1 /*- 2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/smp.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/pcpu.h> 36 #include <sys/proc.h> 37 #include <sys/sysctl.h> 38 39 #include <vm/vm.h> 40 #include <vm/pmap.h> 41 42 #include <machine/cpufunc.h> 43 #include <machine/psl.h> 44 #include <machine/pmap.h> 45 #include <machine/md_var.h> 46 #include <machine/specialreg.h> 47 #include <machine/smp.h> 48 #include <machine/vmm.h> 49 #include <machine/vmm_dev.h> 50 #include <machine/vmm_instruction_emul.h> 51 52 #include "vmm_lapic.h" 53 #include "vmm_stat.h" 54 #include "vmm_ktr.h" 55 #include "vmm_ioport.h" 56 #include "vatpic.h" 57 #include "vlapic.h" 58 #include "vlapic_priv.h" 59 60 #include "x86.h" 61 #include "vmcb.h" 62 #include "svm.h" 63 #include "svm_softc.h" 64 #include "svm_msr.h" 65 #include "npt.h" 66 67 SYSCTL_DECL(_hw_vmm); 68 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL); 69 70 /* 71 * SVM CPUID function 0x8000_000A, edx bit decoding. 72 */ 73 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 74 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 75 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 76 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 77 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 78 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 79 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 80 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 81 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 82 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 83 84 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 85 VMCB_CACHE_IOPM | \ 86 VMCB_CACHE_I | \ 87 VMCB_CACHE_TPR | \ 88 VMCB_CACHE_CR2 | \ 89 VMCB_CACHE_CR | \ 90 VMCB_CACHE_DT | \ 91 VMCB_CACHE_SEG | \ 92 VMCB_CACHE_NP) 93 94 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 95 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 96 0, NULL); 97 98 static MALLOC_DEFINE(M_SVM, "svm", "svm"); 99 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); 100 101 /* Per-CPU context area. */ 102 extern struct pcpu __pcpu[]; 103 104 static uint32_t svm_feature; /* AMD SVM features. */ 105 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0, 106 "SVM features advertised by CPUID.8000000AH:EDX"); 107 108 static int disable_npf_assist; 109 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, 110 &disable_npf_assist, 0, NULL); 111 112 /* Maximum ASIDs supported by the processor */ 113 static uint32_t nasid; 114 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0, 115 "Number of ASIDs supported by this processor"); 116 117 /* Current ASID generation for each host cpu */ 118 static struct asid asid[MAXCPU]; 119 120 /* 121 * SVM host state saved area of size 4KB for each core. 122 */ 123 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 124 125 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 126 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 127 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 128 129 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 130 131 static __inline int 132 flush_by_asid(void) 133 { 134 135 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); 136 } 137 138 static __inline int 139 decode_assist(void) 140 { 141 142 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); 143 } 144 145 static void 146 svm_disable(void *arg __unused) 147 { 148 uint64_t efer; 149 150 efer = rdmsr(MSR_EFER); 151 efer &= ~EFER_SVM; 152 wrmsr(MSR_EFER, efer); 153 } 154 155 /* 156 * Disable SVM on all CPUs. 157 */ 158 static int 159 svm_cleanup(void) 160 { 161 162 smp_rendezvous(NULL, svm_disable, NULL, NULL); 163 return (0); 164 } 165 166 /* 167 * Verify that all the features required by bhyve are available. 168 */ 169 static int 170 check_svm_features(void) 171 { 172 u_int regs[4]; 173 174 /* CPUID Fn8000_000A is for SVM */ 175 do_cpuid(0x8000000A, regs); 176 svm_feature = regs[3]; 177 178 nasid = regs[1]; 179 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); 180 181 /* bhyve requires the Nested Paging feature */ 182 if (!(svm_feature & AMD_CPUID_SVM_NP)) { 183 printf("SVM: Nested Paging feature not available.\n"); 184 return (ENXIO); 185 } 186 187 /* bhyve requires the NRIP Save feature */ 188 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { 189 printf("SVM: NRIP Save feature not available.\n"); 190 return (ENXIO); 191 } 192 193 return (0); 194 } 195 196 static void 197 svm_enable(void *arg __unused) 198 { 199 uint64_t efer; 200 201 efer = rdmsr(MSR_EFER); 202 efer |= EFER_SVM; 203 wrmsr(MSR_EFER, efer); 204 205 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); 206 } 207 208 /* 209 * Return 1 if SVM is enabled on this processor and 0 otherwise. 210 */ 211 static int 212 svm_available(void) 213 { 214 uint64_t msr; 215 216 /* Section 15.4 Enabling SVM from APM2. */ 217 if ((amd_feature2 & AMDID2_SVM) == 0) { 218 printf("SVM: not available.\n"); 219 return (0); 220 } 221 222 msr = rdmsr(MSR_VM_CR); 223 if ((msr & VM_CR_SVMDIS) != 0) { 224 printf("SVM: disabled by BIOS.\n"); 225 return (0); 226 } 227 228 return (1); 229 } 230 231 static int 232 svm_init(int ipinum) 233 { 234 int error, cpu; 235 236 if (!svm_available()) 237 return (ENXIO); 238 239 error = check_svm_features(); 240 if (error) 241 return (error); 242 243 vmcb_clean &= VMCB_CACHE_DEFAULT; 244 245 for (cpu = 0; cpu < MAXCPU; cpu++) { 246 /* 247 * Initialize the host ASIDs to their "highest" valid values. 248 * 249 * The next ASID allocation will rollover both 'gen' and 'num' 250 * and start off the sequence at {1,1}. 251 */ 252 asid[cpu].gen = ~0UL; 253 asid[cpu].num = nasid - 1; 254 } 255 256 svm_msr_init(); 257 svm_npt_init(ipinum); 258 259 /* Enable SVM on all CPUs */ 260 smp_rendezvous(NULL, svm_enable, NULL, NULL); 261 262 return (0); 263 } 264 265 static void 266 svm_restore(void) 267 { 268 269 svm_enable(NULL); 270 } 271 272 /* Pentium compatible MSRs */ 273 #define MSR_PENTIUM_START 0 274 #define MSR_PENTIUM_END 0x1FFF 275 /* AMD 6th generation and Intel compatible MSRs */ 276 #define MSR_AMD6TH_START 0xC0000000UL 277 #define MSR_AMD6TH_END 0xC0001FFFUL 278 /* AMD 7th and 8th generation compatible MSRs */ 279 #define MSR_AMD7TH_START 0xC0010000UL 280 #define MSR_AMD7TH_END 0xC0011FFFUL 281 282 /* 283 * Get the index and bit position for a MSR in permission bitmap. 284 * Two bits are used for each MSR: lower bit for read and higher bit for write. 