327 if (vmx->state[vcpu].nextrip != guestrip) { 1328 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1329 if (gi & HWINTR_BLOCKING) { 1330 VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking " 1331 "cleared due to rip change: %#lx/%#lx", 1332 vmx->state[vcpu].nextrip, guestrip); 1333 gi &= ~HWINTR_BLOCKING; 1334 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1335 } 1336 } 1337 1338 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { 1339 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1340 "intinfo is not valid: %#lx", __func__, entryinfo)); 1341 1342 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1343 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1344 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1345 1346 info = entryinfo; 1347 vector = info & 0xff; 1348 if (vector == IDT_BP || vector == IDT_OF) { 1349 /* 1350 * VT-x requires #BP and #OF to be injected as software 1351 * exceptions. 1352 */ 1353 info &= ~VMCS_INTR_T_MASK; 1354 info |= VMCS_INTR_T_SWEXCEPTION; 1355 } 1356 1357 if (info & VMCS_INTR_DEL_ERRCODE) 1358 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1359 1360 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1361 } 1362 1363 if (vm_nmi_pending(vmx->vm, vcpu)) { 1364 /* 1365 * If there are no conditions blocking NMI injection then 1366 * inject it directly here otherwise enable "NMI window 1367 * exiting" to inject it as soon as we can. 1368 * 1369 * We also check for STI_BLOCKING because some implementations 1370 * don't allow NMI injection in this case. If we are running 1371 * on a processor that doesn't have this restriction it will 1372 * immediately exit and the NMI will be injected in the 1373 * "NMI window exiting" handler. 1374 */ 1375 need_nmi_exiting = 1; 1376 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1377 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1378 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1379 if ((info & VMCS_INTR_VALID) == 0) { 1380 vmx_inject_nmi(vmx, vcpu); 1381 need_nmi_exiting = 0; 1382 } else { 1383 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " 1384 "due to VM-entry intr info %#x", info); 1385 } 1386 } else { 1387 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " 1388 "Guest Interruptibility-state %#x", gi); 1389 } 1390 1391 if (need_nmi_exiting) 1392 vmx_set_nmi_window_exiting(vmx, vcpu); 1393 } 1394 1395 extint_pending = vm_extint_pending(vmx->vm, vcpu); 1396 1397 if (!extint_pending && virtual_interrupt_delivery) { 1398 vmx_inject_pir(vlapic); 1399 return; 1400 } 1401 1402 /* 1403 * If interrupt-window exiting is already in effect then don't bother 1404 * checking for pending interrupts. This is just an optimization and 1405 * not needed for correctness. 1406 */ 1407 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1408 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " 1409 "pending int_window_exiting"); 1410 return; 1411 } 1412 1413 if (!extint_pending) { 1414 /* Ask the local apic for a vector to inject */ 1415 if (!vlapic_pending_intr(vlapic, &vector)) 1416 return; 1417 1418 /* 1419 * From the Intel SDM, Volume 3, Section "Maskable 1420 * Hardware Interrupts": 1421 * - maskable interrupt vectors [16,255] can be delivered 1422 * through the local APIC. 1423 */ 1424 KASSERT(vector >= 16 && vector <= 255, 1425 ("invalid vector %d from local APIC", vector)); 1426 } else { 1427 /* Ask the legacy pic for a vector to inject */ 1428 vatpic_pending_intr(vmx->vm, &vector); 1429 1430 /* 1431 * From the Intel SDM, Volume 3, Section "Maskable 1432 * Hardware Interrupts": 1433 * - maskable interrupt vectors [0,255] can be delivered 1434 * through the INTR pin. 1435 */ 1436 KASSERT(vector >= 0 && vector <= 255, 1437 ("invalid vector %d from INTR", vector)); 1438 } 1439 1440 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1441 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1442 if ((rflags & PSL_I) == 0) { 1443 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1444 "rflags %#lx", vector, rflags); 1445 goto cantinject; 1446 } 1447 1448 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1449 if (gi & HWINTR_BLOCKING) { 1450 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1451 "Guest Interruptibility-state %#x", vector, gi); 1452 goto cantinject; 1453 } 1454 1455 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1456 if (info & VMCS_INTR_VALID) { 1457 /* 1458 * This is expected and could happen for multiple reasons: 1459 * - A vectoring VM-entry was aborted due to astpending 1460 * - A VM-exit happened during event injection. 1461 * - An exception was injected above. 1462 * - An NMI was injected above or after "NMI window exiting" 1463 */ 1464 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1465 "VM-entry intr info %#x", vector, info); 1466 goto cantinject; 1467 } 1468 1469 /* Inject the interrupt */ 1470 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1471 info |= vector; 1472 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1473 1474 if (!extint_pending) { 1475 /* Update the Local APIC ISR */ 1476 vlapic_intr_accepted(vlapic, vector); 1477 } else { 1478 vm_extint_clear(vmx->vm, vcpu); 1479 vatpic_intr_accepted(vmx->vm, vector); 1480 1481 /* 1482 * After we accepted the current ExtINT the PIC may 1483 * have posted another one. If that is the case, set 1484 * the Interrupt Window Exiting execution control so 1485 * we can inject that one too. 1486 * 1487 * Also, interrupt window exiting allows us to inject any 1488 * pending APIC vector that was preempted by the ExtINT 1489 * as soon as possible. This applies both for the software 1490 * emulated vlapic and the hardware assisted virtual APIC. 1491 */ 1492 vmx_set_int_window_exiting(vmx, vcpu); 1493 } 1494 1495 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1496 1497 return; 1498 1499 cantinject: 1500 /* 1501 * Set the Interrupt Window Exiting execution control so we can inject 1502 * the interrupt as soon as blocking condition goes away. 1503 */ 1504 vmx_set_int_window_exiting(vmx, vcpu); 1505 } 1506 1507 /* 1508 * If the Virtual NMIs execution control is '1' then the logical processor 1509 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1510 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1511 * virtual-NMI blocking. 1512 * 1513 * This unblocking occurs even if the IRET causes a fault. In this case the 1514 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1515 */ 1516 static void 1517 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) 1518 { 1519 uint32_t gi; 1520 1521 VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); 1522 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1523 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1524 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1525 } 1526 1527 static void 1528 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) 1529 { 1530 uint32_t gi; 1531 1532 VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); 1533 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1534 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1535 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1536 } 1537 1538 static void 1539 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) 1540 { 1541 uint32_t gi; 1542 1543 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1544 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1545 ("NMI blocking is not in effect %#x", gi)); 1546 } 1547 1548 static int 1549 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1550 { 1551 struct vmxctx *vmxctx; 1552 uint64_t xcrval; 1553 const struct xsave_limits *limits; 1554 1555 vmxctx = &vmx->ctx[vcpu]; 1556 limits = vmm_get_xsave_limits(); 1557 1558 /* 1559 * Note that the processor raises a GP# fault on its own if 1560 * xsetbv is executed for CPL != 0, so we do not have to 1561 * emulate that fault here. 1562 */ 1563 1564 /* Only xcr0 is supported. */ 1565 if (vmxctx->guest_rcx != 0) { 1566 vm_inject_gp(vmx->vm, vcpu); 1567 return (HANDLED); 1568 } 1569 1570 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1571 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1572 vm_inject_ud(vmx->vm, vcpu); 1573 return (HANDLED); 1574 } 1575 1576 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1577 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1578 vm_inject_gp(vmx->vm, vcpu); 1579 return (HANDLED); 1580 } 1581 1582 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1583 vm_inject_gp(vmx->vm, vcpu); 1584 return (HANDLED); 1585 } 1586 1587 /* AVX (YMM_Hi128) requires SSE. */ 1588 if (xcrval & XFEATURE_ENABLED_AVX && 1589 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1590 vm_inject_gp(vmx->vm, vcpu); 1591 return (HANDLED); 1592 } 1593 1594 /* 1595 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1596 * ZMM_Hi256, and Hi16_ZMM. 1597 */ 1598 if (xcrval & XFEATURE_AVX512 && 1599 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1600 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1601 vm_inject_gp(vmx->vm, vcpu); 1602 return (HANDLED); 1603 } 1604 1605 /* 1606 * Intel MPX requires both bound register state flags to be 1607 * set. 1608 */ 1609 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1610 