xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bhyve_snapshot.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/smp.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/pcpu.h>
40 #include <sys/proc.h>
41 #include <sys/smr.h>
42 #include <sys/sysctl.h>
43 
44 #include <vm/vm.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/reg.h>
51 #include <machine/specialreg.h>
52 #include <machine/smp.h>
53 #include <machine/vmm.h>
54 #include <machine/vmm_dev.h>
55 #include <machine/vmm_instruction_emul.h>
56 #include <machine/vmm_snapshot.h>
57 
58 #include "vmm_lapic.h"
59 #include "vmm_stat.h"
60 #include "vmm_ktr.h"
61 #include "vmm_ioport.h"
62 #include "vatpic.h"
63 #include "vlapic.h"
64 #include "vlapic_priv.h"
65 
66 #include "x86.h"
67 #include "vmcb.h"
68 #include "svm.h"
69 #include "svm_softc.h"
70 #include "svm_msr.h"
71 #include "npt.h"
72 
73 SYSCTL_DECL(_hw_vmm);
74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75     NULL);
76 
77 /*
78  * SVM CPUID function 0x8000_000A, edx bit decoding.
79  */
80 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
81 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
82 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
83 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
84 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
85 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
86 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
87 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
88 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
89 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
90 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
91 
92 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
93 				VMCB_CACHE_IOPM		|	\
94 				VMCB_CACHE_I		|	\
95 				VMCB_CACHE_TPR		|	\
96 				VMCB_CACHE_CR2		|	\
97 				VMCB_CACHE_CR		|	\
98 				VMCB_CACHE_DR		|	\
99 				VMCB_CACHE_DT		|	\
100 				VMCB_CACHE_SEG		|	\
101 				VMCB_CACHE_NP)
102 
103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
105     0, NULL);
106 
107 static MALLOC_DEFINE(M_SVM, "svm", "svm");
108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
109 
110 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
112     "SVM features advertised by CPUID.8000000AH:EDX");
113 
114 static int disable_npf_assist;
115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
116     &disable_npf_assist, 0, NULL);
117 
118 /* Maximum ASIDs supported by the processor */
119 static uint32_t nasid;
120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
121     "Number of ASIDs supported by this processor");
122 
123 /* Current ASID generation for each host cpu */
124 static struct asid asid[MAXCPU];
125 
126 /*
127  * SVM host state saved area of size 4KB for each core.
128  */
129 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
130 
131 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134 
135 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
136 
137 static __inline int
138 flush_by_asid(void)
139 {
140 
141 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
142 }
143 
144 static __inline int
145 decode_assist(void)
146 {
147 
148 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
149 }
150 
151 static void
152 svm_disable(void *arg __unused)
153 {
154 	uint64_t efer;
155 
156 	efer = rdmsr(MSR_EFER);
157 	efer &= ~EFER_SVM;
158 	wrmsr(MSR_EFER, efer);
159 }
160 
161 /*
162  * Disable SVM on all CPUs.
163  */
164 static int
165 svm_cleanup(void)
166 {
167 
168 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
169 	return (0);
170 }
171 
172 /*
173  * Verify that all the features required by bhyve are available.
174  */
175 static int
176 check_svm_features(void)
177 {
178 	u_int regs[4];
179 
180 	/* CPUID Fn8000_000A is for SVM */
181 	do_cpuid(0x8000000A, regs);
182 	svm_feature &= regs[3];
183 
184 	/*
185 	 * The number of ASIDs can be configured to be less than what is
186 	 * supported by the hardware but not more.
187 	 */
188 	if (nasid == 0 || nasid > regs[1])
189 		nasid = regs[1];
190 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
191 
192 	/* bhyve requires the Nested Paging feature */
193 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
194 		printf("SVM: Nested Paging feature not available.\n");
195 		return (ENXIO);
196 	}
197 
198 	/* bhyve requires the NRIP Save feature */
199 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
200 		printf("SVM: NRIP Save feature not available.\n");
201 		return (ENXIO);
202 	}
203 
204 	return (0);
205 }
206 
207 static void
208 svm_enable(void *arg __unused)
209 {
210 	uint64_t efer;
211 
212 	efer = rdmsr(MSR_EFER);
213 	efer |= EFER_SVM;
214 	wrmsr(MSR_EFER, efer);
215 
216 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
217 }
218 
219 /*
220  * Return 1 if SVM is enabled on this processor and 0 otherwise.
221  */
222 static int
223 svm_available(void)
224 {
225 	uint64_t msr;
226 
227 	/* Section 15.4 Enabling SVM from APM2. */
228 	if ((amd_feature2 & AMDID2_SVM) == 0) {
229 		printf("SVM: not available.\n");
230 		return (0);
231 	}
232 
233 	msr = rdmsr(MSR_VM_CR);
234 	if ((msr & VM_CR_SVMDIS) != 0) {
235 		printf("SVM: disabled by BIOS.\n");
236 		return (0);
237 	}
238 
239 	return (1);
240 }
241 
242 static int
243 svm_init(int ipinum)
244 {
245 	int error, cpu;
246 
247 	if (!svm_available())
248 		return (ENXIO);
249 
250 	error = check_svm_features();
251 	if (error)
252 		return (error);
253 
254 	vmcb_clean &= VMCB_CACHE_DEFAULT;
255 
256 	for (cpu = 0; cpu < MAXCPU; cpu++) {
257 		/*
258 		 * Initialize the host ASIDs to their "highest" valid values.
259 		 *
260 		 * The next ASID allocation will rollover both 'gen' and 'num'
261 		 * and start off the sequence at {1,1}.
262 		 */
263 		asid[cpu].gen = ~0UL;
264 		asid[cpu].num = nasid - 1;
265 	}
266 
267 	svm_msr_init();
268 	svm_npt_init(ipinum);
269 
270 	/* Enable SVM on all CPUs */
271 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
272 
273 	return (0);
274 }
275 
276 static void
277 svm_restore(void)
278 {
279 
280 	svm_enable(NULL);
281 }
282 
283 #ifdef BHYVE_SNAPSHOT
284 int
285 svm_set_tsc_offset(struct svm_softc *sc, int vcpu, uint64_t offset)
286 {
287 	int error;
288 	struct vmcb_ctrl *ctrl;
289 
290 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
291 	ctrl->tsc_offset = offset;
292 
293 	svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
294 	VCPU_CTR1(sc->vm, vcpu, "tsc offset changed to %#lx", offset);
295 
296 	error = vm_set_tsc_offset(sc->vm, vcpu, offset);
297 
298 	return (error);
299 }
300 #endif
301 
302 /* Pentium compatible MSRs */
303 #define MSR_PENTIUM_START 	0
304 #define MSR_PENTIUM_END 	0x1FFF
305 /* AMD 6th generation and Intel compatible MSRs */
306 #define MSR_AMD6TH_START 	0xC0000000UL
307 #define MSR_AMD6TH_END 		0xC0001FFFUL
308 /* AMD 7th and 8th generation compatible MSRs */
309 #define MSR_AMD7TH_START 	0xC0010000UL
310 #define MSR_AMD7TH_END 		0xC0011FFFUL
311 
312 /*
313  * Get the index and bit position for a MSR in permission bitmap.
314  * Two bits are used for each MSR: lower bit for read and higher bit for write.
315  */
316 static int
317 svm_msr_index(uint64_t msr, int *index, int *bit)
318 {
319 	uint32_t base, off;
320 
321 	*index = -1;
322 	*bit = (msr % 4) * 2;
323 	base = 0;
324 
325 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
326 		*index = msr / 4;
327 		return (0);
328 	}
329 
330 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
331 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
332 		off = (msr - MSR_AMD6TH_START);
333 		*index = (off + base) / 4;
334 		return (0);
335 	}
336 
337 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
338 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
339 		off = (msr - MSR_AMD7TH_START);
340 		*index = (off + base) / 4;
341 		return (0);
342 	}
343 
344 	return (EINVAL);
345 }
346 
347 /*
348  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
349  */
350 static void
351 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
352 {
353 	int index, bit, error;
354 
355 	error = svm_msr_index(msr, &index, &bit);
356 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
357 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
358 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
359 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
360 	    "msr %#lx", __func__, bit, msr));
361 
362 	if (read)
363 		perm_bitmap[index] &= ~(1UL << bit);
364 
365 	if (write)
366 		perm_bitmap[index] &= ~(2UL << bit);
367 }
368 
369 static void
370 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
371 {
372 
373 	svm_msr_perm(perm_bitmap, msr, true, true);
374 }
375 
376 static void
377 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
378 {
379 
380 	svm_msr_perm(perm_bitmap, msr, true, false);
381 }
382 
383 static __inline int
384 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
385 {
386 	struct vmcb_ctrl *ctrl;
387 
388 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
389 
390 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
391 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
392 }
393 
394 static __inline void
395 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
396     int enabled)
397 {
398 	struct vmcb_ctrl *ctrl;
399 	uint32_t oldval;
400 
401 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
402 
403 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
404 	oldval = ctrl->intercept[idx];
405 
406 	if (enabled)
407 		ctrl->intercept[idx] |= bitmask;
408 	else
409 		ctrl->intercept[idx] &= ~bitmask;
410 
411 	if (ctrl->intercept[idx] != oldval) {
412 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
413 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
414 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
415 	}
416 }
417 
418 static __inline void
419 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
420 {
421 
422 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
423 }
424 
425 static __inline void
426 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
427 {
428 
429 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
430 }
431 
432 static void
433 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
434     uint64_t msrpm_base_pa, uint64_t np_pml4)
435 {
436 	struct vmcb_ctrl *ctrl;
437 	struct vmcb_state *state;
438 	uint32_t mask;
439 	int n;
440 
441 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
442 	state = svm_get_vmcb_state(sc, vcpu);
443 
444 	ctrl->iopm_base_pa = iopm_base_pa;
445 	ctrl->msrpm_base_pa = msrpm_base_pa;
446 
447 	/* Enable nested paging */
448 	ctrl->np_enable = 1;
449 	ctrl->n_cr3 = np_pml4;
450 
451 	/*
452 	 * Intercept accesses to the control registers that are not shadowed
453 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
454 	 */
455 	for (n = 0; n < 16; n++) {
456 		mask = (BIT(n) << 16) | BIT(n);
457 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
458 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
459 		else
460 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
461 	}
462 
463 	/*
464 	 * Intercept everything when tracing guest exceptions otherwise
465 	 * just intercept machine check exception.
