xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*-
2  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/cpufunc.h>
43 #include <machine/psl.h>
44 #include <machine/pmap.h>
45 #include <machine/md_var.h>
46 #include <machine/specialreg.h>
47 #include <machine/smp.h>
48 #include <machine/vmm.h>
49 #include <machine/vmm_dev.h>
50 #include <machine/vmm_instruction_emul.h>
51 
52 #include "vmm_lapic.h"
53 #include "vmm_stat.h"
54 #include "vmm_ktr.h"
55 #include "vmm_ioport.h"
56 #include "vatpic.h"
57 #include "vlapic.h"
58 #include "vlapic_priv.h"
59 
60 #include "x86.h"
61 #include "vmcb.h"
62 #include "svm.h"
63 #include "svm_softc.h"
64 #include "svm_msr.h"
65 #include "npt.h"
66 
67 SYSCTL_DECL(_hw_vmm);
68 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69 
70 /*
71  * SVM CPUID function 0x8000_000A, edx bit decoding.
72  */
73 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84 
85 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86 				VMCB_CACHE_IOPM		|	\
87 				VMCB_CACHE_I		|	\
88 				VMCB_CACHE_TPR		|	\
89 				VMCB_CACHE_CR2		|	\
90 				VMCB_CACHE_CR		|	\
91 				VMCB_CACHE_DT		|	\
92 				VMCB_CACHE_SEG		|	\
93 				VMCB_CACHE_NP)
94 
95 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97     0, NULL);
98 
99 static MALLOC_DEFINE(M_SVM, "svm", "svm");
100 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101 
102 /* Per-CPU context area. */
103 extern struct pcpu __pcpu[];
104 
105 static uint32_t svm_feature;	/* AMD SVM features. */
106 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
107     "SVM features advertised by CPUID.8000000AH:EDX");
108 
109 static int disable_npf_assist;
110 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111     &disable_npf_assist, 0, NULL);
112 
113 /* Maximum ASIDs supported by the processor */
114 static uint32_t nasid;
115 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
116     "Number of ASIDs supported by this processor");
117 
118 /* Current ASID generation for each host cpu */
119 static struct asid asid[MAXCPU];
120 
121 /*
122  * SVM host state saved area of size 4KB for each core.
123  */
124 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129 
130 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131 
132 static __inline int
133 flush_by_asid(void)
134 {
135 
136 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137 }
138 
139 static __inline int
140 decode_assist(void)
141 {
142 
143 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144 }
145 
146 static void
147 svm_disable(void *arg __unused)
148 {
149 	uint64_t efer;
150 
151 	efer = rdmsr(MSR_EFER);
152 	efer &= ~EFER_SVM;
153 	wrmsr(MSR_EFER, efer);
154 }
155 
156 /*
157  * Disable SVM on all CPUs.
158  */
159 static int
160 svm_cleanup(void)
161 {
162 
163 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164 	return (0);
165 }
166 
167 /*
168  * Verify that all the features required by bhyve are available.
169  */
170 static int
171 check_svm_features(void)
172 {
173 	u_int regs[4];
174 
175 	/* CPUID Fn8000_000A is for SVM */
176 	do_cpuid(0x8000000A, regs);
177 	svm_feature = regs[3];
178 
179 	nasid = regs[1];
180 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
181 
182 	/* bhyve requires the Nested Paging feature */
183 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
184 		printf("SVM: Nested Paging feature not available.\n");
185 		return (ENXIO);
186 	}
187 
188 	/* bhyve requires the NRIP Save feature */
189 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
190 		printf("SVM: NRIP Save feature not available.\n");
191 		return (ENXIO);
192 	}
193 
194 	return (0);
195 }
196 
197 static void
198 svm_enable(void *arg __unused)
199 {
200 	uint64_t efer;
201 
202 	efer = rdmsr(MSR_EFER);
203 	efer |= EFER_SVM;
204 	wrmsr(MSR_EFER, efer);
205 
206 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
207 }
208 
209 /*
210  * Return 1 if SVM is enabled on this processor and 0 otherwise.
211  */
212 static int
213 svm_available(void)
214 {
215 	uint64_t msr;
216 
217 	/* Section 15.4 Enabling SVM from APM2. */
218 	if ((amd_feature2 & AMDID2_SVM) == 0) {
219 		printf("SVM: not available.\n");
220 		return (0);
221 	}
222 
223 	msr = rdmsr(MSR_VM_CR);
224 	if ((msr & VM_CR_SVMDIS) != 0) {
225 		printf("SVM: disabled by BIOS.\n");
226 		return (0);
227 	}
228 
229 	return (1);
230 }
231 
232 static int
233 svm_init(int ipinum)
234 {
235 	int error, cpu;
236 
237 	if (!svm_available())
238 		return (ENXIO);
239 
240 	error = check_svm_features();
241 	if (error)
242 		return (error);
243 
244 	vmcb_clean &= VMCB_CACHE_DEFAULT;
245 
246 	for (cpu = 0; cpu < MAXCPU; cpu++) {
247 		/*
248 		 * Initialize the host ASIDs to their "highest" valid values.
249 		 *
250 		 * The next ASID allocation will rollover both 'gen' and 'num'
251 		 * and start off the sequence at {1,1}.
252 		 */
253 		asid[cpu].gen = ~0UL;
254 		asid[cpu].num = nasid - 1;
255 	}
256 
257 	svm_msr_init();
258 	svm_npt_init(ipinum);
259 
260 	/* Enable SVM on all CPUs */
261 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
262 
263 	return (0);
264 }
265 
266 static void
267 svm_restore(void)
268 {
269 
270 	svm_enable(NULL);
271 }
272 
273 /* Pentium compatible MSRs */
274 #define MSR_PENTIUM_START 	0
275 #define MSR_PENTIUM_END 	0x1FFF
276 /* AMD 6th generation and Intel compatible MSRs */
277 #define MSR_AMD6TH_START 	0xC0000000UL
278 #define MSR_AMD6TH_END 		0xC0001FFFUL
279 /* AMD 7th and 8th generation compatible MSRs */
280 #define MSR_AMD7TH_START 	0xC0010000UL
281 #define MSR_AMD7TH_END 		0xC0011FFFUL
282 
283 /*
284  * Get the index and bit position for a MSR in permission bitmap.
285  * Two bits are used for each MSR: lower bit for read and higher bit for write.