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1611 vm_inject_gp(vmx->vm, vcpu); 1612 return (HANDLED); 1613 } 1614 1615 /* 1616 * This runs "inside" vmrun() with the guest's FPU state, so 1617 * modifying xcr0 directly modifies the guest's xcr0, not the 1618 * host's. 1619 */ 1620 load_xcr(0, xcrval); 1621 return (HANDLED); 1622 } 1623 1624 static uint64_t 1625 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) 1626 { 1627 const struct vmxctx *vmxctx; 1628 1629 vmxctx = &vmx->ctx[vcpu]; 1630 1631 switch (ident) { 1632 case 0: 1633 return (vmxctx->guest_rax); 1634 case 1: 1635 return (vmxctx->guest_rcx); 1636 case 2: 1637 return (vmxctx->guest_rdx); 1638 case 3: 1639 return (vmxctx->guest_rbx); 1640 case 4: 1641 return (vmcs_read(VMCS_GUEST_RSP)); 1642 case 5: 1643 return (vmxctx->guest_rbp); 1644 case 6: 1645 return (vmxctx->guest_rsi); 1646 case 7: 1647 return (vmxctx->guest_rdi); 1648 case 8: 1649 return (vmxctx->guest_r8); 1650 case 9: 1651 return (vmxctx->guest_r9); 1652 case 10: 1653 return (vmxctx->guest_r10); 1654 case 11: 1655 return (vmxctx->guest_r11); 1656 case 12: 1657 return (vmxctx->guest_r12); 1658 case 13: 1659 return (vmxctx->guest_r13); 1660 case 14: 1661 return (vmxctx->guest_r14); 1662 case 15: 1663 return (vmxctx->guest_r15); 1664 default: 1665 panic("invalid vmx register %d", ident); 1666 } 1667 } 1668 1669 static void 1670 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) 1671 { 1672 struct vmxctx *vmxctx; 1673 1674 vmxctx = &vmx->ctx[vcpu]; 1675 1676 switch (ident) { 1677 case 0: 1678 vmxctx->guest_rax = regval; 1679 break; 1680 case 1: 1681 vmxctx->guest_rcx = regval; 1682 break; 1683 case 2: 1684 vmxctx->guest_rdx = regval; 1685 break; 1686 case 3: 1687 vmxctx->guest_rbx = regval; 1688 break; 1689 case 4: 1690 vmcs_write(VMCS_GUEST_RSP, regval); 1691 break; 1692 case 5: 1693 vmxctx->guest_rbp = regval; 1694 break; 1695 case 6: 1696 vmxctx->guest_rsi = regval; 1697 break; 1698 case 7: 1699 vmxctx->guest_rdi = regval; 1700 break; 1701 case 8: 1702 vmxctx->guest_r8 = regval; 1703 break; 1704 case 9: 1705 vmxctx->guest_r9 = regval; 1706 break; 1707 case 10: 1708 vmxctx->guest_r10 = regval; 1709 break; 1710 case 11: 1711 vmxctx->guest_r11 = regval; 1712 break; 1713 case 12: 1714 vmxctx->guest_r12 = regval; 1715 break; 1716 case 13: 1717 vmxctx->guest_r13 = regval; 1718 break; 1719 case 14: 1720 vmxctx->guest_r14 = regval; 1721 break; 1722 case 15: 1723 vmxctx->guest_r15 = regval; 1724 break; 1725 default: 1726 panic("invalid vmx register %d", ident); 1727 } 1728 } 1729 1730 static int 1731 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1732 { 1733 uint64_t crval, regval; 1734 1735 /* We only handle mov to %cr0 at this time */ 1736 if ((exitqual & 0xf0) != 0x00) 1737 return (UNHANDLED); 1738 1739 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1740 1741 vmcs_write(VMCS_CR0_SHADOW, regval); 1742 1743 crval = regval | cr0_ones_mask; 1744 crval &= ~cr0_zeros_mask; 1745 vmcs_write(VMCS_GUEST_CR0, crval); 1746 1747 if (regval & CR0_PG) { 1748 uint64_t efer, entry_ctls; 1749 1750 /* 1751 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1752 * the "IA-32e mode guest" bit in VM-entry control must be 1753 * equal. 1754 */ 1755 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1756 if (efer & EFER_LME) { 1757 efer |= EFER_LMA; 1758 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1759 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1760 entry_ctls |= VM_ENTRY_GUEST_LMA; 1761 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1762 } 1763 } 1764 1765 return (HANDLED); 1766 } 1767 1768 static int 1769 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1770 { 1771 uint64_t crval, regval; 1772 1773 /* We only handle mov to %cr4 at this time */ 1774 if ((exitqual & 0xf0) != 0x00) 1775 return (UNHANDLED); 1776 1777 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1778 1779 vmcs_write(VMCS_CR4_SHADOW, regval); 1780 1781 crval = regval | cr4_ones_mask; 1782 crval &= ~cr4_zeros_mask; 1783 vmcs_write(VMCS_GUEST_CR4, crval); 1784 1785 return (HANDLED); 1786 } 1787 1788 static int 1789 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1790 { 1791 struct vlapic *vlapic; 1792 uint64_t cr8; 1793 int regnum; 1794 1795 /* We only handle mov %cr8 to/from a register at this time. */ 1796 if ((exitqual & 0xe0) != 0x00) { 1797 return (UNHANDLED); 1798 } 1799 1800 vlapic = vm_lapic(vmx->vm, vcpu); 1801 regnum = (exitqual >> 8) & 0xf; 1802 if (exitqual & 0x10) { 1803 cr8 = vlapic_get_cr8(vlapic); 1804 vmx_set_guest_reg(vmx, vcpu, regnum, cr8); 1805 } else { 1806 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); 1807 vlapic_set_cr8(vlapic, cr8); 1808 } 1809 1810 return (HANDLED); 1811 } 1812 1813 /* 1814 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1815 */ 1816 static int 1817 vmx_cpl(void) 1818 { 1819 uint32_t ssar; 1820 1821 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1822 return ((ssar >> 5) & 0x3); 1823 } 1824 1825 static enum vm_cpu_mode 1826 vmx_cpu_mode(void) 1827 { 1828 uint32_t csar; 1829 1830 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1831 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1832 if (csar & 0x2000) 1833 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1834 else 1835 return (CPU_MODE_COMPATIBILITY); 1836 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1837 return (CPU_MODE_PROTECTED); 1838 } else { 1839 return (CPU_MODE_REAL); 1840 } 1841 } 1842 1843 static enum vm_paging_mode 1844 vmx_paging_mode(void) 1845 { 1846 1847 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1848 return (PAGING_MODE_FLAT); 1849 if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) 1850 return (PAGING_MODE_32); 1851 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) 1852 return (PAGING_MODE_64); 1853 else 1854 return (PAGING_MODE_PAE); 1855 } 1856 1857 static uint64_t 1858 inout_str_index(struct vmx *vmx, int vcpuid, int in) 1859 { 1860 uint64_t val; 1861 int error; 1862 enum vm_reg_name reg; 1863 1864 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1865 error = vmx_getreg(vmx, vcpuid, reg, &val); 1866 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1867 return (val); 1868 } 1869 1870 static uint64_t 1871 inout_str_count(struct vmx *vmx, int vcpuid, int rep) 1872 { 1873 uint64_t val; 1874 int error; 1875 1876 if (rep) { 1877 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); 1878 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1879 } else { 1880 val = 1; 1881 } 1882 return (val); 1883 } 1884 1885 static int 1886 inout_str_addrsize(uint32_t inst_info) 1887 { 1888 uint32_t size; 1889 1890 size = (inst_info >> 7) & 0x7; 1891 switch (size) { 1892 case 0: 1893 return (2); /* 16 bit */ 1894 case 1: 1895 return (4); /* 32 bit */ 1896 case 2: 1897 return (8); /* 64 bit */ 1898 default: 1899 panic("%s: invalid size encoding %d", __func__, size); 1900 } 1901 } 1902 1903 static void 1904 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, 1905 struct vm_inout_str *vis) 1906 { 1907 int error, s; 1908 1909 if (in) { 1910 vis->seg_name = VM_REG_GUEST_ES; 1911 } else { 1912 s = (inst_info >> 15) & 0x7; 1913 vis->seg_name = vm_segment_name(s); 1914 } 1915 1916 error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); 1917 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 1918 } 1919 1920 static void 1921 vmx_paging_info(struct vm_guest_paging *paging) 1922 { 1923 paging->cr3 = vmcs_guest_cr3(); 1924 paging->cpl = vmx_cpl(); 1925 paging->cpu_mode = vmx_cpu_mode(); 1926 paging->paging_mode = vmx_paging_mode(); 1927 } 1928 1929 static void 1930 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 1931 { 1932 struct vm_guest_paging *paging; 1933 uint32_t csar; 1934 1935 paging = &vmexit->u.inst_emul.paging; 1936 1937 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1938 vmexit->inst_length = 0; 1939 vmexit->u.inst_emul.gpa = gpa; 1940 vmexit->u.inst_emul.gla = gla; 1941 vmx_paging_info(paging); 1942 switch (paging->cpu_mode) { 1943 case CPU_MODE_REAL: 1944 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1945 vmexit->u.inst_emul.cs_d = 0; 1946 break; 1947 case CPU_MODE_PROTECTED: 1948 case CPU_MODE_COMPATIBILITY: 1949 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1950 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1951 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 1952 break; 1953 default: 1954 vmexit->u.inst_emul.cs_base = 0; 1955 vmexit->u.inst_emul.cs_d = 0; 1956 break; 1957 } 1958 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 1959 } 1960 1961 static int 1962 ept_fault_type(uint64_t ept_qual) 1963 { 1964 int fault_type; 1965 1966 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1967 fault_type = VM_PROT_WRITE; 1968 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1969 fault_type = VM_PROT_EXECUTE; 1970 else 1971 fault_type= VM_PROT_READ; 1972 1973 return (fault_type); 1974 } 1975 1976 static bool 1977 ept_emulation_fault(uint64_t ept_qual) 1978 { 1979 int read, write; 1980 1981 /* EPT fault on an instruction fetch doesn't make sense here */ 1982 if (ept_qual & EPT_VIOLATION_INST_FETCH) 1983 return (false); 1984 1985 /* EPT fault must be a read fault or a write fault */ 1986 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 1987 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 1988 if ((read | write) == 0) 1989 return (false); 1990 1991 /* 1992 * The EPT violation must have been caused by accessing a 1993 * guest-physical address that is a translation of a guest-linear 1994 * address. 