285 */ 286 static int 287 svm_msr_index(uint64_t msr, int *index, int *bit) 288 { 289 uint32_t base, off; 290 291 *index = -1; 292 *bit = (msr % 4) * 2; 293 base = 0; 294 295 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { 296 *index = msr / 4; 297 return (0); 298 } 299 300 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 301 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 302 off = (msr - MSR_AMD6TH_START); 303 *index = (off + base) / 4; 304 return (0); 305 } 306 307 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 308 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 309 off = (msr - MSR_AMD7TH_START); 310 *index = (off + base) / 4; 311 return (0); 312 } 313 314 return (EINVAL); 315 } 316 317 /* 318 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 319 */ 320 static void 321 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 322 { 323 int index, bit, error; 324 325 error = svm_msr_index(msr, &index, &bit); 326 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); 327 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 328 ("%s: invalid index %d for msr %#lx", __func__, index, msr)); 329 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 330 "msr %#lx", __func__, bit, msr)); 331 332 if (read) 333 perm_bitmap[index] &= ~(1UL << bit); 334 335 if (write) 336 perm_bitmap[index] &= ~(2UL << bit); 337 } 338 339 static void 340 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 341 { 342 343 svm_msr_perm(perm_bitmap, msr, true, true); 344 } 345 346 static void 347 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 348 { 349 350 svm_msr_perm(perm_bitmap, msr, true, false); 351 } 352 353 static __inline int 354 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 355 { 356 struct vmcb_ctrl *ctrl; 357 358 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 359 360 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 361 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 362 } 363 364 static __inline void 365 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 366 int enabled) 367 { 368 struct vmcb_ctrl *ctrl; 369 uint32_t oldval; 370 371 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 372 373 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 374 oldval = ctrl->intercept[idx]; 375 376 if (enabled) 377 ctrl->intercept[idx] |= bitmask; 378 else 379 ctrl->intercept[idx] &= ~bitmask; 380 381 if (ctrl->intercept[idx] != oldval) { 382 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 383 VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " 384 "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); 385 } 386 } 387 388 static __inline void 389 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 390 { 391 392 svm_set_intercept(sc, vcpu, off, bitmask, 0); 393 } 394 395 static __inline void 396 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 397 { 398 399 svm_set_intercept(sc, vcpu, off, bitmask, 1); 400 } 401 402 static void 403 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 404 uint64_t msrpm_base_pa, uint64_t np_pml4) 405 { 406 struct vmcb_ctrl *ctrl; 407 struct vmcb_state *state; 408 uint32_t mask; 409 int n; 410 411 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 412 state = svm_get_vmcb_state(sc, vcpu); 413 414 ctrl->iopm_base_pa = iopm_base_pa; 415 ctrl->msrpm_base_pa = msrpm_base_pa; 416 417 /* Enable nested paging */ 418 ctrl->np_enable = 1; 419 ctrl->n_cr3 = np_pml4; 420 421 /* 422 * Intercept accesses to the control registers that are not shadowed 423 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 424 */ 425 for (n = 0; n < 16; n++) { 426 mask = (BIT(n) << 16) | BIT(n); 427 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 428 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 429 else 430 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 431 } 432 433 434 /* 435 * Intercept everything when tracing guest exceptions otherwise 436 * just intercept machine check exception. 437 */ 438 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 439 for (n = 0; n < 32; n++) { 440 /* 441 * Skip unimplemented vectors in the exception bitmap. 442 */ 443 if (n == 2 || n == 9) { 444 continue; 445 } 446 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 447 } 448 } else { 449 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 450 } 451 452 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 453 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 454 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 455 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 456 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 457 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 458 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 459 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 460 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 461 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 462 VMCB_INTCPT_FERR_FREEZE); 463 464 /* 465 * From section "Canonicalization and Consistency Checks" in APMv2 466 * the VMRUN intercept bit must be set to pass the consistency check. 467 */ 468 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 469 470 /* 471 * The ASID will be set to a non-zero value just before VMRUN. 472 */ 473 ctrl->asid = 0; 474 475 /* 476 * Section 15.21.1, Interrupt Masking in EFLAGS 477 * Section 15.21.2, Virtualizing APIC.TPR 478 * 479 * This must be set for %rflag and %cr8 isolation of guest and host. 480 */ 481 ctrl->v_intr_masking = 1; 482 483 /* Enable Last Branch Record aka LBR for debugging */ 484 ctrl->lbr_virt_en = 1; 485 state->dbgctl = BIT(0); 486 487 /* EFER_SVM must always be set when the guest is executing */ 488 state->efer = EFER_SVM; 489 490 /* Set up the PAT to power-on state */ 491 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 492 PAT_VALUE(1, PAT_WRITE_THROUGH) | 493 PAT_VALUE(2, PAT_UNCACHED) | 494 PAT_VALUE(3, PAT_UNCACHEABLE) | 495 PAT_VALUE(4, PAT_WRITE_BACK) | 496 PAT_VALUE(5, PAT_WRITE_THROUGH) | 497 PAT_VALUE(6, PAT_UNCACHED) | 498 PAT_VALUE(7, PAT_UNCACHEABLE); 499 } 500 501 /* 502 * Initialize a virtual machine. 503 */ 504 static void * 505 svm_vminit(struct vm *vm, pmap_t pmap) 506 { 507 struct svm_softc *svm_sc; 508 struct svm_vcpu *vcpu; 509 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 510 int i; 511 512 svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO); 513 svm_sc->vm = vm; 514 svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); 515 516 /* 517 * Intercept read and write accesses to all MSRs. 518 */ 519 memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap)); 520 521 /* 522 * Access to the following MSRs is redirected to the VMCB when the 523 * guest is executing. Therefore it is safe to allow the guest to 524 * read/write these MSRs directly without hypervisor involvement. 525 */ 526 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 527 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 528 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 529 530 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 531 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 532 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 533 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 534 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 535 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 536 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 537 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 538 539 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 540 541 /* 542 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 543 */ 544 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 545 546 /* Intercept access to all I/O ports. */ 547 memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap)); 548 549 iopm_pa = vtophys(svm_sc->iopm_bitmap); 550 msrpm_pa = vtophys(svm_sc->msr_bitmap); 551 pml4_pa = svm_sc->nptp; 552 for (i = 0; i < VM_MAXCPU; i++) { 553 vcpu = svm_get_vcpu(svm_sc, i); 554 vcpu->lastcpu = NOCPU; 555 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 556 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 557 svm_msr_guest_init(svm_sc, i); 558 } 559 return (svm_sc); 560 } 561 562 static int 563 svm_cpl(struct vmcb_state *state) 564 { 565 566 /* 567 * From APMv2: 568 * "Retrieve the CPL from the CPL field in the VMCB, not 569 * from any segment DPL" 570 */ 571 return (state->cpl); 572 } 573 574 static enum vm_cpu_mode 575 svm_vcpu_mode(struct vmcb *vmcb) 576 { 577 struct vmcb_segment seg; 578 struct vmcb_state *state; 579 int error; 580 581 state = &vmcb->state; 582 583 if (state->efer & EFER_LMA) { 584 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 585 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, 586 error)); 587 588 /* 589 * Section 4.8.1 for APM2, check if Code Segment has 590 * Long attribute set in descriptor. 