466 	 */
467 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
468 		for (n = 0; n < 32; n++) {
469 			/*
470 			 * Skip unimplemented vectors in the exception bitmap.
471 			 */
472 			if (n == 2 || n == 9) {
473 				continue;
474 			}
475 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
476 		}
477 	} else {
478 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
479 	}
480 
481 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
482 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
483 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
484 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
485 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
486 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
487 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
488 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
489 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
490 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
491 	    VMCB_INTCPT_FERR_FREEZE);
492 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
493 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
494 
495 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
496 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
497 
498 	/*
499 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
500 	 * Non-intercepted VMMCALL causes #UD, skip it.
501 	 */
502 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
503 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
504 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
505 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
506 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
507 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
508 
509 	/*
510 	 * From section "Canonicalization and Consistency Checks" in APMv2
511 	 * the VMRUN intercept bit must be set to pass the consistency check.
512 	 */
513 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
514 
515 	/*
516 	 * The ASID will be set to a non-zero value just before VMRUN.
517 	 */
518 	ctrl->asid = 0;
519 
520 	/*
521 	 * Section 15.21.1, Interrupt Masking in EFLAGS
522 	 * Section 15.21.2, Virtualizing APIC.TPR
523 	 *
524 	 * This must be set for %rflag and %cr8 isolation of guest and host.
525 	 */
526 	ctrl->v_intr_masking = 1;
527 
528 	/* Enable Last Branch Record aka LBR for debugging */
529 	ctrl->lbr_virt_en = 1;
530 	state->dbgctl = BIT(0);
531 
532 	/* EFER_SVM must always be set when the guest is executing */
533 	state->efer = EFER_SVM;
534 
535 	/* Set up the PAT to power-on state */
536 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
537 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
538 	    PAT_VALUE(2, PAT_UNCACHED)		|
539 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
540 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
541 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
542 	    PAT_VALUE(6, PAT_UNCACHED)		|
543 	    PAT_VALUE(7, PAT_UNCACHEABLE);
544 
545 	/* Set up DR6/7 to power-on state */
546 	state->dr6 = DBREG_DR6_RESERVED1;
547 	state->dr7 = DBREG_DR7_RESERVED1;
548 }
549 
550 /*
551  * Initialize a virtual machine.
552  */
553 static void *
554 svm_vminit(struct vm *vm, pmap_t pmap)
555 {
556 	struct svm_softc *svm_sc;
557 	struct svm_vcpu *vcpu;
558 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
559 	int i;
560 	uint16_t maxcpus;
561 
562 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
563 	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
564 		panic("malloc of svm_softc not aligned on page boundary");
565 
566 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
567 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
568 	if (svm_sc->msr_bitmap == NULL)
569 		panic("contigmalloc of SVM MSR bitmap failed");
570 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
571 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
572 	if (svm_sc->iopm_bitmap == NULL)
573 		panic("contigmalloc of SVM IO bitmap failed");
574 
575 	svm_sc->vm = vm;
576 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pmltop);
577 
578 	/*
579 	 * Intercept read and write accesses to all MSRs.
580 	 */
581 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
582 
583 	/*
584 	 * Access to the following MSRs is redirected to the VMCB when the
585 	 * guest is executing. Therefore it is safe to allow the guest to
586 	 * read/write these MSRs directly without hypervisor involvement.
587 	 */
588 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
589 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
590 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
591 
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
595 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
596 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
597 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
598 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
599 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
600 
601 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
602 
603 	/*
604 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
605 	 */
606 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
607 
608 	/* Intercept access to all I/O ports. */
609 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
610 
611 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
612 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
613 	pml4_pa = svm_sc->nptp;
614 	maxcpus = vm_get_maxcpus(svm_sc->vm);
615 	for (i = 0; i < maxcpus; i++) {
616 		vcpu = svm_get_vcpu(svm_sc, i);
617 		vcpu->nextrip = ~0;
618 		vcpu->lastcpu = NOCPU;
619 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
620 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
621 		svm_msr_guest_init(svm_sc, i);
622 	}
623 	return (svm_sc);
624 }
625 
626 /*
627  * Collateral for a generic SVM VM-exit.
628  */
629 static void
630 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
631 {
632 
633 	vme->exitcode = VM_EXITCODE_SVM;
634 	vme->u.svm.exitcode = code;
635 	vme->u.svm.exitinfo1 = info1;
636 	vme->u.svm.exitinfo2 = info2;
637 }
638 
639 static int
640 svm_cpl(struct vmcb_state *state)
641 {
642 
643 	/*
644 	 * From APMv2:
645 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
646 	 *    from any segment DPL"
647 	 */
648 	return (state->cpl);
649 }
650 
651 static enum vm_cpu_mode
652 svm_vcpu_mode(struct vmcb *vmcb)
653 {
654 	struct vmcb_segment seg;
655 	struct vmcb_state *state;
656 	int error;
657 
658 	state = &vmcb->state;
659 
660 	if (state->efer & EFER_LMA) {
661 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
662 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
663 		    error));
664 
665 		/*
666 		 * Section 4.8.1 for APM2, check if Code Segment has
667 		 * Long attribute set in descriptor.
668 		 */
669 		if (seg.attrib & VMCB_CS_ATTRIB_L)
670 			return (CPU_MODE_64BIT);
671 		else
672 			return (CPU_MODE_COMPATIBILITY);
673 	} else  if (state->cr0 & CR0_PE) {
674 		return (CPU_MODE_PROTECTED);
675 	} else {
676 		return (CPU_MODE_REAL);
677 	}
678 }
679 
680 static enum vm_paging_mode
681 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
682 {
683 
684 	if ((cr0 & CR0_PG) == 0)
685 		return (PAGING_MODE_FLAT);
686 	if ((cr4 & CR4_PAE) == 0)
687 		return (PAGING_MODE_32);
688 	if (efer & EFER_LME)
689 		return (PAGING_MODE_64);
690 	else
691 		return (PAGING_MODE_PAE);
692 }
693 
694 /*
695  * ins/outs utility routines
696  */
697 static uint64_t
698 svm_inout_str_index(struct svm_regctx *regs, int in)
699 {
700 	uint64_t val;
701 
702 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
703 
704 	return (val);
705 }
706 
707 static uint64_t
708 svm_inout_str_count(struct svm_regctx *regs, int rep)
709 {
710 	uint64_t val;
711 
712 	val = rep ? regs->sctx_rcx : 1;
713 
714 	return (val);
715 }
716 
717 static void
718 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
719     int in, struct vm_inout_str *vis)
720 {
721 	int error, s;
722 
723 	if (in) {
724 		vis->seg_name = VM_REG_GUEST_ES;
725 	} else {
726 		/* The segment field has standard encoding */
727 		s = (info1 >> 10) & 0x7;
728 		vis->seg_name = vm_segment_name(s);
729 	}
730 
731 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
732 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
733 }
734 
735 static int
736 svm_inout_str_addrsize(uint64_t info1)
737 {
738         uint32_t size;
739 
740         size = (info1 >> 7) & 0x7;
741         switch (size) {
742         case 1:
743                 return (2);     /* 16 bit */
744         case 2:
745                 return (4);     /* 32 bit */
746         case 4:
747                 return (8);     /* 64 bit */
748         default:
749                 panic("%s: invalid size encoding %d", __func__, size);
750         }
751 }
752 
753 static void
754 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
755 {
756 	struct vmcb_state *state;
757 
758 	state = &vmcb->state;
759 	paging->cr3 = state->cr3;
760 	paging->cpl = svm_cpl(state);
761 	paging->cpu_mode = svm_vcpu_mode(vmcb);
762 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
763 	    state->efer);
764 }
765 
766 #define	UNHANDLED 0
767 
768 /*
769  * Handle guest I/O intercept.
770  */
771 static int
772 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
773 {
774 	struct vmcb_ctrl *ctrl;
775 	struct vmcb_state *state;
776 	struct svm_regctx *regs;
777 	struct vm_inout_str *vis;
778 	uint64_t info1;
779 	int inout_string;
780 
781 	state = svm_get_vmcb_state(svm_sc, vcpu);
782 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
783 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
784 
785 	info1 = ctrl->exitinfo1;
786 	inout_string = info1 & BIT(2) ? 1 : 0;
787 
788 	/*
789 	 * The effective segment number in EXITINFO1[12:10] is populated
790 	 * only if the processor has the DecodeAssist capability.
791 	 *
792 	 * XXX this is not specified explicitly in APMv2 but can be verified
793 	 * empirically.