1995 */ 1996 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 1997 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 1998 return (false); 1999 } 2000 2001 return (true); 2002 } 2003 2004 static __inline int 2005 apic_access_virtualization(struct vmx *vmx, int vcpuid) 2006 { 2007 uint32_t proc_ctls2; 2008 2009 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2010 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 2011 } 2012 2013 static __inline int 2014 x2apic_virtualization(struct vmx *vmx, int vcpuid) 2015 { 2016 uint32_t proc_ctls2; 2017 2018 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2019 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 2020 } 2021 2022 static int 2023 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, 2024 uint64_t qual) 2025 { 2026 int error, handled, offset; 2027 uint32_t *apic_regs, vector; 2028 bool retu; 2029 2030 handled = HANDLED; 2031 offset = APIC_WRITE_OFFSET(qual); 2032 2033 if (!apic_access_virtualization(vmx, vcpuid)) { 2034 /* 2035 * In general there should not be any APIC write VM-exits 2036 * unless APIC-access virtualization is enabled. 2037 * 2038 * However self-IPI virtualization can legitimately trigger 2039 * an APIC-write VM-exit so treat it specially. 2040 */ 2041 if (x2apic_virtualization(vmx, vcpuid) && 2042 offset == APIC_OFFSET_SELF_IPI) { 2043 apic_regs = (uint32_t *)(vlapic->apic_page); 2044 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 2045 vlapic_self_ipi_handler(vlapic, vector); 2046 return (HANDLED); 2047 } else 2048 return (UNHANDLED); 2049 } 2050 2051 switch (offset) { 2052 case APIC_OFFSET_ID: 2053 vlapic_id_write_handler(vlapic); 2054 break; 2055 case APIC_OFFSET_LDR: 2056 vlapic_ldr_write_handler(vlapic); 2057 break; 2058 case APIC_OFFSET_DFR: 2059 vlapic_dfr_write_handler(vlapic); 2060 break; 2061 case APIC_OFFSET_SVR: 2062 vlapic_svr_write_handler(vlapic); 2063 break; 2064 case APIC_OFFSET_ESR: 2065 vlapic_esr_write_handler(vlapic); 2066 break; 2067 case APIC_OFFSET_ICR_LOW: 2068 retu = false; 2069 error = vlapic_icrlo_write_handler(vlapic, &retu); 2070 if (error != 0 || retu) 2071 handled = UNHANDLED; 2072 break; 2073 case APIC_OFFSET_CMCI_LVT: 2074 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 2075 vlapic_lvt_write_handler(vlapic, offset); 2076 break; 2077 case APIC_OFFSET_TIMER_ICR: 2078 vlapic_icrtmr_write_handler(vlapic); 2079 break; 2080 case APIC_OFFSET_TIMER_DCR: 2081 vlapic_dcr_write_handler(vlapic); 2082 break; 2083 default: 2084 handled = UNHANDLED; 2085 break; 2086 } 2087 return (handled); 2088 } 2089 2090 static bool 2091 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) 2092 { 2093 2094 if (apic_access_virtualization(vmx, vcpuid) && 2095 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 2096 return (true); 2097 else 2098 return (false); 2099 } 2100 2101 static int 2102 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2103 { 2104 uint64_t qual; 2105 int access_type, offset, allowed; 2106 2107 if (!apic_access_virtualization(vmx, vcpuid)) 2108 return (UNHANDLED); 2109 2110 qual = vmexit->u.vmx.exit_qualification; 2111 access_type = APIC_ACCESS_TYPE(qual); 2112 offset = APIC_ACCESS_OFFSET(qual); 2113 2114 allowed = 0; 2115 if (access_type == 0) { 2116 /* 2117 * Read data access to the following registers is expected. 2118 */ 2119 switch (offset) { 2120 case APIC_OFFSET_APR: 2121 case APIC_OFFSET_PPR: 2122 case APIC_OFFSET_RRR: 2123 case APIC_OFFSET_CMCI_LVT: 2124 case APIC_OFFSET_TIMER_CCR: 2125 allowed = 1; 2126 break; 2127 default: 2128 break; 2129 } 2130 } else if (access_type == 1) { 2131 /* 2132 * Write data access to the following registers is expected. 2133 */ 2134 switch (offset) { 2135 case APIC_OFFSET_VER: 2136 case APIC_OFFSET_APR: 2137 case APIC_OFFSET_PPR: 2138 case APIC_OFFSET_RRR: 2139 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 2140 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 2141 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 2142 case APIC_OFFSET_CMCI_LVT: 2143 case APIC_OFFSET_TIMER_CCR: 2144 allowed = 1; 2145 break; 2146 default: 2147 break; 2148 } 2149 } 2150 2151 if (allowed) { 2152 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 2153 VIE_INVALID_GLA); 2154 } 2155 2156 /* 2157 * Regardless of whether the APIC-access is allowed this handler 2158 * always returns UNHANDLED: 2159 * - if the access is allowed then it is handled by emulating the 2160 * instruction that caused the VM-exit (outside the critical section) 2161 * - if the access is not allowed then it will be converted to an 2162 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 2163 */ 2164 return (UNHANDLED); 2165 } 2166 2167 static enum task_switch_reason 2168 vmx_task_switch_reason(uint64_t qual) 2169 { 2170 int reason; 2171 2172 reason = (qual >> 30) & 0x3; 2173 switch (reason) { 2174 case 0: 2175 return (TSR_CALL); 2176 case 1: 2177 return (TSR_IRET); 2178 case 2: 2179 return (TSR_JMP); 2180 case 3: 2181 return (TSR_IDT_GATE); 2182 default: 2183 panic("%s: invalid reason %d", __func__, reason); 2184 } 2185 } 2186 2187 static int 2188 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) 2189 { 2190 int error; 2191 2192 if (lapic_msr(num)) 2193 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); 2194 else 2195 error = vmx_wrmsr(vmx, vcpuid, num, val, retu); 2196 2197 return (error); 2198 } 2199 2200 static int 2201 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) 2202 { 2203 struct vmxctx *vmxctx; 2204 uint64_t result; 2205 uint32_t eax, edx; 2206 int error; 2207 2208 if (lapic_msr(num)) 2209 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); 2210 else 2211 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); 2212 2213 if (error == 0) { 2214 eax = result; 2215 vmxctx = &vmx->ctx[vcpuid]; 2216 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2217 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2218 2219 edx = result >> 32; 2220 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2221 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2222 } 2223 2224 return (error); 2225 } 2226 2227 static int 2228 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 2229 { 2230 int error, errcode, errcode_valid, handled, in; 2231 struct vmxctx *vmxctx; 2232 struct vlapic *vlapic; 2233 struct vm_inout_str *vis; 2234 struct vm_task_switch *ts; 2235 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2236 uint32_t intr_type, intr_vec, reason; 2237 uint64_t exitintinfo, qual, gpa; 2238 bool retu; 2239 2240 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2241 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2242 2243 handled = UNHANDLED; 2244 vmxctx = &vmx->ctx[vcpu]; 2245 2246 qual = vmexit->u.vmx.exit_qualification; 2247 reason = vmexit->u.vmx.exit_reason; 2248 vmexit->exitcode = VM_EXITCODE_BOGUS; 2249 2250 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 2251 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit); 2252 2253 /* 2254 * VM-entry failures during or after loading guest state. 2255 * 2256 * These VM-exits are uncommon but must be handled specially 2257 * as most VM-exit fields are not populated as usual. 2258 */ 2259 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2260 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); 2261 __asm __volatile("int $18"); 2262 return (1); 2263 } 2264 2265 /* 2266 * VM exits that can be triggered during event delivery need to 2267 * be handled specially by re-injecting the event if the IDT 2268 * vectoring information field's valid bit is set. 2269 * 2270 * See "Information for VM Exits During Event Delivery" in Intel SDM 2271 * for details. 2272 */ 2273 idtvec_info = vmcs_idt_vectoring_info(); 2274 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2275 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2276 exitintinfo = idtvec_info; 2277 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2278 idtvec_err = vmcs_idt_vectoring_err(); 2279 exitintinfo |= (uint64_t)idtvec_err << 32; 2280 } 2281 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); 2282 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2283 __func__, error)); 2284 2285 /* 2286 * If 'virtual NMIs' are being used and the VM-exit 2287 * happened while injecting an NMI during the previous 2288 * VM-entry, then clear "blocking by NMI" in the 2289 * Guest Interruptibility-State so the NMI can be 2290 * reinjected on the subsequent VM-entry. 2291 * 2292 * However, if the NMI was being delivered through a task 2293 * gate, then the new task must start execution with NMIs 2294 * blocked so don't clear NMI blocking in this case. 2295 */ 2296 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2297 if (intr_type == VMCS_INTR_T_NMI) { 2298 if (reason != EXIT_REASON_TASK_SWITCH) 2299 vmx_clear_nmi_blocking(vmx, vcpu); 2300 else 2301 vmx_assert_nmi_blocking(vmx, vcpu); 2302 } 2303 2304 /* 2305 * Update VM-entry instruction length if the event being 2306 * delivered was a software interrupt or software exception. 