591 */ 592 if (seg.attrib & VMCB_CS_ATTRIB_L) 593 return (CPU_MODE_64BIT); 594 else 595 return (CPU_MODE_COMPATIBILITY); 596 } else if (state->cr0 & CR0_PE) { 597 return (CPU_MODE_PROTECTED); 598 } else { 599 return (CPU_MODE_REAL); 600 } 601 } 602 603 static enum vm_paging_mode 604 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 605 { 606 607 if ((cr0 & CR0_PG) == 0) 608 return (PAGING_MODE_FLAT); 609 if ((cr4 & CR4_PAE) == 0) 610 return (PAGING_MODE_32); 611 if (efer & EFER_LME) 612 return (PAGING_MODE_64); 613 else 614 return (PAGING_MODE_PAE); 615 } 616 617 /* 618 * ins/outs utility routines 619 */ 620 static uint64_t 621 svm_inout_str_index(struct svm_regctx *regs, int in) 622 { 623 uint64_t val; 624 625 val = in ? regs->sctx_rdi : regs->sctx_rsi; 626 627 return (val); 628 } 629 630 static uint64_t 631 svm_inout_str_count(struct svm_regctx *regs, int rep) 632 { 633 uint64_t val; 634 635 val = rep ? regs->sctx_rcx : 1; 636 637 return (val); 638 } 639 640 static void 641 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, 642 int in, struct vm_inout_str *vis) 643 { 644 int error, s; 645 646 if (in) { 647 vis->seg_name = VM_REG_GUEST_ES; 648 } else { 649 /* The segment field has standard encoding */ 650 s = (info1 >> 10) & 0x7; 651 vis->seg_name = vm_segment_name(s); 652 } 653 654 error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); 655 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); 656 } 657 658 static int 659 svm_inout_str_addrsize(uint64_t info1) 660 { 661 uint32_t size; 662 663 size = (info1 >> 7) & 0x7; 664 switch (size) { 665 case 1: 666 return (2); /* 16 bit */ 667 case 2: 668 return (4); /* 32 bit */ 669 case 4: 670 return (8); /* 64 bit */ 671 default: 672 panic("%s: invalid size encoding %d", __func__, size); 673 } 674 } 675 676 static void 677 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 678 { 679 struct vmcb_state *state; 680 681 state = &vmcb->state; 682 paging->cr3 = state->cr3; 683 paging->cpl = svm_cpl(state); 684 paging->cpu_mode = svm_vcpu_mode(vmcb); 685 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 686 state->efer); 687 } 688 689 #define UNHANDLED 0 690 691 /* 692 * Handle guest I/O intercept. 693 */ 694 static int 695 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 696 { 697 struct vmcb_ctrl *ctrl; 698 struct vmcb_state *state; 699 struct svm_regctx *regs; 700 struct vm_inout_str *vis; 701 uint64_t info1; 702 int inout_string; 703 704 state = svm_get_vmcb_state(svm_sc, vcpu); 705 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 706 regs = svm_get_guest_regctx(svm_sc, vcpu); 707 708 info1 = ctrl->exitinfo1; 709 inout_string = info1 & BIT(2) ? 1 : 0; 710 711 /* 712 * The effective segment number in EXITINFO1[12:10] is populated 713 * only if the processor has the DecodeAssist capability. 714 * 715 * XXX this is not specified explicitly in APMv2 but can be verified 716 * empirically. 717 */ 718 if (inout_string && !decode_assist()) 719 return (UNHANDLED); 720 721 vmexit->exitcode = VM_EXITCODE_INOUT; 722 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; 723 vmexit->u.inout.string = inout_string; 724 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; 725 vmexit->u.inout.bytes = (info1 >> 4) & 0x7; 726 vmexit->u.inout.port = (uint16_t)(info1 >> 16); 727 vmexit->u.inout.eax = (uint32_t)(state->rax); 728 729 if (inout_string) { 730 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 731 vis = &vmexit->u.inout_str; 732 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); 733 vis->rflags = state->rflags; 734 vis->cr0 = state->cr0; 735 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); 736 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); 737 vis->addrsize = svm_inout_str_addrsize(info1); 738 svm_inout_str_seginfo(svm_sc, vcpu, info1, 739 vmexit->u.inout.in, vis); 740 } 741 742 return (UNHANDLED); 743 } 744 745 static int 746 npf_fault_type(uint64_t exitinfo1) 747 { 748 749 if (exitinfo1 & VMCB_NPF_INFO1_W) 750 return (VM_PROT_WRITE); 751 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 752 return (VM_PROT_EXECUTE); 753 else 754 return (VM_PROT_READ); 755 } 756 757 static bool 758 svm_npf_emul_fault(uint64_t exitinfo1) 759 { 760 761 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 762 return (false); 763 } 764 765 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 766 return (false); 767 } 768 769 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 770 return (false); 771 } 772 773 return (true); 774 } 775 776 static void 777 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) 778 { 779 struct vm_guest_paging *paging; 780 struct vmcb_segment seg; 781 struct vmcb_ctrl *ctrl; 782 char *inst_bytes; 783 int error, inst_len; 784 785 ctrl = &vmcb->ctrl; 786 paging = &vmexit->u.inst_emul.paging; 787 788 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 789 vmexit->u.inst_emul.gpa = gpa; 790 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 791 svm_paging_info(vmcb, paging); 792 793 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 794 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); 795 796 switch(paging->cpu_mode) { 797 case CPU_MODE_PROTECTED: 798 case CPU_MODE_COMPATIBILITY: 799 /* 800 * Section 4.8.1 of APM2, Default Operand Size or D bit. 801 */ 802 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 803 1 : 0; 804 break; 805 default: 806 vmexit->u.inst_emul.cs_d = 0; 807 break; 808 } 809 810 /* 811 * Copy the instruction bytes into 'vie' if available. 812 */ 813 if (decode_assist() && !disable_npf_assist) { 814 inst_len = ctrl->inst_len; 815 inst_bytes = ctrl->inst_bytes; 816 } else { 817 inst_len = 0; 818 inst_bytes = NULL; 819 } 820 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); 821 } 822 823 #ifdef KTR 824 static const char * 825 intrtype_to_str(int intr_type) 826 { 827 switch (intr_type) { 828 case VMCB_EVENTINJ_TYPE_INTR: 829 return ("hwintr"); 830 case VMCB_EVENTINJ_TYPE_NMI: 831 return ("nmi"); 832 case VMCB_EVENTINJ_TYPE_INTn: 833 return ("swintr"); 834 case VMCB_EVENTINJ_TYPE_EXCEPTION: 835 return ("exception"); 836 default: 837 panic("%s: unknown intr_type %d", __func__, intr_type); 838 } 839 } 840 #endif 841 842 /* 843 * Inject an event to vcpu as described in section 15.20, "Event injection". 