794 	 */
795 	if (inout_string && !decode_assist())
796 		return (UNHANDLED);
797 
798 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
799 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
800 	vmexit->u.inout.string 	= inout_string;
801 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
802 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
803 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
804 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
805 
806 	if (inout_string) {
807 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
808 		vis = &vmexit->u.inout_str;
809 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
810 		vis->rflags = state->rflags;
811 		vis->cr0 = state->cr0;
812 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
813 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
814 		vis->addrsize = svm_inout_str_addrsize(info1);
815 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
816 		    vmexit->u.inout.in, vis);
817 	}
818 
819 	return (UNHANDLED);
820 }
821 
822 static int
823 npf_fault_type(uint64_t exitinfo1)
824 {
825 
826 	if (exitinfo1 & VMCB_NPF_INFO1_W)
827 		return (VM_PROT_WRITE);
828 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
829 		return (VM_PROT_EXECUTE);
830 	else
831 		return (VM_PROT_READ);
832 }
833 
834 static bool
835 svm_npf_emul_fault(uint64_t exitinfo1)
836 {
837 
838 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
839 		return (false);
840 	}
841 
842 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
843 		return (false);
844 	}
845 
846 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
847 		return (false);
848 	}
849 
850 	return (true);
851 }
852 
853 static void
854 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
855 {
856 	struct vm_guest_paging *paging;
857 	struct vmcb_segment seg;
858 	struct vmcb_ctrl *ctrl;
859 	char *inst_bytes;
860 	int error, inst_len;
861 
862 	ctrl = &vmcb->ctrl;
863 	paging = &vmexit->u.inst_emul.paging;
864 
865 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
866 	vmexit->u.inst_emul.gpa = gpa;
867 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
868 	svm_paging_info(vmcb, paging);
869 
870 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
871 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
872 
873 	switch(paging->cpu_mode) {
874 	case CPU_MODE_REAL:
875 		vmexit->u.inst_emul.cs_base = seg.base;
876 		vmexit->u.inst_emul.cs_d = 0;
877 		break;
878 	case CPU_MODE_PROTECTED:
879 	case CPU_MODE_COMPATIBILITY:
880 		vmexit->u.inst_emul.cs_base = seg.base;
881 
882 		/*
883 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
884 		 */
885 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
886 		    1 : 0;
887 		break;
888 	default:
889 		vmexit->u.inst_emul.cs_base = 0;
890 		vmexit->u.inst_emul.cs_d = 0;
891 		break;
892 	}
893 
894 	/*
895 	 * Copy the instruction bytes into 'vie' if available.
896 	 */
897 	if (decode_assist() && !disable_npf_assist) {
898 		inst_len = ctrl->inst_len;
899 		inst_bytes = ctrl->inst_bytes;
900 	} else {
901 		inst_len = 0;
902 		inst_bytes = NULL;
903 	}
904 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
905 }
906 
907 #ifdef KTR
908 static const char *
909 intrtype_to_str(int intr_type)
910 {
911 	switch (intr_type) {
912 	case VMCB_EVENTINJ_TYPE_INTR:
913 		return ("hwintr");
914 	case VMCB_EVENTINJ_TYPE_NMI:
915 		return ("nmi");
916 	case VMCB_EVENTINJ_TYPE_INTn:
917 		return ("swintr");
918 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
919 		return ("exception");
920 	default:
921 		panic("%s: unknown intr_type %d", __func__, intr_type);
922 	}
923 }
924 #endif
925 
926 /*
927  * Inject an event to vcpu as described in section 15.20, "Event injection".
928  */
929 static void
930 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
931 		 uint32_t error, bool ec_valid)
932 {
933 	struct vmcb_ctrl *ctrl;
934 
935 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
936 
937 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
938 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
939 
940 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
941 	    __func__, vector));
942 
943 	switch (intr_type) {
944 	case VMCB_EVENTINJ_TYPE_INTR:
945 	case VMCB_EVENTINJ_TYPE_NMI:
946 	case VMCB_EVENTINJ_TYPE_INTn:
947 		break;
948 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
949 		if (vector >= 0 && vector <= 31 && vector != 2)
950 			break;
951 		/* FALLTHROUGH */
952 	default:
953 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
954 		    intr_type, vector);
955 	}
956 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
957 	if (ec_valid) {
958 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
959 		ctrl->eventinj |= (uint64_t)error << 32;
960 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
961 		    intrtype_to_str(intr_type), vector, error);
962 	} else {
963 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
964 		    intrtype_to_str(intr_type), vector);
965 	}
966 }
967 
968 static void
969 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
970 {
971 	struct vm *vm;
972 	struct vlapic *vlapic;
973 	struct vmcb_ctrl *ctrl;
974 
975 	vm = sc->vm;
976 	vlapic = vm_lapic(vm, vcpu);
977 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
978 
979 	/* Update %cr8 in the emulated vlapic */
980 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
981 
982 	/* Virtual interrupt injection is not used. */
983 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
984 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
985 }
986 
987 static void
988 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
989 {
990 	struct vmcb_ctrl *ctrl;
991 	uint64_t intinfo;
992 
993 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
994 	intinfo = ctrl->exitintinfo;
995 	if (!VMCB_EXITINTINFO_VALID(intinfo))
996 		return;
997 
998 	/*
999 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1000 	 *
1001 	 * If a #VMEXIT happened during event delivery then record the event
1002 	 * that was being delivered.
1003 	 */
1004 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
1005 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
1006 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
1007 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
1008 }
1009 
1010 #ifdef INVARIANTS
1011 static __inline int
1012 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
1013 {
1014 
1015 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1016 	    VMCB_INTCPT_VINTR));
1017 }
1018 #endif
1019 
1020 static __inline void
1021 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1022 {
1023 	struct vmcb_ctrl *ctrl;
1024 
1025 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1026 
1027 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1028 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1029 		KASSERT(vintr_intercept_enabled(sc, vcpu),
1030 		    ("%s: vintr intercept should be enabled", __func__));
1031 		return;
1032 	}
1033 
1034 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
1035 	ctrl->v_irq = 1;
1036 	ctrl->v_ign_tpr = 1;
1037 	ctrl->v_intr_vector = 0;
1038 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1039 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1040 }
1041 
1042 static __inline void
1043 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1044 {
1045 	struct vmcb_ctrl *ctrl;
1046 
1047 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1048 
1049 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1050 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1051 		    ("%s: vintr intercept should be disabled", __func__));
1052 		return;
1053 	}
1054 
1055 	VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1056 	ctrl->v_irq = 0;
1057 	ctrl->v_intr_vector = 0;
1058 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1059 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1060 }
1061 
1062 static int
1063 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1064 {
1065 	struct vmcb_ctrl *ctrl;
1066 	int oldval, newval;
1067 
1068 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1069 	oldval = ctrl->intr_shadow;
1070 	newval = val ? 1 : 0;
1071 	if (newval != oldval) {
1072 		ctrl->intr_shadow = newval;
1073 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1074 	}
1075 	return (0);
1076 }
1077 
1078 static int
1079 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1080 {
1081 	struct vmcb_ctrl *ctrl;
1082 
1083 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1084 	*val = ctrl->intr_shadow;
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1090  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1091  * to track when the vcpu is done handling the NMI.
1092  */
1093 static int
1094 nmi_blocked(struct svm_softc *sc, int vcpu)
1095 {
1096 	int blocked;
1097 
1098 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1099 	    VMCB_INTCPT_IRET);
1100 	return (blocked);
1101 }
1102 
1103 static void
1104 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1105 {
1106 
1107 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1108 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1109 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1110 }
1111 
1112 static void
1113 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1114 {
1115 	int error;
1116 
1117 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1118 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1119 	/*
1120 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1121 	 * the "iret" when it runs next. However, it is possible to inject
1122 	 * another NMI into the vcpu before the "iret" has actually executed.
1123 	 *
1124 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1125 	 * it will trap back into the hypervisor. If an NMI is pending for
1126 	 * the vcpu it will be injected into the guest.
1127 	 *
1128 	 * XXX this needs to be fixed
1129 	 */
1130 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1131 
1132 	/*
1133 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1134 	 * immediate VMRUN.