2307 */ 2308 if (intr_type == VMCS_INTR_T_SWINTR || 2309 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2310 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2311 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2312 } 2313 } 2314 2315 switch (reason) { 2316 case EXIT_REASON_TASK_SWITCH: 2317 ts = &vmexit->u.task_switch; 2318 ts->tsssel = qual & 0xffff; 2319 ts->reason = vmx_task_switch_reason(qual); 2320 ts->ext = 0; 2321 ts->errcode_valid = 0; 2322 vmx_paging_info(&ts->paging); 2323 /* 2324 * If the task switch was due to a CALL, JMP, IRET, software 2325 * interrupt (INT n) or software exception (INT3, INTO), 2326 * then the saved %rip references the instruction that caused 2327 * the task switch. The instruction length field in the VMCS 2328 * is valid in this case. 2329 * 2330 * In all other cases (e.g., NMI, hardware exception) the 2331 * saved %rip is one that would have been saved in the old TSS 2332 * had the task switch completed normally so the instruction 2333 * length field is not needed in this case and is explicitly 2334 * set to 0. 2335 */ 2336 if (ts->reason == TSR_IDT_GATE) { 2337 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2338 ("invalid idtvec_info %#x for IDT task switch", 2339 idtvec_info)); 2340 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2341 if (intr_type != VMCS_INTR_T_SWINTR && 2342 intr_type != VMCS_INTR_T_SWEXCEPTION && 2343 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2344 /* Task switch triggered by external event */ 2345 ts->ext = 1; 2346 vmexit->inst_length = 0; 2347 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2348 ts->errcode_valid = 1; 2349 ts->errcode = vmcs_idt_vectoring_err(); 2350 } 2351 } 2352 } 2353 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2354 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts); 2355 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " 2356 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2357 ts->ext ? "external" : "internal", 2358 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2359 break; 2360 case EXIT_REASON_CR_ACCESS: 2361 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 2362 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual); 2363 switch (qual & 0xf) { 2364 case 0: 2365 handled = vmx_emulate_cr0_access(vmx, vcpu, qual); 2366 break; 2367 case 4: 2368 handled = vmx_emulate_cr4_access(vmx, vcpu, qual); 2369 break; 2370 case 8: 2371 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2372 break; 2373 } 2374 break; 2375 case EXIT_REASON_RDMSR: 2376 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 2377 retu = false; 2378 ecx = vmxctx->guest_rcx; 2379 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); 2380 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx); 2381 error = emulate_rdmsr(vmx, vcpu, ecx, &retu); 2382 if (error) { 2383 vmexit->exitcode = VM_EXITCODE_RDMSR; 2384 vmexit->u.msr.code = ecx; 2385 } else if (!retu) { 2386 handled = HANDLED; 2387 } else { 2388 /* Return to userspace with a valid exitcode */ 2389 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2390 ("emulate_rdmsr retu with bogus exitcode")); 2391 } 2392 break; 2393 case EXIT_REASON_WRMSR: 2394 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 2395 retu = false; 2396 eax = vmxctx->guest_rax; 2397 ecx = vmxctx->guest_rcx; 2398 edx = vmxctx->guest_rdx; 2399 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", 2400 ecx, (uint64_t)edx << 32 | eax); 2401 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx, 2402 (uint64_t)edx << 32 | eax); 2403 error = emulate_wrmsr(vmx, vcpu, ecx, 2404 (uint64_t)edx << 32 | eax, &retu); 2405 if (error) { 2406 vmexit->exitcode = VM_EXITCODE_WRMSR; 2407 vmexit->u.msr.code = ecx; 2408 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2409 } else if (!retu) { 2410 handled = HANDLED; 2411 } else { 2412 /* Return to userspace with a valid exitcode */ 2413 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2414 ("emulate_wrmsr retu with bogus exitcode")); 2415 } 2416 break; 2417 case EXIT_REASON_HLT: 2418 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 2419 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit); 2420 vmexit->exitcode = VM_EXITCODE_HLT; 2421 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2422 if (virtual_interrupt_delivery) 2423 vmexit->u.hlt.intr_status = 2424 vmcs_read(VMCS_GUEST_INTR_STATUS); 2425 else 2426 vmexit->u.hlt.intr_status = 0; 2427 break; 2428 case EXIT_REASON_MTF: 2429 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 2430 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit); 2431 vmexit->exitcode = VM_EXITCODE_MTRAP; 2432 vmexit->inst_length = 0; 2433 break; 2434 case EXIT_REASON_PAUSE: 2435 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 2436 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit); 2437 vmexit->exitcode = VM_EXITCODE_PAUSE; 2438 break; 2439 case EXIT_REASON_INTR_WINDOW: 2440 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 2441 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit); 2442 vmx_clear_int_window_exiting(vmx, vcpu); 2443 return (1); 2444 case EXIT_REASON_EXT_INTR: 2445 /* 2446 * External interrupts serve only to cause VM exits and allow 2447 * the host interrupt handler to run. 2448 * 2449 * If this external interrupt triggers a virtual interrupt 2450 * to a VM, then that state will be recorded by the 2451 * host interrupt handler in the VM's softc. We will inject 2452 * this virtual interrupt during the subsequent VM enter. 2453 */ 2454 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2455 SDT_PROBE4(vmm, vmx, exit, interrupt, 2456 vmx, vcpu, vmexit, intr_info); 2457 2458 /* 2459 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2460 * This appears to be a bug in VMware Fusion? 2461 */ 2462 if (!(intr_info & VMCS_INTR_VALID)) 2463 return (1); 2464 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2465 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2466 ("VM exit interruption info invalid: %#x", intr_info)); 2467 vmx_trigger_hostintr(intr_info & 0xff); 2468 2469 /* 2470 * This is special. We want to treat this as an 'handled' 2471 * VM-exit but not increment the instruction pointer. 2472 */ 2473 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 2474 return (1); 2475 case EXIT_REASON_NMI_WINDOW: 2476 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit); 2477 /* Exit to allow the pending virtual NMI to be injected */ 2478 if (vm_nmi_pending(vmx->vm, vcpu)) 2479 vmx_inject_nmi(vmx, vcpu); 2480 vmx_clear_nmi_window_exiting(vmx, vcpu); 2481 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 2482 return (1); 2483 case EXIT_REASON_INOUT: 2484 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 2485 vmexit->exitcode = VM_EXITCODE_INOUT; 2486 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2487 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2488 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2489 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2490 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2491 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2492 if (vmexit->u.inout.string) { 2493 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2494 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2495 vis = &vmexit->u.inout_str; 2496 vmx_paging_info(&vis->paging); 2497 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2498 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2499 vis->index = inout_str_index(vmx, vcpu, in); 2500 vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); 2501 vis->addrsize = inout_str_addrsize(inst_info); 2502 inout_str_seginfo(vmx, vcpu, inst_info, in, vis); 2503 } 2504 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit); 2505 break; 2506 case EXIT_REASON_CPUID: 2507 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 2508 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit); 2509 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 2510 break; 2511 case EXIT_REASON_EXCEPTION: 2512 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); 2513 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2514 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2515 ("VM exit interruption info invalid: %#x", intr_info)); 2516 2517 intr_vec = intr_info & 0xff; 2518 intr_type = intr_info & VMCS_INTR_T_MASK; 2519 2520 /* 2521 * If Virtual NMIs control is 1 and the VM-exit is due to a 2522 * fault encountered during the execution of IRET then we must 2523 * restore the state of "virtual-NMI blocking" before resuming 2524 * the guest. 2525 * 2526 * See "Resuming Guest Software after Handling an Exception". 2527 * See "Information for VM Exits Due to Vectored Events". 2528 */ 2529 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2530 (intr_vec != IDT_DF) && 2531 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2532 vmx_restore_nmi_blocking(vmx, vcpu); 2533 2534 /* 2535 * The NMI has already been handled in vmx_exit_handle_nmi(). 2536 */ 2537 if (intr_type == VMCS_INTR_T_NMI) 2538 return (1); 2539 2540 /* 2541 * Call the machine check handler by hand. Also don't reflect 2542 * the machine check back into the guest. 