844 */ 845 static void 846 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, 847 uint32_t error, bool ec_valid) 848 { 849 struct vmcb_ctrl *ctrl; 850 851 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 852 853 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, 854 ("%s: event already pending %#lx", __func__, ctrl->eventinj)); 855 856 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", 857 __func__, vector)); 858 859 switch (intr_type) { 860 case VMCB_EVENTINJ_TYPE_INTR: 861 case VMCB_EVENTINJ_TYPE_NMI: 862 case VMCB_EVENTINJ_TYPE_INTn: 863 break; 864 case VMCB_EVENTINJ_TYPE_EXCEPTION: 865 if (vector >= 0 && vector <= 31 && vector != 2) 866 break; 867 /* FALLTHROUGH */ 868 default: 869 panic("%s: invalid intr_type/vector: %d/%d", __func__, 870 intr_type, vector); 871 } 872 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; 873 if (ec_valid) { 874 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 875 ctrl->eventinj |= (uint64_t)error << 32; 876 VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", 877 intrtype_to_str(intr_type), vector, error); 878 } else { 879 VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", 880 intrtype_to_str(intr_type), vector); 881 } 882 } 883 884 static void 885 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 886 { 887 struct vm *vm; 888 struct vlapic *vlapic; 889 struct vmcb_ctrl *ctrl; 890 int pending; 891 892 vm = sc->vm; 893 vlapic = vm_lapic(vm, vcpu); 894 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 895 896 /* Update %cr8 in the emulated vlapic */ 897 vlapic_set_cr8(vlapic, ctrl->v_tpr); 898 899 /* 900 * If V_IRQ indicates that the interrupt injection attempted on then 901 * last VMRUN was successful then update the vlapic accordingly. 902 */ 903 if (ctrl->v_intr_vector != 0) { 904 pending = ctrl->v_irq; 905 KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid " 906 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 907 KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 908 VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector, 909 pending ? "pending" : "accepted"); 910 if (!pending) 911 vlapic_intr_accepted(vlapic, ctrl->v_intr_vector); 912 } 913 } 914 915 static void 916 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) 917 { 918 struct vmcb_ctrl *ctrl; 919 uint64_t intinfo; 920 921 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 922 intinfo = ctrl->exitintinfo; 923 if (!VMCB_EXITINTINFO_VALID(intinfo)) 924 return; 925 926 /* 927 * From APMv2, Section "Intercepts during IDT interrupt delivery" 928 * 929 * If a #VMEXIT happened during event delivery then record the event 930 * that was being delivered. 931 */ 932 VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", 933 intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); 934 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 935 vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); 936 } 937 938 static __inline int 939 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 940 { 941 942 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 943 VMCB_INTCPT_VINTR)); 944 } 945 946 static __inline void 947 enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 948 { 949 struct vmcb_ctrl *ctrl; 950 951 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 952 953 if (ctrl->v_irq && ctrl->v_intr_vector == 0) { 954 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 955 KASSERT(vintr_intercept_enabled(sc, vcpu), 956 ("%s: vintr intercept should be enabled", __func__)); 957 return; 958 } 959 960 VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); 961 ctrl->v_irq = 1; 962 ctrl->v_ign_tpr = 1; 963 ctrl->v_intr_vector = 0; 964 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 965 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 966 } 967 968 static __inline void 969 disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 970 { 971 struct vmcb_ctrl *ctrl; 972 973 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 974 975 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { 976 KASSERT(!vintr_intercept_enabled(sc, vcpu), 977 ("%s: vintr intercept should be disabled", __func__)); 978 return; 979 } 980 981 #ifdef KTR 982 if (ctrl->v_intr_vector == 0) 983 VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); 984 else 985 VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection"); 986 #endif 987 ctrl->v_irq = 0; 988 ctrl->v_intr_vector = 0; 989 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 990 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 991 } 992 993 static int 994 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val) 995 { 996 struct vmcb_ctrl *ctrl; 997 int oldval, newval; 998 999 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1000 oldval = ctrl->intr_shadow; 1001 newval = val ? 1 : 0; 1002 if (newval != oldval) { 1003 ctrl->intr_shadow = newval; 1004 VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval); 1005 } 1006 return (0); 1007 } 1008 1009 static int 1010 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val) 1011 { 1012 struct vmcb_ctrl *ctrl; 1013 1014 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1015 *val = ctrl->intr_shadow; 1016 return (0); 1017 } 1018 1019 /* 1020 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1021 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1022 * to track when the vcpu is done handling the NMI. 1023 */ 1024 static int 1025 nmi_blocked(struct svm_softc *sc, int vcpu) 1026 { 1027 int blocked; 1028 1029 blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1030 VMCB_INTCPT_IRET); 1031 return (blocked); 1032 } 1033 1034 static void 1035 enable_nmi_blocking(struct svm_softc *sc, int vcpu) 1036 { 1037 1038 KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked")); 1039 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled"); 1040 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1041 } 1042 1043 static void 1044 clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1045 { 1046 int error; 1047 1048 KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1049 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared"); 1050 /* 1051 * When the IRET intercept is cleared the vcpu will attempt to execute 1052 * the "iret" when it runs next. However, it is possible to inject 1053 * another NMI into the vcpu before the "iret" has actually executed. 1054 * 1055 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1056 * it will trap back into the hypervisor. If an NMI is pending for 1057 * the vcpu it will be injected into the guest. 1058 * 1059 * XXX this needs to be fixed 1060 */ 1061 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1062 1063 /* 1064 * Set 'intr_shadow' to prevent an NMI from being injected on the 1065 * immediate VMRUN. 