1135 	 */
1136 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1137 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1138 }
1139 
1140 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1141 
1142 static int
1143 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1144 {
1145 	struct vm_exit *vme;
1146 	struct vmcb_state *state;
1147 	uint64_t changed, lma, oldval;
1148 	int error;
1149 
1150 	state = svm_get_vmcb_state(sc, vcpu);
1151 
1152 	oldval = state->efer;
1153 	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1154 
1155 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1156 	changed = oldval ^ newval;
1157 
1158 	if (newval & EFER_MBZ_BITS)
1159 		goto gpf;
1160 
1161 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1162 	if (changed & EFER_LME) {
1163 		if (state->cr0 & CR0_PG)
1164 			goto gpf;
1165 	}
1166 
1167 	/* EFER.LMA = EFER.LME & CR0.PG */
1168 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1169 		lma = EFER_LMA;
1170 	else
1171 		lma = 0;
1172 
1173 	if ((newval & EFER_LMA) != lma)
1174 		goto gpf;
1175 
1176 	if (newval & EFER_NXE) {
1177 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1178 			goto gpf;
1179 	}
1180 
1181 	/*
1182 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1183 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1184 	 */
1185 	if (newval & EFER_LMSLE) {
1186 		vme = vm_exitinfo(sc->vm, vcpu);
1187 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1188 		*retu = true;
1189 		return (0);
1190 	}
1191 
1192 	if (newval & EFER_FFXSR) {
1193 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1194 			goto gpf;
1195 	}
1196 
1197 	if (newval & EFER_TCE) {
1198 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1199 			goto gpf;
1200 	}
1201 
1202 	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1203 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1204 	return (0);
1205 gpf:
1206 	vm_inject_gp(sc->vm, vcpu);
1207 	return (0);
1208 }
1209 
1210 static int
1211 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1212     bool *retu)
1213 {
1214 	int error;
1215 
1216 	if (lapic_msr(num))
1217 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1218 	else if (num == MSR_EFER)
1219 		error = svm_write_efer(sc, vcpu, val, retu);
1220 	else
1221 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1222 
1223 	return (error);
1224 }
1225 
1226 static int
1227 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1228 {
1229 	struct vmcb_state *state;
1230 	struct svm_regctx *ctx;
1231 	uint64_t result;
1232 	int error;
1233 
1234 	if (lapic_msr(num))
1235 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1236 	else
1237 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1238 
1239 	if (error == 0) {
1240 		state = svm_get_vmcb_state(sc, vcpu);
1241 		ctx = svm_get_guest_regctx(sc, vcpu);
1242 		state->rax = result & 0xffffffff;
1243 		ctx->sctx_rdx = result >> 32;
1244 	}
1245 
1246 	return (error);
1247 }
1248 
1249 #ifdef KTR
1250 static const char *
1251 exit_reason_to_str(uint64_t reason)
1252 {
1253 	int i;
1254 	static char reasonbuf[32];
1255 	static const struct {
1256 		int reason;
1257 		const char *str;
1258 	} reasons[] = {
1259 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1260 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1261 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1262 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1263 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1264 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1265 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1266 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1267 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1268 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1269 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1270 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1271 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1272 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1273 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1274 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1275 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1276 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1277 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1278 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1279 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1280 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1281 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1282 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1283 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1284 	};
1285 
1286 	for (i = 0; i < nitems(reasons); i++) {
1287 		if (reasons[i].reason == reason)
1288 			return (reasons[i].str);
1289 	}
1290 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1291 	return (reasonbuf);
1292 }
1293 #endif	/* KTR */
1294 
1295 /*
1296  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1297  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1298  * and exceptions caused by INT3, INTO and BOUND instructions.
1299  *
1300  * Return 1 if the nRIP is valid and 0 otherwise.
1301  */
1302 static int
1303 nrip_valid(uint64_t exitcode)
1304 {
1305 	switch (exitcode) {
1306 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1307 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1308 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1309 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1310 	case 0x43:		/* INT3 */
1311 	case 0x44:		/* INTO */
1312 	case 0x45:		/* BOUND */
1313 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1314 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1315 		return (1);
1316 	default:
1317 		return (0);
1318 	}
1319 }
1320 
1321 static int
1322 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1323 {
1324 	struct vmcb *vmcb;
1325 	struct vmcb_state *state;
1326 	struct vmcb_ctrl *ctrl;
1327 	struct svm_regctx *ctx;
1328 	uint64_t code, info1, info2, val;
1329 	uint32_t eax, ecx, edx;
1330 	int error, errcode_valid, handled, idtvec, reflect;
1331 	bool retu;
1332 
1333 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1334 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1335 	state = &vmcb->state;
1336 	ctrl = &vmcb->ctrl;
1337 
1338 	handled = 0;
1339 	code = ctrl->exitcode;
1340 	info1 = ctrl->exitinfo1;
1341 	info2 = ctrl->exitinfo2;
1342 
1343 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1344 	vmexit->rip = state->rip;
1345 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1346 
1347 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1348 
1349 	/*
1350 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1351 	 * in an inconsistent state and can trigger assertions that would
1352 	 * never happen otherwise.
1353 	 */
1354 	if (code == VMCB_EXIT_INVALID) {
1355 		vm_exit_svm(vmexit, code, info1, info2);
1356 		return (0);
1357 	}
1358 
1359 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1360 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1361 
1362 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1363 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1364 	    vmexit->inst_length, code, info1, info2));
1365 
1366 	svm_update_virqinfo(svm_sc, vcpu);
1367 	svm_save_intinfo(svm_sc, vcpu);
1368 
1369 	switch (code) {
1370 	case VMCB_EXIT_IRET:
1371 		/*
1372 		 * Restart execution at "iret" but with the intercept cleared.
1373 		 */
1374 		vmexit->inst_length = 0;
1375 		clear_nmi_blocking(svm_sc, vcpu);
1376 		handled = 1;
1377 		break;
1378 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1379 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1380 		handled = 1;
1381 		break;
1382 	case VMCB_EXIT_INTR:	/* external interrupt */
1383 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1384 		handled = 1;
1385 		break;
1386 	case VMCB_EXIT_NMI:	/* external NMI */
1387 		handled = 1;
1388 		break;
1389 	case 0x40 ... 0x5F:
1390 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1391 		reflect = 1;
1392 		idtvec = code - 0x40;
1393 		switch (idtvec) {
1394 		case IDT_MC:
1395 			/*
1396 			 * Call the machine check handler by hand. Also don't
1397 			 * reflect the machine check back into the guest.
1398 			 */
1399 			reflect = 0;
1400 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1401 			__asm __volatile("int $18");
1402 			break;
1403 		case IDT_PF:
1404 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1405 			    info2);
1406 			KASSERT(error == 0, ("%s: error %d updating cr2",
1407 			    __func__, error));
1408 			/* fallthru */
1409 		case IDT_NP:
1410 		case IDT_SS:
1411 		case IDT_GP:
1412 		case IDT_AC:
1413 		case IDT_TS:
1414 			errcode_valid = 1;
1415 			break;
1416 
1417 		case IDT_DF:
1418 			errcode_valid = 1;
1419 			info1 = 0;
1420 			break;
1421 
1422 		case IDT_BP:
1423 		case IDT_OF:
1424 		case IDT_BR:
1425 			/*
1426 			 * The 'nrip' field is populated for INT3, INTO and
1427 			 * BOUND exceptions and this also implies that
1428 			 * 'inst_length' is non-zero.
1429 			 *
1430 			 * Reset 'inst_length' to zero so the guest %rip at
1431 			 * event injection is identical to what it was when
1432 			 * the exception originally happened.
1433 			 */
1434 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1435 			    "to zero before injecting exception %d",
1436 			    vmexit->inst_length, idtvec);
1437 			vmexit->inst_length = 0;
1438 			/* fallthru */
1439 		default:
1440 			errcode_valid = 0;
1441 			info1 = 0;
1442 			break;
1443 		}
1444 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1445 		    "when reflecting exception %d into guest",
1446 		    vmexit->inst_length, idtvec));
1447 
1448 		if (reflect) {
1449 			/* Reflect the exception back into the guest */
1450 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1451 			    "%d/%#x into the guest", idtvec, (int)info1);
1452 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1453 			    errcode_valid, info1, 0);
1454 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1455 			    __func__, error));
1456 		}
1457 		handled = 1;
1458 		break;
1459 	case VMCB_EXIT_MSR:	/* MSR access. */
1460 		eax = state->rax;
1461 		ecx = ctx->sctx_rcx;
1462 		edx = ctx->sctx_rdx;
1463 		retu = false;
1464 
1465 		if (info1) {
1466 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1467 			val = (uint64_t)edx << 32 | eax;
1468 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1469 			    ecx, val);
1470 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1471 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1472 				vmexit->u.msr.code = ecx;
1473 				vmexit->u.msr.wval = val;
1474 			} else if (!retu) {
1475 				handled = 1;
1476 			} else {
1477 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1478 				    ("emulate_wrmsr retu with bogus exitcode"));
1479 			}
1480 		} else {
1481 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1482 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1483 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1484 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1485 				vmexit->u.msr.code = ecx;
1486 			} else if (!retu) {
1487 				handled = 1;
1488 			} else {
1489 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1490 				    ("emulate_rdmsr retu with bogus exitcode"));
1491 			}
1492 		}
1493 		break;
1494 	case VMCB_EXIT_IO:
1495 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1496 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1497 		break;
1498 	case VMCB_EXIT_CPUID:
1499 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1500 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu, &state->rax,
1501 		    &ctx->sctx_rbx, &ctx->sctx_rcx, &ctx->sctx_rdx);
1502 		break;
1503 	case VMCB_EXIT_HLT:
1504 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1505 		vmexit->exitcode = VM_EXITCODE_HLT;
1506 		vmexit->u.hlt.rflags = state->rflags;
1507 		break;
1508 	case VMCB_EXIT_PAUSE:
1509 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1510 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1511 		break;
1512 	case VMCB_EXIT_NPF:
1513 		/* EXITINFO2 contains the faulting guest physical address */
1514 		if (info1 & VMCB_NPF_INFO1_RSV) {
1515 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1516 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1517 			    info1, info2);
1518 		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1519 			vmexit->exitcode = VM_EXITCODE_PAGING;
1520 			vmexit->u.paging.gpa = info2;
1521 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1522 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1523 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1524 			    "on gpa %#lx/%#lx at rip %#lx",
1525 			    info2, info1, state->rip);
1526 		} else if (svm_npf_emul_fault(info1)) {
1527 			svm_handle_inst_emul(vmcb, info2, vmexit);
1528 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1529 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1530 			    "for gpa %#lx/%#lx at rip %#lx",
1531 			    info2, info1, state->rip);
1532 		}
1533 		break;
1534 	case VMCB_EXIT_MONITOR:
1535 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1536 		break;
1537 	case VMCB_EXIT_MWAIT:
1538 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1539 		break;
1540 	case VMCB_EXIT_SHUTDOWN:
1541 	case VMCB_EXIT_VMRUN:
1542 	case VMCB_EXIT_VMMCALL:
1543 	case VMCB_EXIT_VMLOAD:
1544 	case VMCB_EXIT_VMSAVE:
1545 	case VMCB_EXIT_STGI:
1546 	case VMCB_EXIT_CLGI:
1547 	case VMCB_EXIT_SKINIT:
1548 	case VMCB_EXIT_ICEBP:
1549 	case VMCB_EXIT_INVD:
1550 	case VMCB_EXIT_INVLPGA:
1551 		vm_inject_ud(svm_sc->vm, vcpu);
1552 		handled = 1;
1553 		break;
1554 	default:
1555 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1556 		break;
1557 	}
1558 
1559 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1560 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1561 	    vmexit->rip, vmexit->inst_length);
1562 
1563 	if (handled) {
1564 		vmexit->rip += vmexit->inst_length;
1565 		vmexit->inst_length = 0;
1566 		state->rip = vmexit->rip;
1567 	} else {
1568 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1569 			/*
1570 			 * If this VM exit was not claimed by anybody then
1571 			 * treat it as a generic SVM exit.