286  */
287 static int
288 svm_msr_index(uint64_t msr, int *index, int *bit)
289 {
290 	uint32_t base, off;
291 
292 	*index = -1;
293 	*bit = (msr % 4) * 2;
294 	base = 0;
295 
296 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
297 		*index = msr / 4;
298 		return (0);
299 	}
300 
301 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
302 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
303 		off = (msr - MSR_AMD6TH_START);
304 		*index = (off + base) / 4;
305 		return (0);
306 	}
307 
308 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
309 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
310 		off = (msr - MSR_AMD7TH_START);
311 		*index = (off + base) / 4;
312 		return (0);
313 	}
314 
315 	return (EINVAL);
316 }
317 
318 /*
319  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
320  */
321 static void
322 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
323 {
324 	int index, bit, error;
325 
326 	error = svm_msr_index(msr, &index, &bit);
327 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
328 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
329 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
330 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
331 	    "msr %#lx", __func__, bit, msr));
332 
333 	if (read)
334 		perm_bitmap[index] &= ~(1UL << bit);
335 
336 	if (write)
337 		perm_bitmap[index] &= ~(2UL << bit);
338 }
339 
340 static void
341 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
342 {
343 
344 	svm_msr_perm(perm_bitmap, msr, true, true);
345 }
346 
347 static void
348 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
349 {
350 
351 	svm_msr_perm(perm_bitmap, msr, true, false);
352 }
353 
354 static __inline int
355 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
356 {
357 	struct vmcb_ctrl *ctrl;
358 
359 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
360 
361 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
362 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
363 }
364 
365 static __inline void
366 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
367     int enabled)
368 {
369 	struct vmcb_ctrl *ctrl;
370 	uint32_t oldval;
371 
372 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
373 
374 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
375 	oldval = ctrl->intercept[idx];
376 
377 	if (enabled)
378 		ctrl->intercept[idx] |= bitmask;
379 	else
380 		ctrl->intercept[idx] &= ~bitmask;
381 
382 	if (ctrl->intercept[idx] != oldval) {
383 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
384 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
385 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
386 	}
387 }
388 
389 static __inline void
390 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
391 {
392 
393 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
394 }
395 
396 static __inline void
397 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
398 {
399 
400 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
401 }
402 
403 static void
404 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
405     uint64_t msrpm_base_pa, uint64_t np_pml4)
406 {
407 	struct vmcb_ctrl *ctrl;
408 	struct vmcb_state *state;
409 	uint32_t mask;
410 	int n;
411 
412 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
413 	state = svm_get_vmcb_state(sc, vcpu);
414 
415 	ctrl->iopm_base_pa = iopm_base_pa;
416 	ctrl->msrpm_base_pa = msrpm_base_pa;
417 
418 	/* Enable nested paging */
419 	ctrl->np_enable = 1;
420 	ctrl->n_cr3 = np_pml4;
421 
422 	/*
423 	 * Intercept accesses to the control registers that are not shadowed
424 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
425 	 */
426 	for (n = 0; n < 16; n++) {
427 		mask = (BIT(n) << 16) | BIT(n);
428 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
429 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
430 		else
431 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
432 	}
433 
434 
435 	/*
436 	 * Intercept everything when tracing guest exceptions otherwise
437 	 * just intercept machine check exception.
438 	 */
439 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
440 		for (n = 0; n < 32; n++) {
441 			/*
442 			 * Skip unimplemented vectors in the exception bitmap.
443 			 */
444 			if (n == 2 || n == 9) {
445 				continue;
446 			}
447 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
448 		}
449 	} else {
450 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
451 	}
452 
453 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
454 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
455 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
456 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
457 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
458 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
462 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
463 	    VMCB_INTCPT_FERR_FREEZE);
464 
465 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
466 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
467 
468 	/*
469 	 * From section "Canonicalization and Consistency Checks" in APMv2
470 	 * the VMRUN intercept bit must be set to pass the consistency check.
471 	 */
472 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
473 
474 	/*
475 	 * The ASID will be set to a non-zero value just before VMRUN.
476 	 */
477 	ctrl->asid = 0;
478 
479 	/*
480 	 * Section 15.21.1, Interrupt Masking in EFLAGS
481 	 * Section 15.21.2, Virtualizing APIC.TPR
482 	 *
483 	 * This must be set for %rflag and %cr8 isolation of guest and host.
484 	 */
485 	ctrl->v_intr_masking = 1;
486 
487 	/* Enable Last Branch Record aka LBR for debugging */
488 	ctrl->lbr_virt_en = 1;
489 	state->dbgctl = BIT(0);
490 
491 	/* EFER_SVM must always be set when the guest is executing */
492 	state->efer = EFER_SVM;
493 
494 	/* Set up the PAT to power-on state */
495 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
496 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
497 	    PAT_VALUE(2, PAT_UNCACHED)		|
498 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
499 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
500 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
501 	    PAT_VALUE(6, PAT_UNCACHED)		|
502 	    PAT_VALUE(7, PAT_UNCACHEABLE);
503 }
504 
505 /*
506  * Initialize a virtual machine.
507  */
508 static void *
509 svm_vminit(struct vm *vm, pmap_t pmap)
510 {
511 	struct svm_softc *svm_sc;
512 	struct svm_vcpu *vcpu;
513 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
514 	int i;
515 
516 	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
517 	svm_sc->vm = vm;
518 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
519 
520 	/*
521 	 * Intercept read and write accesses to all MSRs.
522 	 */
523 	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
524 
525 	/*
526 	 * Access to the following MSRs is redirected to the VMCB when the
527 	 * guest is executing. Therefore it is safe to allow the guest to
528 	 * read/write these MSRs directly without hypervisor involvement.
529 	 */
530 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
531 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
532 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
533 
534 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
535 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
536 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
537 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
538 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
539 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
540 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
541 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
542 
543 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
544 
545 	/*
546 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
547 	 */
548 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
549 
550 	/* Intercept access to all I/O ports. */
551 	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
552 
553 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
554 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
555 	pml4_pa = svm_sc->nptp;
556 	for (i = 0; i < VM_MAXCPU; i++) {
557 		vcpu = svm_get_vcpu(svm_sc, i);
558 		vcpu->nextrip = ~0;
559 		vcpu->lastcpu = NOCPU;
560 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
561 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
562 		svm_msr_guest_init(svm_sc, i);
563 	}
564 	return (svm_sc);
565 }
566 
567 static int
568 svm_cpl(struct vmcb_state *state)
569 {
570 
571 	/*
572 	 * From APMv2:
573 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
574 	 *    from any segment DPL"
575 	 */
576 	return (state->cpl);
577 }
578 
579 static enum vm_cpu_mode
580 svm_vcpu_mode(struct vmcb *vmcb)
581 {
582 	struct vmcb_segment seg;
583 	struct vmcb_state *state;
584 	int error;
585 
586 	state = &vmcb->state;
587 
588 	if (state->efer & EFER_LMA) {
589 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
590 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
591 		    error));
592 
593 		/*
594 		 * Section 4.8.1 for APM2, check if Code Segment has
595 		 * Long attribute set in descriptor.
596 		 */
597 		if (seg.attrib & VMCB_CS_ATTRIB_L)
598 			return (CPU_MODE_64BIT);
599 		else
600 			return (CPU_MODE_COMPATIBILITY);
601 	} else  if (state->cr0 & CR0_PE) {
602 		return (CPU_MODE_PROTECTED);
603 	} else {
604 		return (CPU_MODE_REAL);
605 	}
606 }
607 
608 static enum vm_paging_mode
609 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
610 {
611 
612 	if ((cr0 & CR0_PG) == 0)
613 		return (PAGING_MODE_FLAT);
614 	if ((cr4 & CR4_PAE) == 0)
615 		return (PAGING_MODE_32);
616 	if (efer & EFER_LME)
617 		return (PAGING_MODE_64);
618 	else
619 		return (PAGING_MODE_PAE);
620 }
621 
622 /*
623  * ins/outs utility routines
624  */
625 static uint64_t
626 svm_inout_str_index(struct svm_regctx *regs, int in)
627 {
628 	uint64_t val;
629 
630 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
631 
632 	return (val);
633 }
634 
635 static uint64_t
636 svm_inout_str_count(struct svm_regctx *regs, int rep)
637 {
638 	uint64_t val;
639 
640 	val = rep ? regs->sctx_rcx : 1;
641 
642 	return (val);
643 }
644 
645 static void
646 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
647     int in, struct vm_inout_str *vis)
648 {
649 	int error, s;
650 
651 	if (in) {
652 		vis->seg_name = VM_REG_GUEST_ES;
653 	} else {
654 		/* The segment field has standard encoding */
655 		s = (info1 >> 10) & 0x7;
656 		vis->seg_name = vm_segment_name(s);
657 	}
658 
659 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
660 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
661 }
662 
663 static int
664 svm_inout_str_addrsize(uint64_t info1)
665 {
666         uint32_t size;
667 
668         size = (info1 >> 7) & 0x7;
669         switch (size) {
670         case 1:
671                 return (2);     /* 16 bit */
672         case 2:
673                 return (4);     /* 32 bit */
674         case 4:
675                 return (8);     /* 64 bit */
676         default:
677                 panic("%s: invalid size encoding %d", __func__, size);
678         }
679 }
680 
681 static void
682 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
683 {
684 	struct vmcb_state *state;
685 
686 	state = &vmcb->state;
687 	paging->cr3 = state->cr3;
688 	paging->cpl = svm_cpl(state);
689 	paging->cpu_mode = svm_vcpu_mode(vmcb);
690 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
691 	    state->efer);
692 }
693 
694 #define	UNHANDLED 0
695 
696 /*
697  * Handle guest I/O intercept.