1066 */ 1067 error = svm_modify_intr_shadow(sc, vcpu, 1); 1068 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); 1069 } 1070 1071 static int 1072 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val, 1073 bool *retu) 1074 { 1075 int error; 1076 1077 if (lapic_msr(num)) 1078 error = lapic_wrmsr(sc->vm, vcpu, num, val, retu); 1079 else if (num == MSR_EFER) 1080 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val); 1081 else 1082 error = svm_wrmsr(sc, vcpu, num, val, retu); 1083 1084 return (error); 1085 } 1086 1087 static int 1088 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu) 1089 { 1090 struct vmcb_state *state; 1091 struct svm_regctx *ctx; 1092 uint64_t result; 1093 int error; 1094 1095 if (lapic_msr(num)) 1096 error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu); 1097 else 1098 error = svm_rdmsr(sc, vcpu, num, &result, retu); 1099 1100 if (error == 0) { 1101 state = svm_get_vmcb_state(sc, vcpu); 1102 ctx = svm_get_guest_regctx(sc, vcpu); 1103 state->rax = result & 0xffffffff; 1104 ctx->sctx_rdx = result >> 32; 1105 } 1106 1107 return (error); 1108 } 1109 1110 #ifdef KTR 1111 static const char * 1112 exit_reason_to_str(uint64_t reason) 1113 { 1114 static char reasonbuf[32]; 1115 1116 switch (reason) { 1117 case VMCB_EXIT_INVALID: 1118 return ("invalvmcb"); 1119 case VMCB_EXIT_SHUTDOWN: 1120 return ("shutdown"); 1121 case VMCB_EXIT_NPF: 1122 return ("nptfault"); 1123 case VMCB_EXIT_PAUSE: 1124 return ("pause"); 1125 case VMCB_EXIT_HLT: 1126 return ("hlt"); 1127 case VMCB_EXIT_CPUID: 1128 return ("cpuid"); 1129 case VMCB_EXIT_IO: 1130 return ("inout"); 1131 case VMCB_EXIT_MC: 1132 return ("mchk"); 1133 case VMCB_EXIT_INTR: 1134 return ("extintr"); 1135 case VMCB_EXIT_NMI: 1136 return ("nmi"); 1137 case VMCB_EXIT_VINTR: 1138 return ("vintr"); 1139 case VMCB_EXIT_MSR: 1140 return ("msr"); 1141 case VMCB_EXIT_IRET: 1142 return ("iret"); 1143 default: 1144 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); 1145 return (reasonbuf); 1146 } 1147 } 1148 #endif /* KTR */ 1149 1150 /* 1151 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1152 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1153 * and exceptions caused by INT3, INTO and BOUND instructions. 1154 * 1155 * Return 1 if the nRIP is valid and 0 otherwise. 1156 */ 1157 static int 1158 nrip_valid(uint64_t exitcode) 1159 { 1160 switch (exitcode) { 1161 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1162 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1163 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1164 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1165 case 0x43: /* INT3 */ 1166 case 0x44: /* INTO */ 1167 case 0x45: /* BOUND */ 1168 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1169 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1170 return (1); 1171 default: 1172 return (0); 1173 } 1174 } 1175 1176 /* 1177 * Collateral for a generic SVM VM-exit. 1178 */ 1179 static void 1180 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 1181 { 1182 1183 vme->exitcode = VM_EXITCODE_SVM; 1184 vme->u.svm.exitcode = code; 1185 vme->u.svm.exitinfo1 = info1; 1186 vme->u.svm.exitinfo2 = info2; 1187 } 1188 1189 static int 1190 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1191 { 1192 struct vmcb *vmcb; 1193 struct vmcb_state *state; 1194 struct vmcb_ctrl *ctrl; 1195 struct svm_regctx *ctx; 1196 struct vm_exception exception; 1197 uint64_t code, info1, info2, val; 1198 uint32_t eax, ecx, edx; 1199 int error, errcode_valid, handled, idtvec, reflect; 1200 bool retu; 1201 1202 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1203 vmcb = svm_get_vmcb(svm_sc, vcpu); 1204 state = &vmcb->state; 1205 ctrl = &vmcb->ctrl; 1206 1207 handled = 0; 1208 code = ctrl->exitcode; 1209 info1 = ctrl->exitinfo1; 1210 info2 = ctrl->exitinfo2; 1211 1212 vmexit->exitcode = VM_EXITCODE_BOGUS; 1213 vmexit->rip = state->rip; 1214 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1215 1216 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1217 1218 /* 1219 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1220 * in an inconsistent state and can trigger assertions that would 1221 * never happen otherwise. 1222 */ 1223 if (code == VMCB_EXIT_INVALID) { 1224 vm_exit_svm(vmexit, code, info1, info2); 1225 return (0); 1226 } 1227 1228 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1229 "injection valid bit is set %#lx", __func__, ctrl->eventinj)); 1230 1231 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1232 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", 1233 vmexit->inst_length, code, info1, info2)); 1234 1235 svm_update_virqinfo(svm_sc, vcpu); 1236 svm_save_intinfo(svm_sc, vcpu); 1237 1238 switch (code) { 1239 case VMCB_EXIT_IRET: 1240 /* 1241 * Restart execution at "iret" but with the intercept cleared. 1242 */ 1243 vmexit->inst_length = 0; 1244 clear_nmi_blocking(svm_sc, vcpu); 1245 handled = 1; 1246 break; 1247 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1248 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1249 handled = 1; 1250 break; 1251 case VMCB_EXIT_INTR: /* external interrupt */ 1252 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1253 handled = 1; 1254 break; 1255 case VMCB_EXIT_NMI: /* external NMI */ 1256 handled = 1; 1257 break; 1258 case 0x40 ... 0x5F: 1259 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1260 reflect = 1; 1261 idtvec = code - 0x40; 1262 switch (idtvec) { 1263 case IDT_MC: 1264 /* 1265 * Call the machine check handler by hand. Also don't 1266 * reflect the machine check back into the guest. 1267 */ 1268 reflect = 0; 1269 VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler"); 1270 __asm __volatile("int $18"); 1271 break; 1272 case IDT_PF: 1273 error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1274 info2); 1275 KASSERT(error == 0, ("%s: error %d updating cr2", 1276 __func__, error)); 1277 /* fallthru */ 1278 case IDT_NP: 1279 case IDT_SS: 1280 case IDT_GP: 1281 case IDT_AC: 1282 case IDT_TS: 1283 errcode_valid = 1; 1284 break; 1285 1286 case IDT_DF: 1287 errcode_valid = 1; 1288 info1 = 0; 1289 break; 1290 1291 case IDT_BP: 1292 case IDT_OF: 1293 case IDT_BR: 1294 /* 1295 * The 'nrip' field is populated for INT3, INTO and 1296 * BOUND exceptions and this also implies that 1297 * 'inst_length' is non-zero. 1298 * 1299 * Reset 'inst_length' to zero so the guest %rip at 1300 * event injection is identical to what it was when 1301 * the exception originally happened. 1302 */ 1303 VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d " 1304 "to zero before injecting exception %d", 1305 vmexit->inst_length, idtvec); 1306 vmexit->inst_length = 0; 1307 /* fallthru */ 1308 default: 1309 errcode_valid = 0; 1310 break; 1311 } 1312 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " 1313 "when reflecting exception %d into guest", 1314 vmexit->inst_length, idtvec)); 1315 1316 if (reflect) { 1317 /* Reflect the exception back into the guest */ 1318 exception.vector = idtvec; 1319 exception.error_code_valid = errcode_valid; 1320 exception.error_code = errcode_valid ? info1 : 0; 1321 VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception " 1322 "%d/%#x into the guest", exception.vector, 1323 exception.error_code); 1324 error = vm_inject_exception(svm_sc->vm, vcpu, 1325 &exception); 1326 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 1327 __func__, error)); 1328 } 1329 handled = 1; 1330 break; 1331 case VMCB_EXIT_MSR: /* MSR access. */ 1332 eax = state->rax; 1333 ecx = ctx->sctx_rcx; 1334 edx = ctx->sctx_rdx; 1335 retu = false; 1336 1337 if (info1) { 1338 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1339 