2543 */ 2544 if (intr_vec == IDT_MC) { 2545 VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); 2546 __asm __volatile("int $18"); 2547 return (1); 2548 } 2549 2550 if (intr_vec == IDT_PF) { 2551 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2552 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2553 __func__, error)); 2554 } 2555 2556 /* 2557 * Software exceptions exhibit trap-like behavior. This in 2558 * turn requires populating the VM-entry instruction length 2559 * so that the %rip in the trap frame is past the INT3/INTO 2560 * instruction. 2561 */ 2562 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2563 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2564 2565 /* Reflect all other exceptions back into the guest */ 2566 errcode_valid = errcode = 0; 2567 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2568 errcode_valid = 1; 2569 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2570 } 2571 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " 2572 "the guest", intr_vec, errcode); 2573 SDT_PROBE5(vmm, vmx, exit, exception, 2574 vmx, vcpu, vmexit, intr_vec, errcode); 2575 error = vm_inject_exception(vmx->vm, vcpu, intr_vec, 2576 errcode_valid, errcode, 0); 2577 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2578 __func__, error)); 2579 return (1); 2580 2581 case EXIT_REASON_EPT_FAULT: 2582 /* 2583 * If 'gpa' lies within the address space allocated to 2584 * memory then this must be a nested page fault otherwise 2585 * this must be an instruction that accesses MMIO space. 2586 */ 2587 gpa = vmcs_gpa(); 2588 if (vm_mem_allocated(vmx->vm, vcpu, gpa) || 2589 apic_access_fault(vmx, vcpu, gpa)) { 2590 vmexit->exitcode = VM_EXITCODE_PAGING; 2591 vmexit->inst_length = 0; 2592 vmexit->u.paging.gpa = gpa; 2593 vmexit->u.paging.fault_type = ept_fault_type(qual); 2594 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 2595 SDT_PROBE5(vmm, vmx, exit, nestedfault, 2596 vmx, vcpu, vmexit, gpa, qual); 2597 } else if (ept_emulation_fault(qual)) { 2598 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2599 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); 2600 SDT_PROBE4(vmm, vmx, exit, mmiofault, 2601 vmx, vcpu, vmexit, gpa); 2602 } 2603 /* 2604 * If Virtual NMIs control is 1 and the VM-exit is due to an 2605 * EPT fault during the execution of IRET then we must restore 2606 * the state of "virtual-NMI blocking" before resuming. 2607 * 2608 * See description of "NMI unblocking due to IRET" in 2609 * "Exit Qualification for EPT Violations". 2610 */ 2611 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2612 (qual & EXIT_QUAL_NMIUDTI) != 0) 2613 vmx_restore_nmi_blocking(vmx, vcpu); 2614 break; 2615 case EXIT_REASON_VIRTUALIZED_EOI: 2616 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2617 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2618 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit); 2619 vmexit->inst_length = 0; /* trap-like */ 2620 break; 2621 case EXIT_REASON_APIC_ACCESS: 2622 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit); 2623 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 2624 break; 2625 case EXIT_REASON_APIC_WRITE: 2626 /* 2627 * APIC-write VM exit is trap-like so the %rip is already 2628 * pointing to the next instruction. 2629 */ 2630 vmexit->inst_length = 0; 2631 vlapic = vm_lapic(vmx->vm, vcpu); 2632 SDT_PROBE4(vmm, vmx, exit, apicwrite, 2633 vmx, vcpu, vmexit, vlapic); 2634 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); 2635 break; 2636 case EXIT_REASON_XSETBV: 2637 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit); 2638 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2639 break; 2640 case EXIT_REASON_MONITOR: 2641 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit); 2642 vmexit->exitcode = VM_EXITCODE_MONITOR; 2643 break; 2644 case EXIT_REASON_MWAIT: 2645 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit); 2646 vmexit->exitcode = VM_EXITCODE_MWAIT; 2647 break; 2648 case EXIT_REASON_VMCALL: 2649 case EXIT_REASON_VMCLEAR: 2650 case EXIT_REASON_VMLAUNCH: 2651 case EXIT_REASON_VMPTRLD: 2652 case EXIT_REASON_VMPTRST: 2653 case EXIT_REASON_VMREAD: 2654 case EXIT_REASON_VMRESUME: 2655 case EXIT_REASON_VMWRITE: 2656 case EXIT_REASON_VMXOFF: 2657 case EXIT_REASON_VMXON: 2658 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit); 2659 vmexit->exitcode = VM_EXITCODE_VMINSN; 2660 break; 2661 default: 2662 SDT_PROBE4(vmm, vmx, exit, unknown, 2663 vmx, vcpu, vmexit, reason); 2664 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 2665 break; 2666 } 2667 2668 if (handled) { 2669 /* 2670 * It is possible that control is returned to userland 2671 * even though we were able to handle the VM exit in the 2672 * kernel. 2673 * 2674 * In such a case we want to make sure that the userland 2675 * restarts guest execution at the instruction *after* 2676 * the one we just processed. Therefore we update the 2677 * guest rip in the VMCS and in 'vmexit'. 2678 */ 2679 vmexit->rip += vmexit->inst_length; 2680 vmexit->inst_length = 0; 2681 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2682 } else { 2683 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2684 /* 2685 * If this VM exit was not claimed by anybody then 2686 * treat it as a generic VMX exit. 2687 */ 2688 vmexit->exitcode = VM_EXITCODE_VMX; 2689 vmexit->u.vmx.status = VM_SUCCESS; 2690 vmexit->u.vmx.inst_type = 0; 2691 vmexit->u.vmx.inst_error = 0; 2692 } else { 2693 /* 2694 * The exitcode and collateral have been populated. 2695 * The VM exit will be processed further in userland. 2696 */ 2697 } 2698 } 2699 2700 SDT_PROBE4(vmm, vmx, exit, return, 2701 vmx, vcpu, vmexit, handled); 2702 return (handled); 2703 } 2704 2705 static __inline void 2706 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2707 { 2708 2709 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2710 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2711 vmxctx->inst_fail_status)); 2712 2713 vmexit->inst_length = 0; 2714 vmexit->exitcode = VM_EXITCODE_VMX; 2715 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2716 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2717 vmexit->u.vmx.exit_reason = ~0; 2718 vmexit->u.vmx.exit_qualification = ~0; 2719 2720 switch (rc) { 2721 case VMX_VMRESUME_ERROR: 2722 case VMX_VMLAUNCH_ERROR: 2723 case VMX_INVEPT_ERROR: 2724 vmexit->u.vmx.inst_type = rc; 2725 break; 2726 default: 2727 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2728 } 2729 } 2730 2731 /* 2732 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2733 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2734 * sufficient to simply vector to the NMI handler via a software interrupt. 2735 * However, this must be done before maskable interrupts are enabled 2736 * otherwise the "iret" issued by an interrupt handler will incorrectly 2737 * clear NMI blocking. 2738 */ 2739 static __inline void 2740 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2741 { 2742 uint32_t intr_info; 2743 2744 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2745 2746 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2747 return; 2748 2749 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2750 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2751 ("VM exit interruption info invalid: %#x", intr_info)); 2752 2753 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2754 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2755 "to NMI has invalid vector: %#x", intr_info)); 2756 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); 2757 __asm __volatile("int $2"); 2758 } 2759 } 2760 2761 static __inline void 2762 vmx_dr_enter_guest(struct vmxctx *vmxctx) 2763 { 2764 register_t rflags; 2765 2766 /* Save host control debug registers. */ 2767 vmxctx->host_dr7 = rdr7(); 2768 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 2769 2770 /* 2771 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 2772 * exceptions in the host based on the guest DRx values. The 2773 * guest DR7 and DEBUGCTL are saved/restored in the VMCS. 2774 */ 2775 load_dr7(0); 2776 wrmsr(MSR_DEBUGCTLMSR, 0); 2777 2778 /* 2779 * Disable single stepping the kernel to avoid corrupting the 2780 * guest DR6. A debugger might still be able to corrupt the 2781 * guest DR6 by setting a breakpoint after this point and then 2782 * single stepping. 