1572 			 */
1573 			vm_exit_svm(vmexit, code, info1, info2);
1574 		} else {
1575 			/*
1576 			 * The exitcode and collateral have been populated.
1577 			 * The VM exit will be processed further in userland.
1578 			 */
1579 		}
1580 	}
1581 	return (handled);
1582 }
1583 
1584 static void
1585 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1586 {
1587 	uint64_t intinfo;
1588 
1589 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1590 		return;
1591 
1592 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1593 	    "valid: %#lx", __func__, intinfo));
1594 
1595 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1596 		VMCB_EXITINTINFO_VECTOR(intinfo),
1597 		VMCB_EXITINTINFO_EC(intinfo),
1598 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1599 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1600 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1601 }
1602 
1603 /*
1604  * Inject event to virtual cpu.
1605  */
1606 static void
1607 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1608 {
1609 	struct vmcb_ctrl *ctrl;
1610 	struct vmcb_state *state;
1611 	struct svm_vcpu *vcpustate;
1612 	uint8_t v_tpr;
1613 	int vector, need_intr_window;
1614 	int extint_pending;
1615 
1616 	state = svm_get_vmcb_state(sc, vcpu);
1617 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1618 	vcpustate = svm_get_vcpu(sc, vcpu);
1619 
1620 	need_intr_window = 0;
1621 
1622 	if (vcpustate->nextrip != state->rip) {
1623 		ctrl->intr_shadow = 0;
1624 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1625 		    "cleared due to rip change: %#lx/%#lx",
1626 		    vcpustate->nextrip, state->rip);
1627 	}
1628 
1629 	/*
1630 	 * Inject pending events or exceptions for this vcpu.
1631 	 *
1632 	 * An event might be pending because the previous #VMEXIT happened
1633 	 * during event delivery (i.e. ctrl->exitintinfo).
1634 	 *
1635 	 * An event might also be pending because an exception was injected
1636 	 * by the hypervisor (e.g. #PF during instruction emulation).
1637 	 */
1638 	svm_inj_intinfo(sc, vcpu);
1639 
1640 	/* NMI event has priority over interrupts. */
1641 	if (vm_nmi_pending(sc->vm, vcpu)) {
1642 		if (nmi_blocked(sc, vcpu)) {
1643 			/*
1644 			 * Can't inject another NMI if the guest has not
1645 			 * yet executed an "iret" after the last NMI.
1646 			 */
1647 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1648 			    "to NMI-blocking");
1649 		} else if (ctrl->intr_shadow) {
1650 			/*
1651 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1652 			 */
1653 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1654 			    "interrupt shadow");
1655 			need_intr_window = 1;
1656 			goto done;
1657 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1658 			/*
1659 			 * If there is already an exception/interrupt pending
1660 			 * then defer the NMI until after that.
1661 			 */
1662 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1663 			    "eventinj %#lx", ctrl->eventinj);
1664 
1665 			/*
1666 			 * Use self-IPI to trigger a VM-exit as soon as
1667 			 * possible after the event injection is completed.
1668 			 *
1669 			 * This works only if the external interrupt exiting
1670 			 * is at a lower priority than the event injection.
1671 			 *
1672 			 * Although not explicitly specified in APMv2 the
1673 			 * relative priorities were verified empirically.
1674 			 */
1675 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1676 		} else {
1677 			vm_nmi_clear(sc->vm, vcpu);
1678 
1679 			/* Inject NMI, vector number is not used */
1680 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1681 			    IDT_NMI, 0, false);
1682 
1683 			/* virtual NMI blocking is now in effect */
1684 			enable_nmi_blocking(sc, vcpu);
1685 
1686 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1687 		}
1688 	}
1689 
1690 	extint_pending = vm_extint_pending(sc->vm, vcpu);
1691 	if (!extint_pending) {
1692 		if (!vlapic_pending_intr(vlapic, &vector))
1693 			goto done;
1694 		KASSERT(vector >= 16 && vector <= 255,
1695 		    ("invalid vector %d from local APIC", vector));
1696 	} else {
1697 		/* Ask the legacy pic for a vector to inject */
1698 		vatpic_pending_intr(sc->vm, &vector);
1699 		KASSERT(vector >= 0 && vector <= 255,
1700 		    ("invalid vector %d from INTR", vector));
1701 	}
1702 
1703 	/*
1704 	 * If the guest has disabled interrupts or is in an interrupt shadow
1705 	 * then we cannot inject the pending interrupt.
1706 	 */
1707 	if ((state->rflags & PSL_I) == 0) {
1708 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1709 		    "rflags %#lx", vector, state->rflags);
1710 		need_intr_window = 1;
1711 		goto done;
1712 	}
1713 
1714 	if (ctrl->intr_shadow) {
1715 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1716 		    "interrupt shadow", vector);
1717 		need_intr_window = 1;
1718 		goto done;
1719 	}
1720 
1721 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1722 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1723 		    "eventinj %#lx", vector, ctrl->eventinj);
1724 		need_intr_window = 1;
1725 		goto done;
1726 	}
1727 
1728 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1729 
1730 	if (!extint_pending) {
1731 		vlapic_intr_accepted(vlapic, vector);
1732 	} else {
1733 		vm_extint_clear(sc->vm, vcpu);
1734 		vatpic_intr_accepted(sc->vm, vector);
1735 	}
1736 
1737 	/*
1738 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1739 	 * interrupt. This is done because the PIC might have another vector
1740 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1741 	 * that was preempted by the ExtInt then it allows us to inject the
1742 	 * APIC vector as soon as possible.
1743 	 */
1744 	need_intr_window = 1;
1745 done:
1746 	/*
1747 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1748 	 * the processor reflects this write to V_TPR without hypervisor
1749 	 * intervention.
1750 	 *
1751 	 * The guest can also modify the TPR by writing to it via the memory
1752 	 * mapped APIC page. In this case, the write will be emulated by the
1753 	 * hypervisor. For this reason V_TPR must be updated before every
1754 	 * VMRUN.
1755 	 */
1756 	v_tpr = vlapic_get_cr8(vlapic);
1757 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1758 	if (ctrl->v_tpr != v_tpr) {
1759 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1760 		    ctrl->v_tpr, v_tpr);
1761 		ctrl->v_tpr = v_tpr;
1762 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1763 	}
1764 
1765 	if (need_intr_window) {
1766 		/*
1767 		 * We use V_IRQ in conjunction with the VINTR intercept to
1768 		 * trap into the hypervisor as soon as a virtual interrupt
1769 		 * can be delivered.
1770 		 *
1771 		 * Since injected events are not subject to intercept checks
1772 		 * we need to ensure that the V_IRQ is not actually going to
1773 		 * be delivered on VM entry. The KASSERT below enforces this.
1774 		 */
1775 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1776 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1777 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1778 		    "intr_shadow (%u), rflags (%#lx)",
1779 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1780 		enable_intr_window_exiting(sc, vcpu);
1781 	} else {
1782 		disable_intr_window_exiting(sc, vcpu);
1783 	}
1784 }
1785 
1786 static __inline void
1787 restore_host_tss(void)
1788 {
1789 	struct system_segment_descriptor *tss_sd;
1790 
1791 	/*
1792 	 * The TSS descriptor was in use prior to launching the guest so it
1793 	 * has been marked busy.
1794 	 *
1795 	 * 'ltr' requires the descriptor to be marked available so change the
1796 	 * type to "64-bit available TSS".
1797 	 */
1798 	tss_sd = PCPU_GET(tss);
1799 	tss_sd->sd_type = SDT_SYSTSS;
1800 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1801 }
1802 
1803 static void
1804 svm_pmap_activate(struct svm_softc *sc, int vcpuid, pmap_t pmap)
1805 {
1806 	struct svm_vcpu *vcpustate;
1807 	struct vmcb_ctrl *ctrl;
1808 	long eptgen;
1809 	int cpu;
1810 	bool alloc_asid;
1811 
1812 	cpu = curcpu;
1813 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1814 	smr_enter(pmap->pm_eptsmr);
1815 
1816 	vcpustate = svm_get_vcpu(sc, vcpuid);
1817 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1818 
1819 	/*
1820 	 * The TLB entries associated with the vcpu's ASID are not valid
1821 	 * if either of the following conditions is true:
1822 	 *
1823 	 * 1. The vcpu's ASID generation is different than the host cpu's
1824 	 *    ASID generation. This happens when the vcpu migrates to a new
1825 	 *    host cpu. It can also happen when the number of vcpus executing
1826 	 *    on a host cpu is greater than the number of ASIDs available.