698  */
699 static int
700 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
701 {
702 	struct vmcb_ctrl *ctrl;
703 	struct vmcb_state *state;
704 	struct svm_regctx *regs;
705 	struct vm_inout_str *vis;
706 	uint64_t info1;
707 	int inout_string;
708 
709 	state = svm_get_vmcb_state(svm_sc, vcpu);
710 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
711 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
712 
713 	info1 = ctrl->exitinfo1;
714 	inout_string = info1 & BIT(2) ? 1 : 0;
715 
716 	/*
717 	 * The effective segment number in EXITINFO1[12:10] is populated
718 	 * only if the processor has the DecodeAssist capability.
719 	 *
720 	 * XXX this is not specified explicitly in APMv2 but can be verified
721 	 * empirically.
722 	 */
723 	if (inout_string && !decode_assist())
724 		return (UNHANDLED);
725 
726 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
727 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
728 	vmexit->u.inout.string 	= inout_string;
729 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
730 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
731 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
732 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
733 
734 	if (inout_string) {
735 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
736 		vis = &vmexit->u.inout_str;
737 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
738 		vis->rflags = state->rflags;
739 		vis->cr0 = state->cr0;
740 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
741 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
742 		vis->addrsize = svm_inout_str_addrsize(info1);
743 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
744 		    vmexit->u.inout.in, vis);
745 	}
746 
747 	return (UNHANDLED);
748 }
749 
750 static int
751 npf_fault_type(uint64_t exitinfo1)
752 {
753 
754 	if (exitinfo1 & VMCB_NPF_INFO1_W)
755 		return (VM_PROT_WRITE);
756 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
757 		return (VM_PROT_EXECUTE);
758 	else
759 		return (VM_PROT_READ);
760 }
761 
762 static bool
763 svm_npf_emul_fault(uint64_t exitinfo1)
764 {
765 
766 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
767 		return (false);
768 	}
769 
770 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
771 		return (false);
772 	}
773 
774 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
775 		return (false);
776 	}
777 
778 	return (true);
779 }
780 
781 static void
782 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
783 {
784 	struct vm_guest_paging *paging;
785 	struct vmcb_segment seg;
786 	struct vmcb_ctrl *ctrl;
787 	char *inst_bytes;
788 	int error, inst_len;
789 
790 	ctrl = &vmcb->ctrl;
791 	paging = &vmexit->u.inst_emul.paging;
792 
793 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
794 	vmexit->u.inst_emul.gpa = gpa;
795 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
796 	svm_paging_info(vmcb, paging);
797 
798 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
799 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
800 
801 	switch(paging->cpu_mode) {
802 	case CPU_MODE_PROTECTED:
803 	case CPU_MODE_COMPATIBILITY:
804 		/*
805 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
806 		 */
807 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
808 		    1 : 0;
809 		break;
810 	default:
811 		vmexit->u.inst_emul.cs_d = 0;
812 		break;
813 	}
814 
815 	/*
816 	 * Copy the instruction bytes into 'vie' if available.
817 	 */
818 	if (decode_assist() && !disable_npf_assist) {
819 		inst_len = ctrl->inst_len;
820 		inst_bytes = ctrl->inst_bytes;
821 	} else {
822 		inst_len = 0;
823 		inst_bytes = NULL;
824 	}
825 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
826 }
827 
828 #ifdef KTR
829 static const char *
830 intrtype_to_str(int intr_type)
831 {
832 	switch (intr_type) {
833 	case VMCB_EVENTINJ_TYPE_INTR:
834 		return ("hwintr");
835 	case VMCB_EVENTINJ_TYPE_NMI:
836 		return ("nmi");
837 	case VMCB_EVENTINJ_TYPE_INTn:
838 		return ("swintr");
839 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
840 		return ("exception");
841 	default:
842 		panic("%s: unknown intr_type %d", __func__, intr_type);
843 	}
844 }
845 #endif
846 
847 /*
848  * Inject an event to vcpu as described in section 15.20, "Event injection".
849  */
850 static void
851 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
852 		 uint32_t error, bool ec_valid)
853 {
854 	struct vmcb_ctrl *ctrl;
855 
856 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
857 
858 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
859 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
860 
861 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
862 	    __func__, vector));
863 
864 	switch (intr_type) {
865 	case VMCB_EVENTINJ_TYPE_INTR:
866 	case VMCB_EVENTINJ_TYPE_NMI:
867 	case VMCB_EVENTINJ_TYPE_INTn:
868 		break;
869 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
870 		if (vector >= 0 && vector <= 31 && vector != 2)
871 			break;
872 		/* FALLTHROUGH */
873 	default:
874 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
875 		    intr_type, vector);
876 	}
877 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
878 	if (ec_valid) {
879 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
880 		ctrl->eventinj |= (uint64_t)error << 32;
881 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
882 		    intrtype_to_str(intr_type), vector, error);
883 	} else {
884 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
885 		    intrtype_to_str(intr_type), vector);
886 	}
887 }
888 
889 static void
890 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
891 {
892 	struct vm *vm;
893 	struct vlapic *vlapic;
894 	struct vmcb_ctrl *ctrl;
895 	int pending;
896 
897 	vm = sc->vm;
898 	vlapic = vm_lapic(vm, vcpu);
899 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
900 
901 	/* Update %cr8 in the emulated vlapic */
902 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
903 
904 	/*
905 	 * If V_IRQ indicates that the interrupt injection attempted on then
906 	 * last VMRUN was successful then update the vlapic accordingly.
907 	 */
908 	if (ctrl->v_intr_vector != 0) {
909 		pending = ctrl->v_irq;
910 		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
911 		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
912 		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
913 		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
914 		    pending ? "pending" : "accepted");
915 		if (!pending)
916 			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
917 	}
918 }
919 
920 static void
921 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
922 {
923 	struct vmcb_ctrl *ctrl;
924 	uint64_t intinfo;
925 
926 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
927 	intinfo = ctrl->exitintinfo;
928 	if (!VMCB_EXITINTINFO_VALID(intinfo))
929 		return;
930 
931 	/*
932 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
933 	 *
934 	 * If a #VMEXIT happened during event delivery then record the event
935 	 * that was being delivered.