2783 */ 2784 rflags = read_rflags(); 2785 vmxctx->host_tf = rflags & PSL_T; 2786 write_rflags(rflags & ~PSL_T); 2787 2788 /* Save host debug registers. */ 2789 vmxctx->host_dr0 = rdr0(); 2790 vmxctx->host_dr1 = rdr1(); 2791 vmxctx->host_dr2 = rdr2(); 2792 vmxctx->host_dr3 = rdr3(); 2793 vmxctx->host_dr6 = rdr6(); 2794 2795 /* Restore guest debug registers. */ 2796 load_dr0(vmxctx->guest_dr0); 2797 load_dr1(vmxctx->guest_dr1); 2798 load_dr2(vmxctx->guest_dr2); 2799 load_dr3(vmxctx->guest_dr3); 2800 load_dr6(vmxctx->guest_dr6); 2801 } 2802 2803 static __inline void 2804 vmx_dr_leave_guest(struct vmxctx *vmxctx) 2805 { 2806 2807 /* Save guest debug registers. */ 2808 vmxctx->guest_dr0 = rdr0(); 2809 vmxctx->guest_dr1 = rdr1(); 2810 vmxctx->guest_dr2 = rdr2(); 2811 vmxctx->guest_dr3 = rdr3(); 2812 vmxctx->guest_dr6 = rdr6(); 2813 2814 /* 2815 * Restore host debug registers. Restore DR7, DEBUGCTL, and 2816 * PSL_T last. 2817 */ 2818 load_dr0(vmxctx->host_dr0); 2819 load_dr1(vmxctx->host_dr1); 2820 load_dr2(vmxctx->host_dr2); 2821 load_dr3(vmxctx->host_dr3); 2822 load_dr6(vmxctx->host_dr6); 2823 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl); 2824 load_dr7(vmxctx->host_dr7); 2825 write_rflags(read_rflags() | vmxctx->host_tf); 2826 } 2827 2828 static int 2829 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap, 2830 struct vm_eventinfo *evinfo) 2831 { 2832 int rc, handled, launched; 2833 struct vmx *vmx; 2834 struct vm *vm; 2835 struct vmxctx *vmxctx; 2836 struct vmcs *vmcs; 2837 struct vm_exit *vmexit; 2838 struct vlapic *vlapic; 2839 uint32_t exit_reason; 2840 struct region_descriptor gdtr, idtr; 2841 uint16_t ldt_sel; 2842 2843 vmx = arg; 2844 vm = vmx->vm; 2845 vmcs = &vmx->vmcs[vcpu]; 2846 vmxctx = &vmx->ctx[vcpu]; 2847 vlapic = vm_lapic(vm, vcpu); 2848 vmexit = vm_exitinfo(vm, vcpu); 2849 launched = 0; 2850 2851 KASSERT(vmxctx->pmap == pmap, 2852 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 2853 2854 vmx_msr_guest_enter(vmx, vcpu); 2855 2856 VMPTRLD(vmcs); 2857 2858 /* 2859 * XXX 2860 * We do this every time because we may setup the virtual machine 2861 * from a different process than the one that actually runs it. 2862 * 2863 * If the life of a virtual machine was spent entirely in the context 2864 * of a single process we could do this once in vmx_vminit(). 2865 */ 2866 vmcs_write(VMCS_HOST_CR3, rcr3()); 2867 2868 vmcs_write(VMCS_GUEST_RIP, rip); 2869 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 2870 do { 2871 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " 2872 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); 2873 2874 handled = UNHANDLED; 2875 /* 2876 * Interrupts are disabled from this point on until the 2877 * guest starts executing. This is done for the following 2878 * reasons: 2879 * 2880 * If an AST is asserted on this thread after the check below, 2881 * then the IPI_AST notification will not be lost, because it 2882 * will cause a VM exit due to external interrupt as soon as 2883 * the guest state is loaded. 2884 * 2885 * A posted interrupt after 'vmx_inject_interrupts()' will 2886 * not be "lost" because it will be held pending in the host 2887 * APIC because interrupts are disabled. The pending interrupt 2888 * will be recognized as soon as the guest state is loaded. 2889 * 2890 * The same reasoning applies to the IPI generated by 2891 * pmap_invalidate_ept(). 2892 */ 2893 disable_intr(); 2894 vmx_inject_interrupts(vmx, vcpu, vlapic, rip); 2895 2896 /* 2897 * Check for vcpu suspension after injecting events because 2898 * vmx_inject_interrupts() can suspend the vcpu due to a 2899 * triple fault. 2900 */ 2901 if (vcpu_suspended(evinfo)) { 2902 enable_intr(); 2903 vm_exit_suspended(vmx->vm, vcpu, rip); 2904 break; 2905 } 2906 2907 if (vcpu_rendezvous_pending(evinfo)) { 2908 enable_intr(); 2909 vm_exit_rendezvous(vmx->vm, vcpu, rip); 2910 break; 2911 } 2912 2913 if (vcpu_reqidle(evinfo)) { 2914 enable_intr(); 2915 vm_exit_reqidle(vmx->vm, vcpu, rip); 2916 break; 2917 } 2918 2919 if (vcpu_should_yield(vm, vcpu)) { 2920 enable_intr(); 2921 vm_exit_astpending(vmx->vm, vcpu, rip); 2922 vmx_astpending_trace(vmx, vcpu, rip); 2923 handled = HANDLED; 2924 break; 2925 } 2926 2927 if (vcpu_debugged(vm, vcpu)) { 2928 enable_intr(); 2929 vm_exit_debug(vmx->vm, vcpu, rip); 2930 break; 2931 } 2932 2933 /* 2934 * VM exits restore the base address but not the 2935 * limits of GDTR and IDTR. The VMCS only stores the 2936 * base address, so VM exits set the limits to 0xffff. 2937 * Save and restore the full GDTR and IDTR to restore 2938 * the limits. 2939 * 2940 * The VMCS does not save the LDTR at all, and VM 2941 * exits clear LDTR as if a NULL selector were loaded. 2942 * The userspace hypervisor probably doesn't use a 2943 * LDT, but save and restore it to be safe. 2944 */ 2945 sgdt(&gdtr); 2946 sidt(&idtr); 2947 ldt_sel = sldt(); 2948 2949 vmx_run_trace(vmx, vcpu); 2950 vmx_dr_enter_guest(vmxctx); 2951 rc = vmx_enter_guest(vmxctx, vmx, launched); 2952 vmx_dr_leave_guest(vmxctx); 2953 2954 bare_lgdt(&gdtr); 2955 lidt(&idtr); 2956 lldt(ldt_sel); 2957 2958 /* Collect some information for VM exit processing */ 2959 vmexit->rip = rip = vmcs_guest_rip(); 2960 vmexit->inst_length = vmexit_instruction_length(); 2961 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 2962 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 2963 2964 /* Update 'nextrip' */ 2965 vmx->state[vcpu].nextrip = rip; 2966 2967 if (rc == VMX_GUEST_VMEXIT) { 2968 vmx_exit_handle_nmi(vmx, vcpu, vmexit); 2969 enable_intr(); 2970 handled = vmx_exit_process(vmx, vcpu, vmexit); 2971 } else { 2972 enable_intr(); 2973 vmx_exit_inst_error(vmxctx, rc, vmexit); 2974 } 2975 launched = 1; 2976 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 2977 rip = vmexit->rip; 2978 } while (handled); 2979 2980 /* 2981 * If a VM exit has been handled then the exitcode must be BOGUS 2982 * If a VM exit is not handled then the exitcode must not be BOGUS 2983 */ 2984 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 2985 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 2986 panic("Mismatch between handled (%d) and exitcode (%d)", 2987 handled, vmexit->exitcode); 2988 } 2989 2990 if (!handled) 2991 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); 2992 2993 VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", 2994 vmexit->exitcode); 2995 2996 VMCLEAR(vmcs); 2997 vmx_msr_guest_exit(vmx, vcpu); 2998 2999 return (0); 3000 } 3001 3002 static void 3003 vmx_vmcleanup(void *arg) 3004 { 3005 int i; 3006 struct vmx *vmx = arg; 3007 uint16_t maxcpus; 3008 3009 if (apic_access_virtualization(vmx, 0)) 3010 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3011 3012 maxcpus = vm_get_maxcpus(vmx->vm); 3013 for (i = 0; i < maxcpus; i++) 3014 vpid_free(vmx->state[i].vpid); 3015 3016 free(vmx, M_VMX); 3017 3018 return; 3019 } 3020 3021 static register_t * 3022 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 3023 { 3024 3025 switch (reg) { 3026 case VM_REG_GUEST_RAX: 3027 return (&vmxctx->guest_rax); 3028 case VM_REG_GUEST_RBX: 3029 return (&vmxctx->guest_rbx); 3030 case VM_REG_GUEST_RCX: 3031 return (&vmxctx->guest_rcx); 3032 case VM_REG_GUEST_RDX: 3033 return (&vmxctx->guest_rdx); 3034 case VM_REG_GUEST_RSI: 3035 return (&vmxctx->guest_rsi); 3036 case VM_REG_GUEST_RDI: 3037 return (&vmxctx->guest_rdi); 3038 case VM_REG_GUEST_RBP: 3039 return (&vmxctx->guest_rbp); 3040 case VM_REG_GUEST_R8: 3041 return (&vmxctx->guest_r8); 3042 case VM_REG_GUEST_R9: 3043 return (&vmxctx->guest_r9); 3044 case VM_REG_GUEST_R10: 3045 return (&vmxctx->guest_r10); 3046 case VM_REG_GUEST_R11: 3047 return (&vmxctx->guest_r11); 3048 case VM_REG_GUEST_R12: 3049 return (&vmxctx->guest_r12); 3050 case VM_REG_GUEST_R13: 3051 return (&vmxctx->guest_r13); 3052 case VM_REG_GUEST_R14: 3053 return (&vmxctx->guest_r14); 3054 case VM_REG_GUEST_R15: 3055 return (&vmxctx->guest_r15); 3056 case VM_REG_GUEST_CR2: 3057 return (&vmxctx->guest_cr2); 3058 case VM_REG_GUEST_DR0: 3059 return (&vmxctx->guest_dr0); 3060 case VM_REG_GUEST_DR1: 3061 return (&vmxctx->guest_dr1); 3062 case VM_REG_GUEST_DR2: 3063 return (&vmxctx->guest_dr2); 3064 case VM_REG_GUEST_DR3: 3065 return (&vmxctx->guest_dr3); 3066 case VM_REG_GUEST_DR6: 3067 return (&vmxctx->guest_dr6); 3068 default: 3069 break; 3070 } 3071 return (NULL); 3072 } 3073 3074 static int 3075 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 3076 { 3077 register_t *regp; 3078 3079 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3080 *retval = *regp; 3081 return (0); 3082 } else 3083 return (EINVAL); 3084 } 3085 3086 static int 3087 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 3088 { 3089 register_t *regp; 3090 3091 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3092 *regp = val; 3093 return (0); 3094 } else 3095 return (EINVAL); 3096 } 3097 3098 static int 3099 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) 3100 { 3101 uint64_t gi; 3102 int error; 3103 3104 error = vmcs_getreg(&vmx->vmcs[vcpu], running, 3105 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 3106 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 3107 return (error); 3108 } 3109 3110 static int 3111 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) 3112 { 3113 struct vmcs *vmcs; 3114 uint64_t gi; 3115 int error, ident; 3116 3117 /* 3118 * Forcing the vcpu into an interrupt shadow is not supported. 