1827 	 *
1828 	 * 2. The pmap generation number is different than the value cached in
1829 	 *    the 'vcpustate'. This happens when the host invalidates pages
1830 	 *    belonging to the guest.
1831 	 *
1832 	 *	asidgen		eptgen	      Action
1833 	 *	mismatch	mismatch
1834 	 *	   0		   0		(a)
1835 	 *	   0		   1		(b1) or (b2)
1836 	 *	   1		   0		(c)
1837 	 *	   1		   1		(d)
1838 	 *
1839 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1840 	 *     no further action is needed.
1841 	 *
1842 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1843 	 *      retained and the TLB entries associated with this ASID
1844 	 *      are flushed by VMRUN.
1845 	 *
1846 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1847 	 *      allocated.
1848 	 *
1849 	 * (c) A new ASID is allocated.
1850 	 *
1851 	 * (d) A new ASID is allocated.
1852 	 */
1853 
1854 	alloc_asid = false;
1855 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1856 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1857 
1858 	if (vcpustate->asid.gen != asid[cpu].gen) {
1859 		alloc_asid = true;	/* (c) and (d) */
1860 	} else if (vcpustate->eptgen != eptgen) {
1861 		if (flush_by_asid())
1862 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1863 		else
1864 			alloc_asid = true;			/* (b2) */
1865 	} else {
1866 		/*
1867 		 * This is the common case (a).
1868 		 */
1869 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1870 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1871 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1872 	}
1873 
1874 	if (alloc_asid) {
1875 		if (++asid[cpu].num >= nasid) {
1876 			asid[cpu].num = 1;
1877 			if (++asid[cpu].gen == 0)
1878 				asid[cpu].gen = 1;
1879 			/*
1880 			 * If this cpu does not support "flush-by-asid"
1881 			 * then flush the entire TLB on a generation
1882 			 * bump. Subsequent ASID allocation in this
1883 			 * generation can be done without a TLB flush.
1884 			 */
1885 			if (!flush_by_asid())
1886 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1887 		}
1888 		vcpustate->asid.gen = asid[cpu].gen;
1889 		vcpustate->asid.num = asid[cpu].num;
1890 
1891 		ctrl->asid = vcpustate->asid.num;
1892 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1893 		/*
1894 		 * If this cpu supports "flush-by-asid" then the TLB
1895 		 * was not flushed after the generation bump. The TLB
1896 		 * is flushed selectively after every new ASID allocation.
1897 		 */
1898 		if (flush_by_asid())
1899 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1900 	}
1901 	vcpustate->eptgen = eptgen;
1902 
1903 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1904 	KASSERT(ctrl->asid == vcpustate->asid.num,
1905 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1906 }
1907 
1908 static void
1909 svm_pmap_deactivate(pmap_t pmap)
1910 {
1911 	smr_exit(pmap->pm_eptsmr);
1912 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1913 }
1914 
1915 static __inline void
1916 disable_gintr(void)
1917 {
1918 
1919 	__asm __volatile("clgi");
1920 }
1921 
1922 static __inline void
1923 enable_gintr(void)
1924 {
1925 
1926         __asm __volatile("stgi");
1927 }
1928 
1929 static __inline void
1930 svm_dr_enter_guest(struct svm_regctx *gctx)
1931 {
1932 
1933 	/* Save host control debug registers. */
1934 	gctx->host_dr7 = rdr7();
1935 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
1936 
1937 	/*
1938 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
1939 	 * exceptions in the host based on the guest DRx values.  The
1940 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
1941 	 * VMCB.
1942 	 */
1943 	load_dr7(0);
1944 	wrmsr(MSR_DEBUGCTLMSR, 0);
1945 
1946 	/* Save host debug registers. */
1947 	gctx->host_dr0 = rdr0();
1948 	gctx->host_dr1 = rdr1();
1949 	gctx->host_dr2 = rdr2();
1950 	gctx->host_dr3 = rdr3();
1951 	gctx->host_dr6 = rdr6();
1952 
1953 	/* Restore guest debug registers. */
1954 	load_dr0(gctx->sctx_dr0);
1955 	load_dr1(gctx->sctx_dr1);
1956 	load_dr2(gctx->sctx_dr2);
1957 	load_dr3(gctx->sctx_dr3);
1958 }
1959 
1960 static __inline void
1961 svm_dr_leave_guest(struct svm_regctx *gctx)
1962 {
1963 
1964 	/* Save guest debug registers. */
1965 	gctx->sctx_dr0 = rdr0();
1966 	gctx->sctx_dr1 = rdr1();
1967 	gctx->sctx_dr2 = rdr2();
1968 	gctx->sctx_dr3 = rdr3();
1969 
1970 	/*
1971 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
1972 	 * last.
1973 	 */
1974 	load_dr0(gctx->host_dr0);
1975 	load_dr1(gctx->host_dr1);
1976 	load_dr2(gctx->host_dr2);
1977 	load_dr3(gctx->host_dr3);
1978 	load_dr6(gctx->host_dr6);
1979 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
1980 	load_dr7(gctx->host_dr7);
1981 }
1982 
1983 /*
1984  * Start vcpu with specified RIP.
1985  */
1986 static int
1987 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1988 	struct vm_eventinfo *evinfo)
1989 {
1990 	struct svm_regctx *gctx;
1991 	struct svm_softc *svm_sc;
1992 	struct svm_vcpu *vcpustate;
1993 	struct vmcb_state *state;
1994 	struct vmcb_ctrl *ctrl;
1995 	struct vm_exit *vmexit;
1996 	struct vlapic *vlapic;
1997 	struct vm *vm;
1998 	uint64_t vmcb_pa;
1999 	int handled;
2000 	uint16_t ldt_sel;
2001 
2002 	svm_sc = arg;
2003 	vm = svm_sc->vm;
2004 
2005 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
2006 	state = svm_get_vmcb_state(svm_sc, vcpu);
2007 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
2008 	vmexit = vm_exitinfo(vm, vcpu);
2009 	vlapic = vm_lapic(vm, vcpu);
2010 
2011 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
2012 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
2013 
2014 	if (vcpustate->lastcpu != curcpu) {
2015 		/*
2016 		 * Force new ASID allocation by invalidating the generation.
2017 		 */
2018 		vcpustate->asid.gen = 0;
2019 
2020 		/*
2021 		 * Invalidate the VMCB state cache by marking all fields dirty.
2022 		 */
2023 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
2024 
2025 		/*
2026 		 * XXX
2027 		 * Setting 'vcpustate->lastcpu' here is bit premature because
2028 		 * we may return from this function without actually executing
2029 		 * the VMRUN  instruction. This could happen if a rendezvous
2030 		 * or an AST is pending on the first time through the loop.
2031 		 *
2032 		 * This works for now but any new side-effects of vcpu
2033 		 * migration should take this case into account.
2034 		 */
2035 		vcpustate->lastcpu = curcpu;
2036 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
2037 	}
2038 
2039 	svm_msr_guest_enter(svm_sc, vcpu);
2040 
2041 	/* Update Guest RIP */
2042 	state->rip = rip;
2043 
2044 	do {
2045 		/*
2046 		 * Disable global interrupts to guarantee atomicity during
2047 		 * loading of guest state. This includes not only the state
2048 		 * loaded by the "vmrun" instruction but also software state
2049 		 * maintained by the hypervisor: suspended and rendezvous
2050 		 * state, NPT generation number, vlapic interrupts etc.
2051 		 */
2052 		disable_gintr();
2053 
2054 		if (vcpu_suspended(evinfo)) {
2055 			enable_gintr();
2056 			vm_exit_suspended(vm, vcpu, state->rip);
2057 			break;
2058 		}
2059 
2060 		if (vcpu_rendezvous_pending(evinfo)) {
2061 			enable_gintr();
2062 			vm_exit_rendezvous(vm, vcpu, state->rip);
2063 			break;
2064 		}
2065 
2066 		if (vcpu_reqidle(evinfo)) {
2067 			enable_gintr();
2068 			vm_exit_reqidle(vm, vcpu, state->rip);
2069 			break;
2070 		}
2071 
2072 		/* We are asked to give the cpu by scheduler. */
2073 		if (vcpu_should_yield(vm, vcpu)) {
2074 			enable_gintr();
2075 			vm_exit_astpending(vm, vcpu, state->rip);
2076 			break;
2077 		}
2078 
2079 		if (vcpu_debugged(vm, vcpu)) {
2080 			enable_gintr();
2081 			vm_exit_debug(vm, vcpu, state->rip);
2082 			break;
2083 		}
2084 
2085 		/*
2086 		 * #VMEXIT resumes the host with the guest LDTR, so
2087 		 * save the current LDT selector so it can be restored
2088 		 * after an exit.  The userspace hypervisor probably
2089 		 * doesn't use a LDT, but save and restore it to be
2090 		 * safe.
2091 		 */
2092 		ldt_sel = sldt();
2093 
2094 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2095 
2096 		/*
2097 		 * Check the pmap generation and the ASID generation to
2098 		 * ensure that the vcpu does not use stale TLB mappings.
2099 		 */
2100 		svm_pmap_activate(svm_sc, vcpu, pmap);
2101 
2102 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2103 		vcpustate->dirty = 0;
2104 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2105 
2106 		/* Launch Virtual Machine. */
2107 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2108 		svm_dr_enter_guest(gctx);
2109 		svm_launch(vmcb_pa, gctx, get_pcpu());
2110 		svm_dr_leave_guest(gctx);
2111 
2112 		svm_pmap_deactivate(pmap);
2113 
2114 		/*
2115 		 * The host GDTR and IDTR is saved by VMRUN and restored
2116 		 * automatically on #VMEXIT. However, the host TSS needs
2117 		 * to be restored explicitly.