936 	 */
937 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
938 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
939 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
940 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
941 }
942 
943 static __inline int
944 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
945 {
946 
947 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
948 	    VMCB_INTCPT_VINTR));
949 }
950 
951 static __inline void
952 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
953 {
954 	struct vmcb_ctrl *ctrl;
955 
956 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
957 
958 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
959 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
960 		KASSERT(vintr_intercept_enabled(sc, vcpu),
961 		    ("%s: vintr intercept should be enabled", __func__));
962 		return;
963 	}
964 
965 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
966 	ctrl->v_irq = 1;
967 	ctrl->v_ign_tpr = 1;
968 	ctrl->v_intr_vector = 0;
969 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
970 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
971 }
972 
973 static __inline void
974 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
975 {
976 	struct vmcb_ctrl *ctrl;
977 
978 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
979 
980 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
981 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
982 		    ("%s: vintr intercept should be disabled", __func__));
983 		return;
984 	}
985 
986 #ifdef KTR
987 	if (ctrl->v_intr_vector == 0)
988 		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
989 	else
990 		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
991 #endif
992 	ctrl->v_irq = 0;
993 	ctrl->v_intr_vector = 0;
994 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
995 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
996 }
997 
998 static int
999 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1000 {
1001 	struct vmcb_ctrl *ctrl;
1002 	int oldval, newval;
1003 
1004 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1005 	oldval = ctrl->intr_shadow;
1006 	newval = val ? 1 : 0;
1007 	if (newval != oldval) {
1008 		ctrl->intr_shadow = newval;
1009 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1010 	}
1011 	return (0);
1012 }
1013 
1014 static int
1015 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1016 {
1017 	struct vmcb_ctrl *ctrl;
1018 
1019 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1020 	*val = ctrl->intr_shadow;
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1026  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1027  * to track when the vcpu is done handling the NMI.
1028  */
1029 static int
1030 nmi_blocked(struct svm_softc *sc, int vcpu)
1031 {
1032 	int blocked;
1033 
1034 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1035 	    VMCB_INTCPT_IRET);
1036 	return (blocked);
1037 }
1038 
1039 static void
1040 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1041 {
1042 
1043 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1044 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1045 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1046 }
1047 
1048 static void
1049 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1050 {
1051 	int error;
1052 
1053 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1054 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1055 	/*
1056 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1057 	 * the "iret" when it runs next. However, it is possible to inject
1058 	 * another NMI into the vcpu before the "iret" has actually executed.
1059 	 *
1060 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1061 	 * it will trap back into the hypervisor. If an NMI is pending for
1062 	 * the vcpu it will be injected into the guest.
1063 	 *
1064 	 * XXX this needs to be fixed
1065 	 */
1066 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1067 
1068 	/*
1069 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1070 	 * immediate VMRUN.
1071 	 */
1072 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1073 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1074 }
1075 
1076 static int
1077 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1078     bool *retu)
1079 {
1080 	int error;
1081 
1082 	if (lapic_msr(num))
1083 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1084 	else if (num == MSR_EFER)
1085 		error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
1086 	else
1087 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1088 
1089 	return (error);
1090 }
1091 
1092 static int
1093 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1094 {
1095 	struct vmcb_state *state;
1096 	struct svm_regctx *ctx;
1097 	uint64_t result;
1098 	int error;
1099 
1100 	if (lapic_msr(num))
1101 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1102 	else
1103 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1104 
1105 	if (error == 0) {
1106 		state = svm_get_vmcb_state(sc, vcpu);
1107 		ctx = svm_get_guest_regctx(sc, vcpu);
1108 		state->rax = result & 0xffffffff;
1109 		ctx->sctx_rdx = result >> 32;
1110 	}
1111 
1112 	return (error);
1113 }
1114 
1115 #ifdef KTR
1116 static const char *
1117 exit_reason_to_str(uint64_t reason)
1118 {
1119 	static char reasonbuf[32];
1120 
1121 	switch (reason) {
1122 	case VMCB_EXIT_INVALID:
1123 		return ("invalvmcb");
1124 	case VMCB_EXIT_SHUTDOWN:
1125 		return ("shutdown");
1126 	case VMCB_EXIT_NPF:
1127 		return ("nptfault");
1128 	case VMCB_EXIT_PAUSE:
1129 		return ("pause");
1130 	case VMCB_EXIT_HLT:
1131 		return ("hlt");
1132 	case VMCB_EXIT_CPUID:
1133 		return ("cpuid");
1134 	case VMCB_EXIT_IO:
1135 		return ("inout");
1136 	case VMCB_EXIT_MC:
1137 		return ("mchk");
1138 	case VMCB_EXIT_INTR:
1139 		return ("extintr");
1140 	case VMCB_EXIT_NMI:
1141 		return ("nmi");
1142 	case VMCB_EXIT_VINTR:
1143 		return ("vintr");
1144 	case VMCB_EXIT_MSR:
1145 		return ("msr");
1146 	case VMCB_EXIT_IRET:
1147 		return ("iret");
1148 	case VMCB_EXIT_MONITOR:
1149 		return ("monitor");
1150 	case VMCB_EXIT_MWAIT:
1151 		return ("mwait");
1152 	default:
1153 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1154 		return (reasonbuf);
1155 	}
1156 }
1157 #endif	/* KTR */
1158 
1159 /*
1160  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1161  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1162  * and exceptions caused by INT3, INTO and BOUND instructions.
1163  *
1164  * Return 1 if the nRIP is valid and 0 otherwise.
1165  */
1166 static int
1167 nrip_valid(uint64_t exitcode)
1168 {
1169 	switch (exitcode) {
1170 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1171 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1172 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1173 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1174 	case 0x43:		/* INT3 */
1175 	case 0x44:		/* INTO */
1176 	case 0x45:		/* BOUND */
1177 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1178 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1179 		return (1);
1180 	default:
1181 		return (0);
1182 	}
1183 }
1184 
1185 /*
1186  * Collateral for a generic SVM VM-exit.
1187  */
1188 static void
1189 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
1190 {
1191 
1192 	vme->exitcode = VM_EXITCODE_SVM;
1193 	vme->u.svm.exitcode = code;
1194 	vme->u.svm.exitinfo1 = info1;
1195 	vme->u.svm.exitinfo2 = info2;
1196 }
1197 
1198 static int
1199 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1200 {
1201 	struct vmcb *vmcb;
1202 	struct vmcb_state *state;
1203 	struct vmcb_ctrl *ctrl;
1204 	struct svm_regctx *ctx;
1205 	uint64_t code, info1, info2, val;
1206 	uint32_t eax, ecx, edx;
1207 	int error, errcode_valid, handled, idtvec, reflect;
1208 	bool retu;
1209 
1210 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1211 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1212 	state = &vmcb->state;
1213 	ctrl = &vmcb->ctrl;
1214 
1215 	handled = 0;
1216 	code = ctrl->exitcode;
1217 	info1 = ctrl->exitinfo1;
1218 	info2 = ctrl->exitinfo2;
1219 
1220 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1221 	vmexit->rip = state->rip;
1222 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1223 
1224 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1225 
1226 	/*
1227 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1228 	 * in an inconsistent state and can trigger assertions that would
1229 	 * never happen otherwise.
1230 	 */
1231 	if (code == VMCB_EXIT_INVALID) {
1232 		vm_exit_svm(vmexit, code, info1, info2);
1233 		return (0);
1234 	}
1235 
1236 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1237 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1238 
1239 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1240 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1241 	    vmexit->inst_length, code, info1, info2));
1242 
1243 	svm_update_virqinfo(svm_sc, vcpu);
1244 	svm_save_intinfo(svm_sc, vcpu);
1245 
1246 	switch (code) {
1247 	case VMCB_EXIT_IRET:
1248 		/*
1249 		 * Restart execution at "iret" but with the intercept cleared.