3119 */ 3120 if (val) { 3121 error = EINVAL; 3122 goto done; 3123 } 3124 3125 vmcs = &vmx->vmcs[vcpu]; 3126 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 3127 error = vmcs_getreg(vmcs, running, ident, &gi); 3128 if (error == 0) { 3129 gi &= ~HWINTR_BLOCKING; 3130 error = vmcs_setreg(vmcs, running, ident, gi); 3131 } 3132 done: 3133 VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, 3134 error ? "failed" : "succeeded"); 3135 return (error); 3136 } 3137 3138 static int 3139 vmx_shadow_reg(int reg) 3140 { 3141 int shreg; 3142 3143 shreg = -1; 3144 3145 switch (reg) { 3146 case VM_REG_GUEST_CR0: 3147 shreg = VMCS_CR0_SHADOW; 3148 break; 3149 case VM_REG_GUEST_CR4: 3150 shreg = VMCS_CR4_SHADOW; 3151 break; 3152 default: 3153 break; 3154 } 3155 3156 return (shreg); 3157 } 3158 3159 static int 3160 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 3161 { 3162 int running, hostcpu; 3163 struct vmx *vmx = arg; 3164 3165 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3166 if (running && hostcpu != curcpu) 3167 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 3168 3169 if (reg == VM_REG_GUEST_INTR_SHADOW) 3170 return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); 3171 3172 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 3173 return (0); 3174 3175 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 3176 } 3177 3178 static int 3179 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 3180 { 3181 int error, hostcpu, running, shadow; 3182 uint64_t ctls; 3183 pmap_t pmap; 3184 struct vmx *vmx = arg; 3185 3186 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3187 if (running && hostcpu != curcpu) 3188 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 3189 3190 if (reg == VM_REG_GUEST_INTR_SHADOW) 3191 return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); 3192 3193 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 3194 return (0); 3195 3196 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 3197 3198 if (error == 0) { 3199 /* 3200 * If the "load EFER" VM-entry control is 1 then the 3201 * value of EFER.LMA must be identical to "IA-32e mode guest" 3202 * bit in the VM-entry control. 3203 */ 3204 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 3205 (reg == VM_REG_GUEST_EFER)) { 3206 vmcs_getreg(&vmx->vmcs[vcpu], running, 3207 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 3208 if (val & EFER_LMA) 3209 ctls |= VM_ENTRY_GUEST_LMA; 3210 else 3211 ctls &= ~VM_ENTRY_GUEST_LMA; 3212 vmcs_setreg(&vmx->vmcs[vcpu], running, 3213 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 3214 } 3215 3216 shadow = vmx_shadow_reg(reg); 3217 if (shadow > 0) { 3218 /* 3219 * Store the unmodified value in the shadow 3220 */ 3221 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 3222 VMCS_IDENT(shadow), val); 3223 } 3224 3225 if (reg == VM_REG_GUEST_CR3) { 3226 /* 3227 * Invalidate the guest vcpu's TLB mappings to emulate 3228 * the behavior of updating %cr3. 3229 * 3230 * XXX the processor retains global mappings when %cr3 3231 * is updated but vmx_invvpid() does not. 3232 */ 3233 pmap = vmx->ctx[vcpu].pmap; 3234 vmx_invvpid(vmx, vcpu, pmap, running); 3235 } 3236 } 3237 3238 return (error); 3239 } 3240 3241 static int 3242 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3243 { 3244 int hostcpu, running; 3245 struct vmx *vmx = arg; 3246 3247 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3248 if (running && hostcpu != curcpu) 3249 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3250 3251 return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3252 } 3253 3254 static int 3255 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3256 { 3257 int hostcpu, running; 3258 struct vmx *vmx = arg; 3259 3260 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3261 if (running && hostcpu != curcpu) 3262 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3263 3264 return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3265 } 3266 3267 static int 3268 vmx_getcap(void *arg, int vcpu, int type, int *retval) 3269 { 3270 struct vmx *vmx = arg; 3271 int vcap; 3272 int ret; 3273 3274 ret = ENOENT; 3275 3276 vcap = vmx->cap[vcpu].set; 3277 3278 switch (type) { 3279 case VM_CAP_HALT_EXIT: 3280 if (cap_halt_exit) 3281 ret = 0; 3282 break; 3283 case VM_CAP_PAUSE_EXIT: 3284 if (cap_pause_exit) 3285 ret = 0; 3286 break; 3287 case VM_CAP_MTRAP_EXIT: 3288 if (cap_monitor_trap) 3289 ret = 0; 3290 break; 3291 case VM_CAP_UNRESTRICTED_GUEST: 3292 if (cap_unrestricted_guest) 3293 ret = 0; 3294 break; 3295 case VM_CAP_ENABLE_INVPCID: 3296 if (cap_invpcid) 3297 ret = 0; 3298 break; 3299 default: 3300 break; 3301 } 3302 3303 if (ret == 0) 3304 *retval = (vcap & (1 << type)) ? 1 : 0; 3305 3306 return (ret); 3307 } 3308 3309 static int 3310 vmx_setcap(void *arg, int vcpu, int type, int val) 3311 { 3312 struct vmx *vmx = arg; 3313 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 3314 uint32_t baseval; 3315 uint32_t *pptr; 3316 int error; 3317 int flag; 3318 int reg; 3319 int retval; 3320 3321 retval = ENOENT; 3322 pptr = NULL; 3323 3324 switch (type) { 3325 case VM_CAP_HALT_EXIT: 3326 if (cap_halt_exit) { 3327 retval = 0; 3328 pptr = &vmx->cap[vcpu].proc_ctls; 3329 baseval = *pptr; 3330 flag = PROCBASED_HLT_EXITING; 3331 reg = VMCS_PRI_PROC_BASED_CTLS; 3332 } 3333 break; 3334 case VM_CAP_MTRAP_EXIT: 3335 if (cap_monitor_trap) { 3336 retval = 0; 3337 pptr = &vmx->cap[vcpu].proc_ctls; 3338 baseval = *pptr; 3339 flag = PROCBASED_MTF; 3340 reg = VMCS_PRI_PROC_BASED_CTLS; 3341 } 3342 break; 3343 case VM_CAP_PAUSE_EXIT: 3344 if (cap_pause_exit) { 3345 retval = 0; 3346 pptr = &vmx->cap[vcpu].proc_ctls; 3347 baseval = *pptr; 3348 flag = PROCBASED_PAUSE_EXITING; 3349 reg = VMCS_PRI_PROC_BASED_CTLS; 3350 } 3351 break; 3352 case VM_CAP_UNRESTRICTED_GUEST: 3353 if (cap_unrestricted_guest) { 3354 retval = 0; 3355 pptr = &vmx->cap[vcpu].proc_ctls2; 3356 baseval = *pptr; 3357 flag = PROCBASED2_UNRESTRICTED_GUEST; 3358 reg = VMCS_SEC_PROC_BASED_CTLS; 3359 } 3360 break; 3361 case VM_CAP_ENABLE_INVPCID: 3362 if (cap_invpcid) { 3363 retval = 0; 3364 pptr = &vmx->cap[vcpu].proc_ctls2; 3365 baseval = *pptr; 3366 flag = PROCBASED2_ENABLE_INVPCID; 3367 reg = VMCS_SEC_PROC_BASED_CTLS; 3368 } 3369 break; 3370 default: 3371 break; 3372 } 3373 3374 if (retval == 0) { 3375 if (val) { 3376 baseval |= flag; 3377 } else { 3378 baseval &= ~flag; 3379 } 3380 VMPTRLD(vmcs); 3381 error = vmwrite(reg, baseval); 3382 VMCLEAR(vmcs); 3383 3384 if (error) { 3385 retval = error; 3386 } else { 3387 /* 3388 * Update optional stored flags, and record 3389 * setting 3390 */ 3391 if (pptr != NULL) { 3392 *pptr = baseval; 3393 } 3394 3395 if (val) { 3396 vmx->cap[vcpu].set |= (1 << type); 3397 } else { 3398 vmx->cap[vcpu].set &= ~(1 << type); 3399 } 3400 } 3401 } 3402 3403 return (retval); 3404 } 3405 3406 struct vlapic_vtx { 3407 struct vlapic vlapic; 3408 struct pir_desc *pir_desc; 3409 struct vmx *vmx; 3410 u_int pending_prio; 3411 }; 3412 3413 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4)) 3414 3415 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 3416 do { \ 3417 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 3418 level ? "level" : "edge", vector); \ 3419 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3420 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3421 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3422 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3423 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 3424 } while (0) 3425 3426 /* 3427 * vlapic->ops handlers that utilize the APICv hardware assist described in 3428 * Chapter 29 of the Intel SDM. 3429 */ 3430 static int 3431 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3432 { 3433 struct vlapic_vtx *vlapic_vtx; 3434 struct pir_desc *pir_desc; 3435 uint64_t mask; 3436 int idx, notify = 0; 3437 3438 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3439 pir_desc = vlapic_vtx->pir_desc; 3440 3441 /* 3442 * Keep track of interrupt requests in the PIR descriptor. This is 3443 * because the virtual APIC page pointed to by the VMCS cannot be 3444 * modified if the vcpu is running. 3445 */ 3446 idx = vector / 64; 3447 mask = 1UL << (vector % 64); 3448 atomic_set_long(&pir_desc->pir[idx], mask); 3449 3450 /* 3451 * A notification is required whenever the 'pending' bit makes a 3452 * transition from 0->1. 3453 * 3454 * Even if the 'pending' bit is already asserted, notification about 3455 * the incoming interrupt may still be necessary. For example, if a 3456 * vCPU is HLTed with a high PPR, a low priority interrupt would cause 3457 * the 0->1 'pending' transition with a notification, but the vCPU 3458 * would ignore the interrupt for the time being. The same vCPU would 3459 * need to then be notified if a high-priority interrupt arrived which 3460 * satisfied the PPR. 3461 * 3462 * The priorities of interrupts injected while 'pending' is asserted 3463 * are tracked in a custom bitfield 'pending_prio'. Should the 3464 * to-be-injected interrupt exceed the priorities already present, the 3465 * notification is sent. The priorities recorded in 'pending_prio' are 3466 * cleared whenever the 'pending' bit makes another 0->1 transition. 3467 */ 3468 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) { 3469 notify = 1; 3470 vlapic_vtx->pending_prio = 0; 3471 } else { 3472 const u_int old_prio = vlapic_vtx->pending_prio; 3473 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT); 3474 3475 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) { 3476 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit); 3477 notify = 1; 3478 } 3479 } 3480 3481 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 3482 level, "vmx_set_intr_ready"); 3483 return (notify); 3484 } 3485 3486 static int 3487 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3488 { 3489 struct vlapic_vtx *vlapic_vtx; 3490 struct pir_desc *pir_desc; 3491 struct LAPIC *lapic; 3492 uint64_t pending, pirval; 3493 uint32_t ppr, vpr; 3494 int i; 3495 3496 /* 3497 * This function is only expected to be called from the 'HLT' exit 3498 * handler which does not care about the vector that is pending. 