2118 		 */
2119 		restore_host_tss();
2120 
2121 		/* Restore host LDTR. */
2122 		lldt(ldt_sel);
2123 
2124 		/* #VMEXIT disables interrupts so re-enable them here. */
2125 		enable_gintr();
2126 
2127 		/* Update 'nextrip' */
2128 		vcpustate->nextrip = state->rip;
2129 
2130 		/* Handle #VMEXIT and if required return to user space. */
2131 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2132 	} while (handled);
2133 
2134 	svm_msr_guest_exit(svm_sc, vcpu);
2135 
2136 	return (0);
2137 }
2138 
2139 static void
2140 svm_vmcleanup(void *arg)
2141 {
2142 	struct svm_softc *sc = arg;
2143 
2144 	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2145 	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2146 	free(sc, M_SVM);
2147 }
2148 
2149 static register_t *
2150 swctx_regptr(struct svm_regctx *regctx, int reg)
2151 {
2152 
2153 	switch (reg) {
2154 	case VM_REG_GUEST_RBX:
2155 		return (&regctx->sctx_rbx);
2156 	case VM_REG_GUEST_RCX:
2157 		return (&regctx->sctx_rcx);
2158 	case VM_REG_GUEST_RDX:
2159 		return (&regctx->sctx_rdx);
2160 	case VM_REG_GUEST_RDI:
2161 		return (&regctx->sctx_rdi);
2162 	case VM_REG_GUEST_RSI:
2163 		return (&regctx->sctx_rsi);
2164 	case VM_REG_GUEST_RBP:
2165 		return (&regctx->sctx_rbp);
2166 	case VM_REG_GUEST_R8:
2167 		return (&regctx->sctx_r8);
2168 	case VM_REG_GUEST_R9:
2169 		return (&regctx->sctx_r9);
2170 	case VM_REG_GUEST_R10:
2171 		return (&regctx->sctx_r10);
2172 	case VM_REG_GUEST_R11:
2173 		return (&regctx->sctx_r11);
2174 	case VM_REG_GUEST_R12:
2175 		return (&regctx->sctx_r12);
2176 	case VM_REG_GUEST_R13:
2177 		return (&regctx->sctx_r13);
2178 	case VM_REG_GUEST_R14:
2179 		return (&regctx->sctx_r14);
2180 	case VM_REG_GUEST_R15:
2181 		return (&regctx->sctx_r15);
2182 	case VM_REG_GUEST_DR0:
2183 		return (&regctx->sctx_dr0);
2184 	case VM_REG_GUEST_DR1:
2185 		return (&regctx->sctx_dr1);
2186 	case VM_REG_GUEST_DR2:
2187 		return (&regctx->sctx_dr2);
2188 	case VM_REG_GUEST_DR3:
2189 		return (&regctx->sctx_dr3);
2190 	default:
2191 		return (NULL);
2192 	}
2193 }
2194 
2195 static int
2196 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2197 {
2198 	struct svm_softc *svm_sc;
2199 	register_t *reg;
2200 
2201 	svm_sc = arg;
2202 
2203 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2204 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2205 	}
2206 
2207 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2208 		return (0);
2209 	}
2210 
2211 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2212 
2213 	if (reg != NULL) {
2214 		*val = *reg;
2215 		return (0);
2216 	}
2217 
2218 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2219 	return (EINVAL);
2220 }
2221 
2222 static int
2223 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2224 {
2225 	struct svm_softc *svm_sc;
2226 	register_t *reg;
2227 
2228 	svm_sc = arg;
2229 
2230 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2231 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2232 	}
2233 
2234 	/* Do not permit user write access to VMCB fields by offset. */
2235 	if (!VMCB_ACCESS_OK(ident)) {
2236 		if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2237 			return (0);
2238 		}
2239 	}
2240 
2241 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2242 
2243 	if (reg != NULL) {
2244 		*reg = val;
2245 		return (0);
2246 	}
2247 
2248 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2249 		/* Ignore. */
2250 		return (0);
2251 	}
2252 
2253 	/*
2254 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2255 	 * vcpu's ASID. This needs to be treated differently depending on
2256 	 * whether 'running' is true/false.
2257 	 */
2258 
2259 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2260 	return (EINVAL);
2261 }
2262 
2263 #ifdef BHYVE_SNAPSHOT
2264 static int
2265 svm_snapshot_reg(void *arg, int vcpu, int ident,
2266 		 struct vm_snapshot_meta *meta)
2267 {
2268 	int ret;
2269 	uint64_t val;
2270 
2271 	if (meta->op == VM_SNAPSHOT_SAVE) {
2272 		ret = svm_getreg(arg, vcpu, ident, &val);
2273 		if (ret != 0)
2274 			goto done;
2275 
2276 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2277 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2278 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2279 
2280 		ret = svm_setreg(arg, vcpu, ident, val);
2281 		if (ret != 0)
2282 			goto done;
2283 	} else {
2284 		ret = EINVAL;
2285 		goto done;
2286 	}
2287 
2288 done:
2289 	return (ret);
2290 }
2291 #endif
2292 
2293 static int
2294 svm_setcap(void *arg, int vcpu, int type, int val)
2295 {
2296 	struct svm_softc *sc;
2297 	int error;
2298 
2299 	sc = arg;
2300 	error = 0;
2301 	switch (type) {
2302 	case VM_CAP_HALT_EXIT:
2303 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2304 		    VMCB_INTCPT_HLT, val);
2305 		break;
2306 	case VM_CAP_PAUSE_EXIT:
2307 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2308 		    VMCB_INTCPT_PAUSE, val);
2309 		break;
2310 	case VM_CAP_UNRESTRICTED_GUEST:
2311 		/* Unrestricted guest execution cannot be disabled in SVM */
2312 		if (val == 0)
2313 			error = EINVAL;
2314 		break;
2315 	default:
2316 		error = ENOENT;
2317 		break;
2318 	}
2319 	return (error);
2320 }
2321 
2322 static int
2323 svm_getcap(void *arg, int vcpu, int type, int *retval)
2324 {
2325 	struct svm_softc *sc;
2326 	int error;
2327 
2328 	sc = arg;
2329 	error = 0;
2330 
2331 	switch (type) {
2332 	case VM_CAP_HALT_EXIT:
2333 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2334 		    VMCB_INTCPT_HLT);
2335 		break;
2336 	case VM_CAP_PAUSE_EXIT:
2337 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2338 		    VMCB_INTCPT_PAUSE);
2339 		break;
2340 	case VM_CAP_UNRESTRICTED_GUEST:
2341 		*retval = 1;	/* unrestricted guest is always enabled */
2342 		break;
2343 	default:
2344 		error = ENOENT;
2345 		break;
2346 	}
2347 	return (error);
2348 }
2349 
2350 static struct vlapic *
2351 svm_vlapic_init(void *arg, int vcpuid)
2352 {
2353 	struct svm_softc *svm_sc;
2354 	struct vlapic *vlapic;
2355 
2356 	svm_sc = arg;
2357 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2358 	vlapic->vm = svm_sc->vm;
2359 	vlapic->vcpuid = vcpuid;
2360 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2361 
2362 	vlapic_init(vlapic);
2363 
2364 	return (vlapic);
2365 }
2366 
2367 static void
2368 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2369 {
2370 
2371         vlapic_cleanup(vlapic);
2372         free(vlapic, M_SVM_VLAPIC);
2373 }
2374 
2375 #ifdef BHYVE_SNAPSHOT
2376 static int
2377 svm_snapshot_vmi(void *arg, struct vm_snapshot_meta *meta)
2378 {
2379 	/* struct svm_softc is AMD's representation for SVM softc */
2380 	struct svm_softc *sc;
2381 	struct svm_vcpu *vcpu;
2382 	struct vmcb *vmcb;
2383 	uint64_t val;
2384 	int i;
2385 	int ret;
2386 
2387 	sc = arg;
2388 
2389 	KASSERT(sc != NULL, ("%s: arg was NULL", __func__));
2390 
2391 	SNAPSHOT_VAR_OR_LEAVE(sc->nptp, meta, ret, done);
2392 
2393 	for (i = 0; i < VM_MAXCPU; i++) {
2394 		vcpu = &sc->vcpu[i];
2395 		vmcb = &vcpu->vmcb;
2396 
2397 		/* VMCB fields for virtual cpu i */
2398 		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.v_tpr, meta, ret, done);
2399 		val = vmcb->ctrl.v_tpr;
2400 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2401 		vmcb->ctrl.v_tpr = val;
2402 
2403 		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.asid, meta, ret, done);
2404 		val = vmcb->ctrl.np_enable;
2405 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2406 		vmcb->ctrl.np_enable = val;
2407 
2408 		val = vmcb->ctrl.intr_shadow;
2409 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2410 		vmcb->ctrl.intr_shadow = val;
2411 		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.tlb_ctrl, meta, ret, done);
2412 
2413 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad1,
2414 				      sizeof(vmcb->state.pad1),
2415 				      meta, ret, done);
2416 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cpl, meta, ret, done);
2417 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad2,
2418 				      sizeof(vmcb->state.pad2),
2419 				      meta, ret, done);
2420 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.efer, meta, ret, done);
2421 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad3,
2422 				      sizeof(vmcb->state.pad3),
2423 				      meta, ret, done);
2424 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr4, meta, ret, done);
2425 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr3, meta, ret, done);
2426 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr0, meta, ret, done);
2427 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr7, meta, ret, done);
2428 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr6, meta, ret, done);
2429 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rflags, meta, ret, done);
2430 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rip, meta, ret, done);
2431 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad4,
2432 				      sizeof(vmcb->state.pad4),
2433 				      meta, ret, done);
2434 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rsp, meta, ret, done);
2435 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad5,
2436 				      sizeof(vmcb->state.pad5),
2437 				      meta, ret, done);
2438 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rax, meta, ret, done);
2439 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.star, meta, ret, done);
2440 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.lstar, meta, ret, done);
2441 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cstar, meta, ret, done);
2442 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sfmask, meta, ret, done);
2443 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.kernelgsbase,
2444 				      meta, ret, done);
2445 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_cs, meta, ret, done);
2446 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_esp,
2447 				      meta, ret, done);
2448 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_eip,
2449 				      meta, ret, done);
2450 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr2, meta, ret, done);
2451 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad6,