1250 		 */
1251 		vmexit->inst_length = 0;
1252 		clear_nmi_blocking(svm_sc, vcpu);
1253 		handled = 1;
1254 		break;
1255 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1256 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1257 		handled = 1;
1258 		break;
1259 	case VMCB_EXIT_INTR:	/* external interrupt */
1260 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1261 		handled = 1;
1262 		break;
1263 	case VMCB_EXIT_NMI:	/* external NMI */
1264 		handled = 1;
1265 		break;
1266 	case 0x40 ... 0x5F:
1267 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1268 		reflect = 1;
1269 		idtvec = code - 0x40;
1270 		switch (idtvec) {
1271 		case IDT_MC:
1272 			/*
1273 			 * Call the machine check handler by hand. Also don't
1274 			 * reflect the machine check back into the guest.
1275 			 */
1276 			reflect = 0;
1277 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1278 			__asm __volatile("int $18");
1279 			break;
1280 		case IDT_PF:
1281 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1282 			    info2);
1283 			KASSERT(error == 0, ("%s: error %d updating cr2",
1284 			    __func__, error));
1285 			/* fallthru */
1286 		case IDT_NP:
1287 		case IDT_SS:
1288 		case IDT_GP:
1289 		case IDT_AC:
1290 		case IDT_TS:
1291 			errcode_valid = 1;
1292 			break;
1293 
1294 		case IDT_DF:
1295 			errcode_valid = 1;
1296 			info1 = 0;
1297 			break;
1298 
1299 		case IDT_BP:
1300 		case IDT_OF:
1301 		case IDT_BR:
1302 			/*
1303 			 * The 'nrip' field is populated for INT3, INTO and
1304 			 * BOUND exceptions and this also implies that
1305 			 * 'inst_length' is non-zero.
1306 			 *
1307 			 * Reset 'inst_length' to zero so the guest %rip at
1308 			 * event injection is identical to what it was when
1309 			 * the exception originally happened.
1310 			 */
1311 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1312 			    "to zero before injecting exception %d",
1313 			    vmexit->inst_length, idtvec);
1314 			vmexit->inst_length = 0;
1315 			/* fallthru */
1316 		default:
1317 			errcode_valid = 0;
1318 			info1 = 0;
1319 			break;
1320 		}
1321 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1322 		    "when reflecting exception %d into guest",
1323 		    vmexit->inst_length, idtvec));
1324 
1325 		if (reflect) {
1326 			/* Reflect the exception back into the guest */
1327 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1328 			    "%d/%#x into the guest", idtvec, (int)info1);
1329 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1330 			    errcode_valid, info1, 0);
1331 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1332 			    __func__, error));
1333 		}
1334 		handled = 1;
1335 		break;
1336 	case VMCB_EXIT_MSR:	/* MSR access. */
1337 		eax = state->rax;
1338 		ecx = ctx->sctx_rcx;
1339 		edx = ctx->sctx_rdx;
1340 		retu = false;
1341 
1342 		if (info1) {
1343 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1344 			val = (uint64_t)edx << 32 | eax;
1345 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1346 			    ecx, val);
1347 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1348 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1349 				vmexit->u.msr.code = ecx;
1350 				vmexit->u.msr.wval = val;
1351 			} else if (!retu) {
1352 				handled = 1;
1353 			} else {
1354 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1355 				    ("emulate_wrmsr retu with bogus exitcode"));
1356 			}
1357 		} else {
1358 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1359 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1360 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1361 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1362 				vmexit->u.msr.code = ecx;
1363 			} else if (!retu) {
1364 				handled = 1;
1365 			} else {
1366 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1367 				    ("emulate_rdmsr retu with bogus exitcode"));
1368 			}
1369 		}
1370 		break;
1371 	case VMCB_EXIT_IO:
1372 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1373 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1374 		break;
1375 	case VMCB_EXIT_CPUID:
1376 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1377 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1378 		    (uint32_t *)&state->rax,
1379 		    (uint32_t *)&ctx->sctx_rbx,
1380 		    (uint32_t *)&ctx->sctx_rcx,
1381 		    (uint32_t *)&ctx->sctx_rdx);
1382 		break;
1383 	case VMCB_EXIT_HLT:
1384 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1385 		vmexit->exitcode = VM_EXITCODE_HLT;
1386 		vmexit->u.hlt.rflags = state->rflags;
1387 		break;
1388 	case VMCB_EXIT_PAUSE:
1389 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1390 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1391 		break;
1392 	case VMCB_EXIT_NPF:
1393 		/* EXITINFO2 contains the faulting guest physical address */
1394 		if (info1 & VMCB_NPF_INFO1_RSV) {
1395 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1396 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1397 			    info1, info2);
1398 		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1399 			vmexit->exitcode = VM_EXITCODE_PAGING;
1400 			vmexit->u.paging.gpa = info2;
1401 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1402 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1403 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1404 			    "on gpa %#lx/%#lx at rip %#lx",
1405 			    info2, info1, state->rip);
1406 		} else if (svm_npf_emul_fault(info1)) {
1407 			svm_handle_inst_emul(vmcb, info2, vmexit);
1408 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1409 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1410 			    "for gpa %#lx/%#lx at rip %#lx",
1411 			    info2, info1, state->rip);
1412 		}
1413 		break;
1414 	case VMCB_EXIT_MONITOR:
1415 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1416 		break;
1417 	case VMCB_EXIT_MWAIT:
1418 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1419 		break;
1420 	default:
1421 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1422 		break;
1423 	}
1424 
1425 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1426 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1427 	    vmexit->rip, vmexit->inst_length);
1428 
1429 	if (handled) {
1430 		vmexit->rip += vmexit->inst_length;
1431 		vmexit->inst_length = 0;
1432 		state->rip = vmexit->rip;
1433 	} else {
1434 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1435 			/*
1436 			 * If this VM exit was not claimed by anybody then
1437 			 * treat it as a generic SVM exit.
1438 			 */
1439 			vm_exit_svm(vmexit, code, info1, info2);
1440 		} else {
1441 			/*
1442 			 * The exitcode and collateral have been populated.
1443 			 * The VM exit will be processed further in userland.
1444 			 */
1445 		}
1446 	}
1447 	return (handled);
1448 }
1449 
1450 static void
1451 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1452 {
1453 	uint64_t intinfo;
1454 
1455 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1456 		return;
1457 
1458 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1459 	    "valid: %#lx", __func__, intinfo));
1460 
1461 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1462 		VMCB_EXITINTINFO_VECTOR(intinfo),
1463 		VMCB_EXITINTINFO_EC(intinfo),
1464 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1465 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1466 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1467 }
1468 
1469 /*
1470  * Inject event to virtual cpu.
1471  */
1472 static void
1473 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1474 {
1475 	struct vmcb_ctrl *ctrl;
1476 	struct vmcb_state *state;
1477 	struct svm_vcpu *vcpustate;
1478 	uint8_t v_tpr;
1479 	int vector, need_intr_window, pending_apic_vector;
1480 
1481 	state = svm_get_vmcb_state(sc, vcpu);
1482 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1483 	vcpustate = svm_get_vcpu(sc, vcpu);
1484 
1485 	need_intr_window = 0;
1486 	pending_apic_vector = 0;
1487 
1488 	if (vcpustate->nextrip != state->rip) {
1489 		ctrl->intr_shadow = 0;
1490 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1491 		    "cleared due to rip change: %#lx/%#lx",
1492 		    vcpustate->nextrip, state->rip);
1493 	}
1494 
1495 	/*
1496 	 * Inject pending events or exceptions for this vcpu.