3499 */ 3500 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3501 3502 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3503 pir_desc = vlapic_vtx->pir_desc; 3504 3505 pending = atomic_load_acq_long(&pir_desc->pending); 3506 if (!pending) { 3507 /* 3508 * While a virtual interrupt may have already been 3509 * processed the actual delivery maybe pending the 3510 * interruptibility of the guest. Recognize a pending 3511 * interrupt by reevaluating virtual interrupts 3512 * following Section 29.2.1 in the Intel SDM Volume 3. 3513 */ 3514 struct vm_exit *vmexit; 3515 uint8_t rvi, ppr; 3516 3517 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid); 3518 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT, 3519 ("vmx_pending_intr: exitcode not 'HLT'")); 3520 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT; 3521 lapic = vlapic->apic_page; 3522 ppr = lapic->ppr & APIC_TPR_INT; 3523 if (rvi > ppr) { 3524 return (1); 3525 } 3526 3527 return (0); 3528 } 3529 3530 /* 3531 * If there is an interrupt pending then it will be recognized only 3532 * if its priority is greater than the processor priority. 3533 * 3534 * Special case: if the processor priority is zero then any pending 3535 * interrupt will be recognized. 3536 */ 3537 lapic = vlapic->apic_page; 3538 ppr = lapic->ppr & APIC_TPR_INT; 3539 if (ppr == 0) 3540 return (1); 3541 3542 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 3543 lapic->ppr); 3544 3545 vpr = 0; 3546 for (i = 3; i >= 0; i--) { 3547 pirval = pir_desc->pir[i]; 3548 if (pirval != 0) { 3549 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT; 3550 break; 3551 } 3552 } 3553 3554 /* 3555 * If the highest-priority pending interrupt falls short of the 3556 * processor priority of this vCPU, ensure that 'pending_prio' does not 3557 * have any stale bits which would preclude a higher-priority interrupt 3558 * from incurring a notification later. 3559 */ 3560 if (vpr <= ppr) { 3561 const u_int prio_bit = VPR_PRIO_BIT(vpr); 3562 const u_int old = vlapic_vtx->pending_prio; 3563 3564 if (old > prio_bit && (old & prio_bit) == 0) { 3565 vlapic_vtx->pending_prio = prio_bit; 3566 } 3567 return (0); 3568 } 3569 return (1); 3570 } 3571 3572 static void 3573 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3574 { 3575 3576 panic("vmx_intr_accepted: not expected to be called"); 3577 } 3578 3579 static void 3580 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3581 { 3582 struct vlapic_vtx *vlapic_vtx; 3583 struct vmx *vmx; 3584 struct vmcs *vmcs; 3585 uint64_t mask, val; 3586 3587 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3588 KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), 3589 ("vmx_set_tmr: vcpu cannot be running")); 3590 3591 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3592 vmx = vlapic_vtx->vmx; 3593 vmcs = &vmx->vmcs[vlapic->vcpuid]; 3594 mask = 1UL << (vector % 64); 3595 3596 VMPTRLD(vmcs); 3597 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3598 if (level) 3599 val |= mask; 3600 else 3601 val &= ~mask; 3602 vmcs_write(VMCS_EOI_EXIT(vector), val); 3603 VMCLEAR(vmcs); 3604 } 3605 3606 static void 3607 vmx_enable_x2apic_mode(struct vlapic *vlapic) 3608 { 3609 struct vmx *vmx; 3610 struct vmcs *vmcs; 3611 uint32_t proc_ctls2; 3612 int vcpuid, error; 3613 3614 vcpuid = vlapic->vcpuid; 3615 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3616 vmcs = &vmx->vmcs[vcpuid]; 3617 3618 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 3619 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3620 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3621 3622 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3623 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3624 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; 3625 3626 VMPTRLD(vmcs); 3627 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3628 VMCLEAR(vmcs); 3629 3630 if (vlapic->vcpuid == 0) { 3631 /* 3632 * The nested page table mappings are shared by all vcpus 3633 * so unmap the APIC access page just once. 3634 */ 3635 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3636 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3637 __func__, error)); 3638 3639 /* 3640 * The MSR bitmap is shared by all vcpus so modify it only 3641 * once in the context of vcpu 0. 3642 */ 3643 error = vmx_allow_x2apic_msrs(vmx); 3644 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3645 __func__, error)); 3646 } 3647 } 3648 3649 static void 3650 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3651 { 3652 3653 ipi_cpu(hostcpu, pirvec); 3654 } 3655 3656 /* 3657 * Transfer the pending interrupts in the PIR descriptor to the IRR 3658 * in the virtual APIC page. 3659 */ 3660 static void 3661 vmx_inject_pir(struct vlapic *vlapic) 3662 { 3663 struct vlapic_vtx *vlapic_vtx; 3664 struct pir_desc *pir_desc; 3665 struct LAPIC *lapic; 3666 uint64_t val, pirval; 3667 int rvi, pirbase = -1; 3668 uint16_t intr_status_old, intr_status_new; 3669 3670 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3671 pir_desc = vlapic_vtx->pir_desc; 3672 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3673 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3674 "no posted interrupt pending"); 3675 return; 3676 } 3677 3678 pirval = 0; 3679 pirbase = -1; 3680 lapic = vlapic->apic_page; 3681 3682 val = atomic_readandclear_long(&pir_desc->pir[0]); 3683 if (val != 0) { 3684 lapic->irr0 |= val; 3685 lapic->irr1 |= val >> 32; 3686 pirbase = 0; 3687 pirval = val; 3688 } 3689 3690 val = atomic_readandclear_long(&pir_desc->pir[1]); 3691 if (val != 0) { 3692 lapic->irr2 |= val; 3693 lapic->irr3 |= val >> 32; 3694 pirbase = 64; 3695 pirval = val; 3696 } 3697 3698 val = atomic_readandclear_long(&pir_desc->pir[2]); 3699 if (val != 0) { 3700 lapic->irr4 |= val; 3701 lapic->irr5 |= val >> 32; 3702 pirbase = 128; 3703 pirval = val; 3704 } 3705 3706 val = atomic_readandclear_long(&pir_desc->pir[3]); 3707 if (val != 0) { 3708 lapic->irr6 |= val; 3709 lapic->irr7 |= val >> 32; 3710 pirbase = 192; 3711 pirval = val; 3712 } 3713 3714 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 3715 3716 /* 3717 * Update RVI so the processor can evaluate pending virtual 3718 * interrupts on VM-entry. 3719 * 3720 * It is possible for pirval to be 0 here, even though the 3721 * pending bit has been set. The scenario is: 3722 * CPU-Y is sending a posted interrupt to CPU-X, which 3723 * is running a guest and processing posted interrupts in h/w. 3724 * CPU-X will eventually exit and the state seen in s/w is 3725 * the pending bit set, but no PIR bits set. 3726 * 3727 * CPU-X CPU-Y 3728 * (vm running) (host running) 3729 * rx posted interrupt 3730 * CLEAR pending bit 3731 * SET PIR bit 3732 * READ/CLEAR PIR bits 3733 * SET pending bit 3734 * (vm exit) 3735 * pending bit set, PIR 0 3736 */ 3737 if (pirval != 0) { 3738 rvi = pirbase + flsl(pirval) - 1; 3739 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 3740 intr_status_new = (intr_status_old & 0xFF00) | rvi; 3741 if (intr_status_new > intr_status_old) { 3742 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 3743 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3744 "guest_intr_status changed from 0x%04x to 0x%04x", 3745 intr_status_old, intr_status_new); 3746 } 3747 } 3748 } 3749 3750 static struct vlapic * 3751 vmx_vlapic_init(void *arg, int vcpuid) 3752 { 3753 struct vmx *vmx; 3754 struct vlapic *vlapic; 3755 struct vlapic_vtx *vlapic_vtx; 3756 3757 vmx = arg; 3758 3759 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 3760 vlapic->vm = vmx->vm; 3761 vlapic->vcpuid = vcpuid; 3762 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 3763 3764 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3765 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 3766 vlapic_vtx->vmx = vmx; 3767 3768 if (virtual_interrupt_delivery) { 3769 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 3770 vlapic->ops.pending_intr = vmx_pending_intr; 3771 vlapic->ops.intr_accepted = vmx_intr_accepted; 3772 vlapic->ops.set_tmr = vmx_set_tmr; 3773 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode; 3774 } 3775 3776 if (posted_interrupts) 3777 vlapic->ops.post_intr = vmx_post_intr; 3778 3779 vlapic_init(vlapic); 3780 3781 return (vlapic); 3782 } 3783 3784 static void 3785 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 3786 { 3787 3788 vlapic_cleanup(vlapic); 3789 free(vlapic, M_VLAPIC); 3790 } 3791 3792 struct vmm_ops vmm_ops_intel = { 3793 .init = vmx_init, 3794 .cleanup = vmx_cleanup, 3795 .resume = vmx_restore, 3796 .vminit = vmx_vminit, 3797 .vmrun = vmx_run, 3798 .vmcleanup = vmx_vmcleanup, 3799 .vmgetreg = vmx_getreg, 3800 .vmsetreg = vmx_setreg, 3801 .vmgetdesc = vmx_getdesc, 3802 .vmsetdesc = vmx_setdesc, 3803 .vmgetcap = vmx_getcap, 3804 .vmsetcap = vmx_setcap, 3805 .vmspace_alloc = ept_vmspace_alloc, 3806 .vmspace_free = ept_vmspace_free, 3807 .vlapic_init = vmx_vlapic_init, 3808 .vlapic_cleanup = vmx_vlapic_cleanup, 3809 }; 3810