val = (uint64_t)edx << 32 | eax; 1340 VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx", 1341 ecx, val); 1342 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { 1343 vmexit->exitcode = VM_EXITCODE_WRMSR; 1344 vmexit->u.msr.code = ecx; 1345 vmexit->u.msr.wval = val; 1346 } else if (!retu) { 1347 handled = 1; 1348 } else { 1349 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1350 ("emulate_wrmsr retu with bogus exitcode")); 1351 } 1352 } else { 1353 VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx); 1354 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1355 if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) { 1356 vmexit->exitcode = VM_EXITCODE_RDMSR; 1357 vmexit->u.msr.code = ecx; 1358 } else if (!retu) { 1359 handled = 1; 1360 } else { 1361 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1362 ("emulate_rdmsr retu with bogus exitcode")); 1363 } 1364 } 1365 break; 1366 case VMCB_EXIT_IO: 1367 handled = svm_handle_io(svm_sc, vcpu, vmexit); 1368 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1369 break; 1370 case VMCB_EXIT_CPUID: 1371 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1372 handled = x86_emulate_cpuid(svm_sc->vm, vcpu, 1373 (uint32_t *)&state->rax, 1374 (uint32_t *)&ctx->sctx_rbx, 1375 (uint32_t *)&ctx->sctx_rcx, 1376 (uint32_t *)&ctx->sctx_rdx); 1377 break; 1378 case VMCB_EXIT_HLT: 1379 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1380 vmexit->exitcode = VM_EXITCODE_HLT; 1381 vmexit->u.hlt.rflags = state->rflags; 1382 break; 1383 case VMCB_EXIT_PAUSE: 1384 vmexit->exitcode = VM_EXITCODE_PAUSE; 1385 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1386 break; 1387 case VMCB_EXIT_NPF: 1388 /* EXITINFO2 contains the faulting guest physical address */ 1389 if (info1 & VMCB_NPF_INFO1_RSV) { 1390 VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " 1391 "reserved bits set: info1(%#lx) info2(%#lx)", 1392 info1, info2); 1393 } else if (vm_mem_allocated(svm_sc->vm, info2)) { 1394 vmexit->exitcode = VM_EXITCODE_PAGING; 1395 vmexit->u.paging.gpa = info2; 1396 vmexit->u.paging.fault_type = npf_fault_type(info1); 1397 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1398 VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " 1399 "on gpa %#lx/%#lx at rip %#lx", 1400 info2, info1, state->rip); 1401 } else if (svm_npf_emul_fault(info1)) { 1402 svm_handle_inst_emul(vmcb, info2, vmexit); 1403 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); 1404 VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " 1405 "for gpa %#lx/%#lx at rip %#lx", 1406 info2, info1, state->rip); 1407 } 1408 break; 1409 default: 1410 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1411 break; 1412 } 1413 1414 VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d", 1415 handled ? "handled" : "unhandled", exit_reason_to_str(code), 1416 vmexit->rip, vmexit->inst_length); 1417 1418 if (handled) { 1419 vmexit->rip += vmexit->inst_length; 1420 vmexit->inst_length = 0; 1421 state->rip = vmexit->rip; 1422 } else { 1423 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1424 /* 1425 * If this VM exit was not claimed by anybody then 1426 * treat it as a generic SVM exit. 1427 */ 1428 vm_exit_svm(vmexit, code, info1, info2); 1429 } else { 1430 /* 1431 * The exitcode and collateral have been populated. 1432 * The VM exit will be processed further in userland. 1433 */ 1434 } 1435 } 1436 return (handled); 1437 } 1438 1439 static void 1440 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) 1441 { 1442 uint64_t intinfo; 1443 1444 if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) 1445 return; 1446 1447 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " 1448 "valid: %#lx", __func__, intinfo)); 1449 1450 svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), 1451 VMCB_EXITINTINFO_VECTOR(intinfo), 1452 VMCB_EXITINTINFO_EC(intinfo), 1453 VMCB_EXITINTINFO_EC_VALID(intinfo)); 1454 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1455 VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); 1456 } 1457 1458 /* 1459 * Inject event to virtual cpu. 1460 */ 1461 static void 1462 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) 1463 { 1464 struct vmcb_ctrl *ctrl; 1465 struct vmcb_state *state; 1466 uint8_t v_tpr; 1467 int vector, need_intr_window, pending_apic_vector; 1468 1469 state = svm_get_vmcb_state(sc, vcpu); 1470 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1471 1472 need_intr_window = 0; 1473 pending_apic_vector = 0; 1474 1475 /* 1476 * Inject pending events or exceptions for this vcpu. 1477 * 1478 * An event might be pending because the previous #VMEXIT happened 1479 * during event delivery (i.e. ctrl->exitintinfo). 1480 * 1481 * An event might also be pending because an exception was injected 1482 * by the hypervisor (e.g. #PF during instruction emulation). 1483 */ 1484 svm_inj_intinfo(sc, vcpu); 1485 1486 /* NMI event has priority over interrupts. */ 1487 if (vm_nmi_pending(sc->vm, vcpu)) { 1488 if (nmi_blocked(sc, vcpu)) { 1489 /* 1490 * Can't inject another NMI if the guest has not 1491 * yet executed an "iret" after the last NMI. 1492 */ 1493 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " 1494 "to NMI-blocking"); 1495 } else if (ctrl->intr_shadow) { 1496 /* 1497 * Can't inject an NMI if the vcpu is in an intr_shadow. 1498 */ 1499 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to " 1500 "interrupt shadow"); 1501 need_intr_window = 1; 1502 goto done; 1503 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1504 /* 1505 * If there is already an exception/interrupt pending 1506 * then defer the NMI until after that. 1507 */ 1508 VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " 1509 "eventinj %#lx", ctrl->eventinj); 1510 1511 /* 1512 * Use self-IPI to trigger a VM-exit as soon as 1513 * possible after the event injection is completed. 1514 * 1515 * This works only if the external interrupt exiting 1516 * is at a lower priority than the event injection. 1517 * 1518 * Although not explicitly specified in APMv2 the 1519 * relative priorities were verified empirically. 1520 */ 1521 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ 1522 } else { 1523 vm_nmi_clear(sc->vm, vcpu); 1524 1525 /* Inject NMI, vector number is not used */ 1526 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, 1527 IDT_NMI, 0, false); 1528 1529 /* virtual NMI blocking is now in effect */ 1530 enable_nmi_blocking(sc, vcpu); 1531 1532 VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); 1533 } 1534 } 1535 1536 if (!vm_extint_pending(sc->vm, vcpu)) { 1537 /* 1538 * APIC interrupts are delivered using the V_IRQ offload. 1539 * 1540 * The primary benefit is that the hypervisor doesn't need to 1541 * deal with the various conditions that inhibit interrupts. 1542 * It also means that TPR changes via CR8 will be handled 1543 * without any hypervisor involvement. 1544 * 1545 * Note that the APIC vector must remain pending in the vIRR 1546 * until it is confirmed that it was delivered to the guest. 1547 * This can be confirmed based on the value of V_IRQ at the 1548 * next #VMEXIT (1 = pending, 0 = delivered). 