1497 	 *
1498 	 * An event might be pending because the previous #VMEXIT happened
1499 	 * during event delivery (i.e. ctrl->exitintinfo).
1500 	 *
1501 	 * An event might also be pending because an exception was injected
1502 	 * by the hypervisor (e.g. #PF during instruction emulation).
1503 	 */
1504 	svm_inj_intinfo(sc, vcpu);
1505 
1506 	/* NMI event has priority over interrupts. */
1507 	if (vm_nmi_pending(sc->vm, vcpu)) {
1508 		if (nmi_blocked(sc, vcpu)) {
1509 			/*
1510 			 * Can't inject another NMI if the guest has not
1511 			 * yet executed an "iret" after the last NMI.
1512 			 */
1513 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1514 			    "to NMI-blocking");
1515 		} else if (ctrl->intr_shadow) {
1516 			/*
1517 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1518 			 */
1519 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1520 			    "interrupt shadow");
1521 			need_intr_window = 1;
1522 			goto done;
1523 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1524 			/*
1525 			 * If there is already an exception/interrupt pending
1526 			 * then defer the NMI until after that.
1527 			 */
1528 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1529 			    "eventinj %#lx", ctrl->eventinj);
1530 
1531 			/*
1532 			 * Use self-IPI to trigger a VM-exit as soon as
1533 			 * possible after the event injection is completed.
1534 			 *
1535 			 * This works only if the external interrupt exiting
1536 			 * is at a lower priority than the event injection.
1537 			 *
1538 			 * Although not explicitly specified in APMv2 the
1539 			 * relative priorities were verified empirically.
1540 			 */
1541 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1542 		} else {
1543 			vm_nmi_clear(sc->vm, vcpu);
1544 
1545 			/* Inject NMI, vector number is not used */
1546 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1547 			    IDT_NMI, 0, false);
1548 
1549 			/* virtual NMI blocking is now in effect */
1550 			enable_nmi_blocking(sc, vcpu);
1551 
1552 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1553 		}
1554 	}
1555 
1556 	if (!vm_extint_pending(sc->vm, vcpu)) {
1557 		/*
1558 		 * APIC interrupts are delivered using the V_IRQ offload.
1559 		 *
1560 		 * The primary benefit is that the hypervisor doesn't need to
1561 		 * deal with the various conditions that inhibit interrupts.
1562 		 * It also means that TPR changes via CR8 will be handled
1563 		 * without any hypervisor involvement.
1564 		 *
1565 		 * Note that the APIC vector must remain pending in the vIRR
1566 		 * until it is confirmed that it was delivered to the guest.
1567 		 * This can be confirmed based on the value of V_IRQ at the
1568 		 * next #VMEXIT (1 = pending, 0 = delivered).
1569 		 *
1570 		 * Also note that it is possible that another higher priority
1571 		 * vector can become pending before this vector is delivered
1572 		 * to the guest. This is alright because vcpu_notify_event()
1573 		 * will send an IPI and force the vcpu to trap back into the
1574 		 * hypervisor. The higher priority vector will be injected on
1575 		 * the next VMRUN.
1576 		 */
1577 		if (vlapic_pending_intr(vlapic, &vector)) {
1578 			KASSERT(vector >= 16 && vector <= 255,
1579 			    ("invalid vector %d from local APIC", vector));
1580 			pending_apic_vector = vector;
1581 		}
1582 		goto done;
1583 	}
1584 
1585 	/* Ask the legacy pic for a vector to inject */
1586 	vatpic_pending_intr(sc->vm, &vector);
1587 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1588 	    vector));
1589 
1590 	/*
1591 	 * If the guest has disabled interrupts or is in an interrupt shadow
1592 	 * then we cannot inject the pending interrupt.
1593 	 */
1594 	if ((state->rflags & PSL_I) == 0) {
1595 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1596 		    "rflags %#lx", vector, state->rflags);
1597 		need_intr_window = 1;
1598 		goto done;
1599 	}
1600 
1601 	if (ctrl->intr_shadow) {
1602 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1603 		    "interrupt shadow", vector);
1604 		need_intr_window = 1;
1605 		goto done;
1606 	}
1607 
1608 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1609 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1610 		    "eventinj %#lx", vector, ctrl->eventinj);
1611 		need_intr_window = 1;
1612 		goto done;
1613 	}
1614 
1615 	/*
1616 	 * Legacy PIC interrupts are delivered via the event injection
1617 	 * mechanism.
1618 	 */
1619 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1620 
1621 	vm_extint_clear(sc->vm, vcpu);
1622 	vatpic_intr_accepted(sc->vm, vector);
1623 
1624 	/*
1625 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1626 	 * interrupt. This is done because the PIC might have another vector
1627 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1628 	 * that was preempted by the ExtInt then it allows us to inject the
1629 	 * APIC vector as soon as possible.
1630 	 */
1631 	need_intr_window = 1;
1632 done:
1633 	/*
1634 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1635 	 * the processor reflects this write to V_TPR without hypervisor
1636 	 * intervention.
1637 	 *
1638 	 * The guest can also modify the TPR by writing to it via the memory
1639 	 * mapped APIC page. In this case, the write will be emulated by the
1640 	 * hypervisor. For this reason V_TPR must be updated before every
1641 	 * VMRUN.
1642 	 */
1643 	v_tpr = vlapic_get_cr8(vlapic);
1644 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1645 	if (ctrl->v_tpr != v_tpr) {
1646 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1647 		    ctrl->v_tpr, v_tpr);
1648 		ctrl->v_tpr = v_tpr;
1649 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1650 	}
1651 
1652 	if (pending_apic_vector) {
1653 		/*
1654 		 * If an APIC vector is being injected then interrupt window
1655 		 * exiting is not possible on this VMRUN.
1656 		 */
1657 		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1658 		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1659 		    pending_apic_vector);
1660 
1661 		ctrl->v_irq = 1;
1662 		ctrl->v_ign_tpr = 0;
1663 		ctrl->v_intr_vector = pending_apic_vector;
1664 		ctrl->v_intr_prio = pending_apic_vector >> 4;
1665 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1666 	} else if (need_intr_window) {
1667 		/*
1668 		 * We use V_IRQ in conjunction with the VINTR intercept to
1669 		 * trap into the hypervisor as soon as a virtual interrupt
1670 		 * can be delivered.
1671 		 *
1672 		 * Since injected events are not subject to intercept checks
1673 		 * we need to ensure that the V_IRQ is not actually going to
1674 		 * be delivered on VM entry. The KASSERT below enforces this.
1675 		 */
1676 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1677 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1678 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1679 		    "intr_shadow (%u), rflags (%#lx)",
1680 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1681 		enable_intr_window_exiting(sc, vcpu);
1682 	} else {
1683 		disable_intr_window_exiting(sc, vcpu);
1684 	}
1685 }
1686 
1687 static __inline void
1688 restore_host_tss(void)
1689 {
1690 	struct system_segment_descriptor *tss_sd;
1691 
1692 	/*
1693 	 * The TSS descriptor was in use prior to launching the guest so it
1694 	 * has been marked busy.
1695 	 *
1696 	 * 'ltr' requires the descriptor to be marked available so change the
1697 	 * type to "64-bit available TSS".