2452 				      sizeof(vmcb->state.pad6),
2453 				      meta, ret, done);
2454 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.g_pat, meta, ret, done);
2455 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dbgctl, meta, ret, done);
2456 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_from, meta, ret, done);
2457 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_to, meta, ret, done);
2458 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_from, meta, ret, done);
2459 		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_to, meta, ret, done);
2460 		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad7,
2461 				      sizeof(vmcb->state.pad7),
2462 				      meta, ret, done);
2463 
2464 		/* Snapshot swctx for virtual cpu i */
2465 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, ret, done);
2466 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, ret, done);
2467 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, ret, done);
2468 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, ret, done);
2469 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, ret, done);
2470 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, ret, done);
2471 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, ret, done);
2472 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, ret, done);
2473 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, ret, done);
2474 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, ret, done);
2475 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, ret, done);
2476 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, ret, done);
2477 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, ret, done);
2478 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, ret, done);
2479 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, ret, done);
2480 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, ret, done);
2481 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, ret, done);
2482 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, ret, done);
2483 
2484 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr0, meta, ret, done);
2485 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr1, meta, ret, done);
2486 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr2, meta, ret, done);
2487 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr3, meta, ret, done);
2488 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr6, meta, ret, done);
2489 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr7, meta, ret, done);
2490 		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_debugctl, meta, ret,
2491 				      done);
2492 
2493 		/* Restore other svm_vcpu struct fields */
2494 
2495 		/* Restore NEXTRIP field */
2496 		SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2497 
2498 		/* Restore lastcpu field */
2499 		SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, ret, done);
2500 		SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, ret, done);
2501 
2502 		/* Restore EPTGEN field - EPT is Extended Page Tabel */
2503 		SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, ret, done);
2504 
2505 		SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, ret, done);
2506 		SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, ret, done);
2507 
2508 		/* Set all caches dirty */
2509 		if (meta->op == VM_SNAPSHOT_RESTORE) {
2510 			svm_set_dirty(sc, i, VMCB_CACHE_ASID);
2511 			svm_set_dirty(sc, i, VMCB_CACHE_IOPM);
2512 			svm_set_dirty(sc, i, VMCB_CACHE_I);
2513 			svm_set_dirty(sc, i, VMCB_CACHE_TPR);
2514 			svm_set_dirty(sc, i, VMCB_CACHE_CR2);
2515 			svm_set_dirty(sc, i, VMCB_CACHE_CR);
2516 			svm_set_dirty(sc, i, VMCB_CACHE_DT);
2517 			svm_set_dirty(sc, i, VMCB_CACHE_SEG);
2518 			svm_set_dirty(sc, i, VMCB_CACHE_NP);
2519 		}
2520 	}
2521 
2522 	if (meta->op == VM_SNAPSHOT_RESTORE)
2523 		flush_by_asid();
2524 
2525 done:
2526 	return (ret);
2527 }
2528 
2529 static int
2530 svm_snapshot_vmcx(void *arg, struct vm_snapshot_meta *meta, int vcpu)
2531 {
2532 	struct vmcb *vmcb;
2533 	struct svm_softc *sc;
2534 	int err, running, hostcpu;
2535 
2536 	sc = (struct svm_softc *)arg;
2537 	err = 0;
2538 
2539 	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
2540 	vmcb = svm_get_vmcb(sc, vcpu);
2541 
2542 	running = vcpu_is_running(sc->vm, vcpu, &hostcpu);
2543 	if (running && hostcpu !=curcpu) {
2544 		printf("%s: %s%d is running", __func__, vm_name(sc->vm), vcpu);
2545 		return (EINVAL);
2546 	}
2547 
2548 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR0, meta);
2549 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR2, meta);
2550 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR3, meta);
2551 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR4, meta);
2552 
2553 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DR7, meta);
2554 
2555 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RAX, meta);
2556 
2557 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RSP, meta);
2558 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RIP, meta);
2559 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RFLAGS, meta);
2560 
2561 	/* Guest segments */
2562 	/* ES */
2563 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_ES, meta);
2564 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_ES, meta);
2565 
2566 	/* CS */
2567 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CS, meta);
2568 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_CS, meta);
2569 
2570 	/* SS */
2571 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_SS, meta);
2572 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_SS, meta);
2573 
2574 	/* DS */
2575 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DS, meta);
2576 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_DS, meta);
2577 
2578 	/* FS */
2579 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_FS, meta);
2580 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_FS, meta);
2581 
2582 	/* GS */
2583 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_GS, meta);
2584 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GS, meta);
2585 
2586 	/* TR */
2587 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_TR, meta);
2588 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_TR, meta);
2589 
2590 	/* LDTR */
2591 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_LDTR, meta);
2592 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_LDTR, meta);
2593 
2594 	/* EFER */
2595 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_EFER, meta);
2596 
2597 	/* IDTR and GDTR */
2598 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_IDTR, meta);
2599 	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GDTR, meta);
2600 
2601 	/* Specific AMD registers */
2602 	err += vmcb_snapshot_any(sc, vcpu,
2603 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2604 	err += vmcb_snapshot_any(sc, vcpu,
2605 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2606 	err += vmcb_snapshot_any(sc, vcpu,
2607 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2608 
2609 	err += vmcb_snapshot_any(sc, vcpu,
2610 				VMCB_ACCESS(VMCB_OFF_NPT_BASE, 8), meta);
2611 
2612 	err += vmcb_snapshot_any(sc, vcpu,
2613 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2614 	err += vmcb_snapshot_any(sc, vcpu,
2615 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2616 	err += vmcb_snapshot_any(sc, vcpu,
2617 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2618 	err += vmcb_snapshot_any(sc, vcpu,
2619 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2620 	err += vmcb_snapshot_any(sc, vcpu,
2621 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2622 
2623 	err += vmcb_snapshot_any(sc, vcpu,
2624 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2625 
2626 	err += vmcb_snapshot_any(sc, vcpu,
2627 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2628 	err += vmcb_snapshot_any(sc, vcpu,
2629 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2630 	err += vmcb_snapshot_any(sc, vcpu,
2631 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2632 
2633 	err += vmcb_snapshot_any(sc, vcpu,
2634 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2635 
2636 	err += vmcb_snapshot_any(sc, vcpu,
2637 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2638 
2639 	err += vmcb_snapshot_any(sc, vcpu,
2640 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2641 	err += vmcb_snapshot_any(sc, vcpu,
2642 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2643 	err += vmcb_snapshot_any(sc, vcpu,
2644 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2645 	err += vmcb_snapshot_any(sc, vcpu,
2646 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2647 
2648 	err += vmcb_snapshot_any(sc, vcpu,
2649 				VMCB_ACCESS(VMCB_OFF_IO_PERM, 8), meta);
2650 	err += vmcb_snapshot_any(sc, vcpu,
2651 				VMCB_ACCESS(VMCB_OFF_MSR_PERM, 8), meta);
2652 
2653 	err += vmcb_snapshot_any(sc, vcpu,
2654 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2655 
2656 	err += vmcb_snapshot_any(sc, vcpu,
2657 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2658 
2659 	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2660 
2661 	return (err);
2662 }
2663 
2664 static int
2665 svm_restore_tsc(void *arg, int vcpu, uint64_t offset)
2666 {
2667 	int err;
2668 
2669 	err = svm_set_tsc_offset(arg, vcpu, offset);
2670 
2671 	return (err);
2672 }
2673 #endif
2674 
2675 struct vmm_ops vmm_ops_amd = {
2676 	.init		= svm_init,
2677 	.cleanup	= svm_cleanup,
2678 	.resume		= svm_restore,
2679 	.vminit		= svm_vminit,
2680 	.vmrun		= svm_vmrun,
2681 	.vmcleanup	= svm_vmcleanup,
2682 	.vmgetreg	= svm_getreg,
2683 	.vmsetreg	= svm_setreg,
2684 	.vmgetdesc	= vmcb_getdesc,
2685 	.vmsetdesc	= vmcb_setdesc,
2686 	.vmgetcap	= svm_getcap,
2687 	.vmsetcap	= svm_setcap,
2688 	.vmspace_alloc	= svm_npt_alloc,
2689 	.vmspace_free	= svm_npt_free,
2690 	.vlapic_init	= svm_vlapic_init,
2691 	.vlapic_cleanup	= svm_vlapic_cleanup,
2692 #ifdef BHYVE_SNAPSHOT
2693 	.vmsnapshot	= svm_snapshot_vmi,
2694 	.vmcx_snapshot	= svm_snapshot_vmcx,
2695 	.vm_restore_tsc	= svm_restore_tsc,
2696 #endif
2697 };
2698