1549 * 1550 * Also note that it is possible that another higher priority 1551 * vector can become pending before this vector is delivered 1552 * to the guest. This is alright because vcpu_notify_event() 1553 * will send an IPI and force the vcpu to trap back into the 1554 * hypervisor. The higher priority vector will be injected on 1555 * the next VMRUN. 1556 */ 1557 if (vlapic_pending_intr(vlapic, &vector)) { 1558 KASSERT(vector >= 16 && vector <= 255, 1559 ("invalid vector %d from local APIC", vector)); 1560 pending_apic_vector = vector; 1561 } 1562 goto done; 1563 } 1564 1565 /* Ask the legacy pic for a vector to inject */ 1566 vatpic_pending_intr(sc->vm, &vector); 1567 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR", 1568 vector)); 1569 1570 /* 1571 * If the guest has disabled interrupts or is in an interrupt shadow 1572 * then we cannot inject the pending interrupt. 1573 */ 1574 if ((state->rflags & PSL_I) == 0) { 1575 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1576 "rflags %#lx", vector, state->rflags); 1577 need_intr_window = 1; 1578 goto done; 1579 } 1580 1581 if (ctrl->intr_shadow) { 1582 VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " 1583 "interrupt shadow", vector); 1584 need_intr_window = 1; 1585 goto done; 1586 } 1587 1588 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1589 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1590 "eventinj %#lx", vector, ctrl->eventinj); 1591 need_intr_window = 1; 1592 goto done; 1593 } 1594 1595 /* 1596 * Legacy PIC interrupts are delivered via the event injection 1597 * mechanism. 1598 */ 1599 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); 1600 1601 vm_extint_clear(sc->vm, vcpu); 1602 vatpic_intr_accepted(sc->vm, vector); 1603 1604 /* 1605 * Force a VM-exit as soon as the vcpu is ready to accept another 1606 * interrupt. This is done because the PIC might have another vector 1607 * that it wants to inject. Also, if the APIC has a pending interrupt 1608 * that was preempted by the ExtInt then it allows us to inject the 1609 * APIC vector as soon as possible. 1610 */ 1611 need_intr_window = 1; 1612 done: 1613 /* 1614 * The guest can modify the TPR by writing to %CR8. In guest mode 1615 * the processor reflects this write to V_TPR without hypervisor 1616 * intervention. 1617 * 1618 * The guest can also modify the TPR by writing to it via the memory 1619 * mapped APIC page. In this case, the write will be emulated by the 1620 * hypervisor. For this reason V_TPR must be updated before every 1621 * VMRUN. 1622 */ 1623 v_tpr = vlapic_get_cr8(vlapic); 1624 KASSERT(v_tpr >= 0 && v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); 1625 if (ctrl->v_tpr != v_tpr) { 1626 VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x", 1627 ctrl->v_tpr, v_tpr); 1628 ctrl->v_tpr = v_tpr; 1629 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1630 } 1631 1632 if (pending_apic_vector) { 1633 /* 1634 * If an APIC vector is being injected then interrupt window 1635 * exiting is not possible on this VMRUN. 1636 */ 1637 KASSERT(!need_intr_window, ("intr_window exiting impossible")); 1638 VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ", 1639 pending_apic_vector); 1640 1641 ctrl->v_irq = 1; 1642 ctrl->v_ign_tpr = 0; 1643 ctrl->v_intr_vector = pending_apic_vector; 1644 ctrl->v_intr_prio = pending_apic_vector >> 4; 1645 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1646 } else if (need_intr_window) { 1647 /* 1648 * We use V_IRQ in conjunction with the VINTR intercept to 1649 * trap into the hypervisor as soon as a virtual interrupt 1650 * can be delivered. 1651 * 1652 * Since injected events are not subject to intercept checks 1653 * we need to ensure that the V_IRQ is not actually going to 1654 * be delivered on VM entry. The KASSERT below enforces this. 1655 */ 1656 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1657 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, 1658 ("Bogus intr_window_exiting: eventinj (%#lx), " 1659 "intr_shadow (%u), rflags (%#lx)", 1660 ctrl->eventinj, ctrl->intr_shadow, state->rflags)); 1661 enable_intr_window_exiting(sc, vcpu); 1662 } else { 1663 disable_intr_window_exiting(sc, vcpu); 1664 } 1665 } 1666 1667 static __inline void 1668 restore_host_tss(void) 1669 { 1670 struct system_segment_descriptor *tss_sd; 1671 1672 /* 1673 * The TSS descriptor was in use prior to launching the guest so it 1674 * has been marked busy. 1675 * 1676 * 'ltr' requires the descriptor to be marked available so change the 1677 * type to "64-bit available TSS". 1678 */ 1679 tss_sd = PCPU_GET(tss); 1680 tss_sd->sd_type = SDT_SYSTSS; 1681 ltr(GSEL(GPROC0_SEL, SEL_KPL)); 1682 } 1683 1684 static void 1685 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu) 1686 { 1687 struct svm_vcpu *vcpustate; 1688 struct vmcb_ctrl *ctrl; 1689 long eptgen; 1690 bool alloc_asid; 1691 1692 KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not " 1693 "active on cpu %u", __func__, thiscpu)); 1694 1695 vcpustate = svm_get_vcpu(sc, vcpuid); 1696 ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1697 1698 /* 1699 * The TLB entries associated with the vcpu's ASID are not valid 1700 * if either of the following conditions is true: 1701 * 1702 * 1. The vcpu's ASID generation is different than the host cpu's 1703 * ASID generation. This happens when the vcpu migrates to a new 1704 * host cpu. It can also happen when the number of vcpus executing 1705 * on a host cpu is greater than the number of ASIDs available. 1706 * 1707 * 2. The pmap generation number is different than the value cached in 1708 * the 'vcpustate'. This happens when the host invalidates pages 1709 * belonging to the guest. 1710 * 1711 * asidgen eptgen Action 1712 * mismatch mismatch 1713 * 0 0 (a) 1714 * 0 1 (b1) or (b2) 1715 * 1 0 (c) 1716 * 1 1 (d) 1717 * 1718 * (a) There is no mismatch in eptgen or ASID generation and therefore 1719 * no further action is needed. 1720 * 1721 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is 1722 * retained and the TLB entries associated with this ASID 1723 * are flushed by VMRUN. 1724 * 1725 * (b2) If the cpu does not support FlushByAsid then a new ASID is 1726 * allocated. 1727 * 1728 * (c) A new ASID is allocated. 1729 * 1730 * (d) A new ASID is allocated. 1731 */ 1732 1733 alloc_asid = false; 1734 eptgen = pmap->pm_eptgen; 1735 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; 1736 1737 if (vcpustate->asid.gen != asid[thiscpu].gen) { 1738 alloc_asid = true; /* (c) and (d) */ 1739 } else if (vcpustate->eptgen != eptgen) { 1740 if (flush_by_asid()) 1741 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ 1742 else 1743 alloc_asid = true; /* (b2) */ 1744 } else { 1745 /* 1746 * This is the common case (a). 1747 */ 1748 KASSERT(!alloc_asid, ("ASID allocation not necessary")); 1749 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, 1750 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); 1751 } 1752 1753 if (alloc_asid) { 1754 if (++asid[thiscpu].num >= nasid) { 1755 asid[thiscpu].num = 1; 1756 if (++asid[thiscpu].gen == 0) 1757 asid[thiscpu].gen = 1; 1758 /* 1759 * If this cpu does not support "flush-by-asid" 1760 * then flush the entire TLB on a generation 1761 * bump. Subsequent ASID allocation in this 1762 * generation can be done without a TLB flush. 