1698 	 */
1699 	tss_sd = PCPU_GET(tss);
1700 	tss_sd->sd_type = SDT_SYSTSS;
1701 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1702 }
1703 
1704 static void
1705 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1706 {
1707 	struct svm_vcpu *vcpustate;
1708 	struct vmcb_ctrl *ctrl;
1709 	long eptgen;
1710 	bool alloc_asid;
1711 
1712 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1713 	    "active on cpu %u", __func__, thiscpu));
1714 
1715 	vcpustate = svm_get_vcpu(sc, vcpuid);
1716 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1717 
1718 	/*
1719 	 * The TLB entries associated with the vcpu's ASID are not valid
1720 	 * if either of the following conditions is true:
1721 	 *
1722 	 * 1. The vcpu's ASID generation is different than the host cpu's
1723 	 *    ASID generation. This happens when the vcpu migrates to a new
1724 	 *    host cpu. It can also happen when the number of vcpus executing
1725 	 *    on a host cpu is greater than the number of ASIDs available.
1726 	 *
1727 	 * 2. The pmap generation number is different than the value cached in
1728 	 *    the 'vcpustate'. This happens when the host invalidates pages
1729 	 *    belonging to the guest.
1730 	 *
1731 	 *	asidgen		eptgen	      Action
1732 	 *	mismatch	mismatch
1733 	 *	   0		   0		(a)
1734 	 *	   0		   1		(b1) or (b2)
1735 	 *	   1		   0		(c)
1736 	 *	   1		   1		(d)
1737 	 *
1738 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1739 	 *     no further action is needed.
1740 	 *
1741 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1742 	 *      retained and the TLB entries associated with this ASID
1743 	 *      are flushed by VMRUN.
1744 	 *
1745 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1746 	 *      allocated.
1747 	 *
1748 	 * (c) A new ASID is allocated.
1749 	 *
1750 	 * (d) A new ASID is allocated.
1751 	 */
1752 
1753 	alloc_asid = false;
1754 	eptgen = pmap->pm_eptgen;
1755 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1756 
1757 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1758 		alloc_asid = true;	/* (c) and (d) */
1759 	} else if (vcpustate->eptgen != eptgen) {
1760 		if (flush_by_asid())
1761 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1762 		else
1763 			alloc_asid = true;			/* (b2) */
1764 	} else {
1765 		/*
1766 		 * This is the common case (a).
1767 		 */
1768 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1769 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1770 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1771 	}
1772 
1773 	if (alloc_asid) {
1774 		if (++asid[thiscpu].num >= nasid) {
1775 			asid[thiscpu].num = 1;
1776 			if (++asid[thiscpu].gen == 0)
1777 				asid[thiscpu].gen = 1;
1778 			/*
1779 			 * If this cpu does not support "flush-by-asid"
1780 			 * then flush the entire TLB on a generation
1781 			 * bump. Subsequent ASID allocation in this
1782 			 * generation can be done without a TLB flush.
1783 			 */
1784 			if (!flush_by_asid())
1785 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1786 		}
1787 		vcpustate->asid.gen = asid[thiscpu].gen;
1788 		vcpustate->asid.num = asid[thiscpu].num;
1789 
1790 		ctrl->asid = vcpustate->asid.num;
1791 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1792 		/*
1793 		 * If this cpu supports "flush-by-asid" then the TLB
1794 		 * was not flushed after the generation bump. The TLB
1795 		 * is flushed selectively after every new ASID allocation.
1796 		 */
1797 		if (flush_by_asid())
1798 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1799 	}
1800 	vcpustate->eptgen = eptgen;
1801 
1802 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1803 	KASSERT(ctrl->asid == vcpustate->asid.num,
1804 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1805 }
1806 
1807 static __inline void
1808 disable_gintr(void)
1809 {
1810 
1811 	__asm __volatile("clgi");
1812 }
1813 
1814 static __inline void
1815 enable_gintr(void)
1816 {
1817 
1818         __asm __volatile("stgi");
1819 }
1820 
1821 /*
1822  * Start vcpu with specified RIP.
1823  */
1824 static int
1825 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1826 	void *rend_cookie, void *suspended_cookie)
1827 {
1828 	struct svm_regctx *gctx;
1829 	struct svm_softc *svm_sc;
1830 	struct svm_vcpu *vcpustate;
1831 	struct vmcb_state *state;
1832 	struct vmcb_ctrl *ctrl;
1833 	struct vm_exit *vmexit;
1834 	struct vlapic *vlapic;
1835 	struct vm *vm;
1836 	uint64_t vmcb_pa;
1837 	u_int thiscpu;
1838 	int handled;
1839 
1840 	svm_sc = arg;
1841 	vm = svm_sc->vm;
1842 
1843 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1844 	state = svm_get_vmcb_state(svm_sc, vcpu);
1845 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1846 	vmexit = vm_exitinfo(vm, vcpu);
1847 	vlapic = vm_lapic(vm, vcpu);
1848 
1849 	/*
1850 	 * Stash 'curcpu' on the stack as 'thiscpu'.
1851 	 *
1852 	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1853 	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1854 	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1855 	 */
1856 	thiscpu = curcpu;
1857 
1858 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1859 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1860 
1861 	if (vcpustate->lastcpu != thiscpu) {
1862 		/*
1863 		 * Force new ASID allocation by invalidating the generation.
1864 		 */
1865 		vcpustate->asid.gen = 0;
1866 
1867 		/*
1868 		 * Invalidate the VMCB state cache by marking all fields dirty.
1869 		 */
1870 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1871 
1872 		/*
1873 		 * XXX
1874 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1875 		 * we may return from this function without actually executing
1876 		 * the VMRUN  instruction. This could happen if a rendezvous
1877 		 * or an AST is pending on the first time through the loop.
1878 		 *
1879 		 * This works for now but any new side-effects of vcpu
1880 		 * migration should take this case into account.
1881 		 */
1882 		vcpustate->lastcpu = thiscpu;
1883 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1884 	}
1885 
1886 	svm_msr_guest_enter(svm_sc, vcpu);
1887 
1888 	/* Update Guest RIP */
1889 	state->rip = rip;
1890 
1891 	do {
1892 		/*
1893 		 * Disable global interrupts to guarantee atomicity during
1894 		 * loading of guest state. This includes not only the state
1895 		 * loaded by the "vmrun" instruction but also software state
1896 		 * maintained by the hypervisor: suspended and rendezvous
1897 		 * state, NPT generation number, vlapic interrupts etc.
1898 		 */
1899 		disable_gintr();
1900 
1901 		if (vcpu_suspended(suspended_cookie)) {
1902 			enable_gintr();
1903 			vm_exit_suspended(vm, vcpu, state->rip);
1904 			break;
1905 		}
1906 
1907 		if (vcpu_rendezvous_pending(rend_cookie)) {
1908 			enable_gintr();
1909 			vm_exit_rendezvous(vm, vcpu, state->rip);
1910 			break;
1911 		}
1912 
1913 		/* We are asked to give the cpu by scheduler. */
1914 		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1915 			enable_gintr();
1916 			vm_exit_astpending(vm, vcpu, state->rip);
1917 			break;
1918 		}
1919 
1920 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1921 
1922 		/* Activate the nested pmap on 'thiscpu' */
1923 		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
1924 
1925 		/*
1926 		 * Check the pmap generation and the ASID generation to
1927 		 * ensure that the vcpu does not use stale TLB mappings.
1928 		 */
1929 		check_asid(svm_sc, vcpu, pmap, thiscpu);
1930 
1931 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1932 		vcpustate->dirty = 0;
1933 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1934 
1935 		/* Launch Virtual Machine. */
1936 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1937 		svm_launch(vmcb_pa, gctx);
1938 
1939 		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
1940 
1941 		/*
1942 		 * Restore MSR_GSBASE to point to the pcpu data area.
1943 		 *
1944 		 * Note that accesses done via PCPU_GET/PCPU_SET will work
1945 		 * only after MSR_GSBASE is restored.
1946 		 *
1947 		 * Also note that we don't bother restoring MSR_KGSBASE
1948 		 * since it is not used in the kernel and will be restored
1949 		 * when the VMRUN ioctl returns to userspace.
1950 		 */
1951 		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
1952 		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
1953 		    thiscpu, curcpu));
1954 
1955 		/*
1956 		 * The host GDTR and IDTR is saved by VMRUN and restored
1957 		 * automatically on #VMEXIT. However, the host TSS needs
1958 		 * to be restored explicitly.
1959 		 */
1960 		restore_host_tss();
1961 
1962 		/* #VMEXIT disables interrupts so re-enable them here. */
1963 		enable_gintr();
1964 
1965 		/* Update 'nextrip' */
1966 		vcpustate->nextrip = state->rip;
1967 
1968 		/* Handle #VMEXIT and if required return to user space. */
1969 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1970 	} while (handled);
1971 
1972 	svm_msr_guest_exit(svm_sc, vcpu);
1973 
1974 	return (0);
1975 }
1976 
1977 static void
1978 svm_vmcleanup(void *arg)
1979 {
1980 	struct svm_softc *sc = arg;
1981 
1982 	free(sc, M_SVM);
1983 }
1984 
1985 static register_t *
1986 swctx_regptr(struct svm_regctx *regctx, int reg)
1987 {
1988 
1989 	switch (reg) {
1990 	case VM_REG_GUEST_RBX:
1991 		return (&regctx->sctx_rbx);
1992 	case VM_REG_GUEST_RCX:
1993 		return (&regctx->sctx_rcx);
1994 	case VM_REG_GUEST_RDX:
1995 		return (&regctx->sctx_rdx);
1996 	case VM_REG_GUEST_RDI:
1997 		return (&regctx->sctx_rdi);
1998 	case VM_REG_GUEST_RSI:
1999 		return (&regctx->sctx_rsi);
2000 	case VM_REG_GUEST_RBP:
2001 		return (&regctx->sctx_rbp);
2002 	case VM_REG_GUEST_R8:
2003 		return (&regctx->sctx_r8);
2004 	case VM_REG_GUEST_R9:
2005 		return (&regctx->sctx_r9);
2006 	case VM_REG_GUEST_R10:
2007 		return (&regctx->sctx_r10);
2008 	case VM_REG_GUEST_R11:
2009 		return (&regctx->sctx_r11);
2010 	case VM_REG_GUEST_R12:
2011 		return (&regctx->sctx_r12);
2012 	case VM_REG_GUEST_R13:
2013 		return (&regctx->sctx_r13);
2014 	case VM_REG_GUEST_R14:
2015 		return (&regctx->sctx_r14);
2016 	case VM_REG_GUEST_R15:
2017 		return (&regctx->sctx_r15);
2018 	default:
2019 		return (NULL);
2020 	}
2021 }
2022 
2023 static int
2024 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2025 {
2026 	struct svm_softc *svm_sc;
2027 	register_t *reg;
2028 
2029 	svm_sc = arg;
2030 
2031 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2032 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2033 	}
2034 
2035 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2036 		return (0);
2037 	}
2038 
2039 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2040 
2041 	if (reg != NULL) {
2042 		*val = *reg;
2043 		return (0);
2044 	}
2045 
2046 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2047 	return (EINVAL);
2048 }
2049 
2050 static int
2051 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2052 {
2053 	struct svm_softc *svm_sc;
2054 	register_t *reg;
2055 
2056 	svm_sc = arg;
2057 
2058 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2059 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2060 	}
2061 
2062 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2063 		return (0);
2064 	}
2065 
2066 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2067 
2068 	if (reg != NULL) {
2069 		*reg = val;
2070 		return (0);
2071 	}
2072 
2073 	/*
2074 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2075 	 * vcpu's ASID. This needs to be treated differently depending on
2076 	 * whether 'running' is true/false.
2077 	 */
2078 
2079 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2080 	return (EINVAL);
2081 }
2082 
2083 static int
2084 svm_setcap(void *arg, int vcpu, int type, int val)
2085 {
2086 	struct svm_softc *sc;
2087 	int error;
2088 
2089 	sc = arg;
2090 	error = 0;
2091 	switch (type) {
2092 	case VM_CAP_HALT_EXIT:
2093 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2094 		    VMCB_INTCPT_HLT, val);
2095 		break;
2096 	case VM_CAP_PAUSE_EXIT:
2097 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2098 		    VMCB_INTCPT_PAUSE, val);
2099 		break;
2100 	case VM_CAP_UNRESTRICTED_GUEST:
2101 		/* Unrestricted guest execution cannot be disabled in SVM */
2102 		if (val == 0)
2103 			error = EINVAL;
2104 		break;
2105 	default:
2106 		error = ENOENT;
2107 		break;
2108 	}
2109 	return (error);
2110 }
2111 
2112 static int
2113 svm_getcap(void *arg, int vcpu, int type, int *retval)
2114 {
2115 	struct svm_softc *sc;
2116 	int error;
2117 
2118 	sc = arg;
2119 	error = 0;
2120 
2121 	switch (type) {
2122 	case VM_CAP_HALT_EXIT:
2123 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2124 		    VMCB_INTCPT_HLT);
2125 		break;
2126 	case VM_CAP_PAUSE_EXIT:
2127 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2128 		    VMCB_INTCPT_PAUSE);
2129 		break;
2130 	case VM_CAP_UNRESTRICTED_GUEST:
2131 		*retval = 1;	/* unrestricted guest is always enabled */
2132 		break;
2133 	default:
2134 		error = ENOENT;
2135 		break;
2136 	}
2137 	return (error);
2138 }
2139 
2140 static struct vlapic *
2141 svm_vlapic_init(void *arg, int vcpuid)
2142 {
2143 	struct svm_softc *svm_sc;
2144 	struct vlapic *vlapic;
2145 
2146 	svm_sc = arg;
2147 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2148 	vlapic->vm = svm_sc->vm;
2149 	vlapic->vcpuid = vcpuid;
2150 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2151 
2152 	vlapic_init(vlapic);
2153 
2154 	return (vlapic);
2155 }
2156 
2157 static void
2158 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2159 {
2160 
2161         vlapic_cleanup(vlapic);
2162         free(vlapic, M_SVM_VLAPIC);
2163 }
2164 
2165 struct vmm_ops vmm_ops_amd = {
2166 	svm_init,
2167 	svm_cleanup,
2168 	svm_restore,
2169 	svm_vminit,
2170 	svm_vmrun,
2171 	svm_vmcleanup,
2172 	svm_getreg,
2173 	svm_setreg,
2174 	vmcb_getdesc,
2175 	vmcb_setdesc,
2176 	svm_getcap,
2177 	svm_setcap,
2178 	svm_npt_alloc,
2179 	svm_npt_free,
2180 	svm_vlapic_init,
2181 	svm_vlapic_cleanup
2182 };
2183