1763 */ 1764 if (!flush_by_asid()) 1765 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; 1766 } 1767 vcpustate->asid.gen = asid[thiscpu].gen; 1768 vcpustate->asid.num = asid[thiscpu].num; 1769 1770 ctrl->asid = vcpustate->asid.num; 1771 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1772 /* 1773 * If this cpu supports "flush-by-asid" then the TLB 1774 * was not flushed after the generation bump. The TLB 1775 * is flushed selectively after every new ASID allocation. 1776 */ 1777 if (flush_by_asid()) 1778 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; 1779 } 1780 vcpustate->eptgen = eptgen; 1781 1782 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); 1783 KASSERT(ctrl->asid == vcpustate->asid.num, 1784 ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); 1785 } 1786 1787 static __inline void 1788 disable_gintr(void) 1789 { 1790 1791 __asm __volatile("clgi" : : :); 1792 } 1793 1794 static __inline void 1795 enable_gintr(void) 1796 { 1797 1798 __asm __volatile("stgi" : : :); 1799 } 1800 1801 /* 1802 * Start vcpu with specified RIP. 1803 */ 1804 static int 1805 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, 1806 void *rend_cookie, void *suspended_cookie) 1807 { 1808 struct svm_regctx *gctx; 1809 struct svm_softc *svm_sc; 1810 struct svm_vcpu *vcpustate; 1811 struct vmcb_state *state; 1812 struct vmcb_ctrl *ctrl; 1813 struct vm_exit *vmexit; 1814 struct vlapic *vlapic; 1815 struct vm *vm; 1816 uint64_t vmcb_pa; 1817 u_int thiscpu; 1818 int handled; 1819 1820 svm_sc = arg; 1821 vm = svm_sc->vm; 1822 1823 vcpustate = svm_get_vcpu(svm_sc, vcpu); 1824 state = svm_get_vmcb_state(svm_sc, vcpu); 1825 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 1826 vmexit = vm_exitinfo(vm, vcpu); 1827 vlapic = vm_lapic(vm, vcpu); 1828 1829 /* 1830 * Stash 'curcpu' on the stack as 'thiscpu'. 1831 * 1832 * The per-cpu data area is not accessible until MSR_GSBASE is restored 1833 * after the #VMEXIT. Since VMRUN is executed inside a critical section 1834 * 'curcpu' and 'thiscpu' are guaranteed to identical. 1835 */ 1836 thiscpu = curcpu; 1837 1838 gctx = svm_get_guest_regctx(svm_sc, vcpu); 1839 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 1840 1841 if (vcpustate->lastcpu != thiscpu) { 1842 /* 1843 * Force new ASID allocation by invalidating the generation. 1844 */ 1845 vcpustate->asid.gen = 0; 1846 1847 /* 1848 * Invalidate the VMCB state cache by marking all fields dirty. 1849 */ 1850 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 1851 1852 /* 1853 * XXX 1854 * Setting 'vcpustate->lastcpu' here is bit premature because 1855 * we may return from this function without actually executing 1856 * the VMRUN instruction. This could happen if a rendezvous 1857 * or an AST is pending on the first time through the loop. 1858 * 1859 * This works for now but any new side-effects of vcpu 1860 * migration should take this case into account. 1861 */ 1862 vcpustate->lastcpu = thiscpu; 1863 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 1864 } 1865 1866 svm_msr_guest_enter(svm_sc, vcpu); 1867 1868 /* Update Guest RIP */ 1869 state->rip = rip; 1870 1871 do { 1872 /* 1873 * Disable global interrupts to guarantee atomicity during 1874 * loading of guest state. This includes not only the state 1875 * loaded by the "vmrun" instruction but also software state 1876 * maintained by the hypervisor: suspended and rendezvous 1877 * state, NPT generation number, vlapic interrupts etc. 1878 */ 1879 disable_gintr(); 1880 1881 if (vcpu_suspended(suspended_cookie)) { 1882 enable_gintr(); 1883 vm_exit_suspended(vm, vcpu, state->rip); 1884 break; 1885 } 1886 1887 if (vcpu_rendezvous_pending(rend_cookie)) { 1888 enable_gintr(); 1889 vm_exit_rendezvous(vm, vcpu, state->rip); 1890 break; 1891 } 1892 1893 /* We are asked to give the cpu by scheduler. */ 1894 if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { 1895 enable_gintr(); 1896 vm_exit_astpending(vm, vcpu, state->rip); 1897 break; 1898 } 1899 1900 svm_inj_interrupts(svm_sc, vcpu, vlapic); 1901 1902 /* Activate the nested pmap on 'thiscpu' */ 1903 CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active); 1904 1905 /* 1906 * Check the pmap generation and the ASID generation to 1907 * ensure that the vcpu does not use stale TLB mappings. 1908 */ 1909 check_asid(svm_sc, vcpu, pmap, thiscpu); 1910 1911 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 1912 vcpustate->dirty = 0; 1913 VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); 1914 1915 /* Launch Virtual Machine. */ 1916 VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); 1917 svm_launch(vmcb_pa, gctx); 1918 1919 CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active); 1920 1921 /* 1922 * Restore MSR_GSBASE to point to the pcpu data area. 1923 * 1924 * Note that accesses done via PCPU_GET/PCPU_SET will work 1925 * only after MSR_GSBASE is restored. 1926 * 1927 * Also note that we don't bother restoring MSR_KGSBASE 1928 * since it is not used in the kernel and will be restored 1929 * when the VMRUN ioctl returns to userspace. 1930 */ 1931 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]); 1932 KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch", 1933 thiscpu, curcpu)); 1934 1935 /* 1936 * The host GDTR and IDTR is saved by VMRUN and restored 1937 * automatically on #VMEXIT. However, the host TSS needs 1938 * to be restored explicitly. 1939 */ 1940 restore_host_tss(); 1941 1942 /* #VMEXIT disables interrupts so re-enable them here. */ 1943 enable_gintr(); 1944 1945 /* Handle #VMEXIT and if required return to user space. */ 1946 handled = svm_vmexit(svm_sc, vcpu, vmexit); 1947 } while (handled); 1948 1949 svm_msr_guest_exit(svm_sc, vcpu); 1950 1951 return (0); 1952 } 1953 1954 static void 1955 svm_vmcleanup(void *arg) 1956 { 1957 struct svm_softc *sc = arg; 1958 1959 free(sc, M_SVM); 1960 } 1961 1962 static register_t * 1963 swctx_regptr(struct svm_regctx *regctx, int reg) 1964 { 1965 1966 switch (reg) { 1967 case VM_REG_GUEST_RBX: 1968 return (®ctx->sctx_rbx); 1969 case VM_REG_GUEST_RCX: 1970 return (®ctx->sctx_rcx); 1971 case VM_REG_GUEST_RDX: 1972 return (®ctx->sctx_rdx); 1973 case VM_REG_GUEST_RDI: 1974 return (®ctx->sctx_rdi); 1975 case VM_REG_GUEST_RSI: 1976 return (®ctx->sctx_rsi); 1977 case VM_REG_GUEST_RBP: 1978 return (®ctx->sctx_rbp); 1979 case VM_REG_GUEST_R8: 1980 return (®ctx->sctx_r8); 1981 case VM_REG_GUEST_R9: 1982 return (®ctx->sctx_r9); 1983 case VM_REG_GUEST_R10: 1984 return (®ctx->sctx_r10); 1985 case VM_REG_GUEST_R11: 1986 return (®ctx->sctx_r11); 1987 case VM_REG_GUEST_R12: 1988 return (®ctx->sctx_r12); 1989 case VM_REG_GUEST_R13: 1990 return (®ctx->sctx_r13); 1991 case VM_REG_GUEST_R14: 1992 return (®ctx->sctx_r14); 1993 case VM_REG_GUEST_R15: 1994 return (®ctx->sctx_r15); 1995 default: 1996 return (NULL); 1997 } 1998 } 1999 2000 static int 2001 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2002 { 2003 struct svm_softc *svm_sc; 2004 register_t *reg; 2005 2006 svm_sc = arg; 2007 2008 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2009 return (svm_get_intr_shadow(svm_sc, vcpu, val)); 2010 } 2011 2012 if (vmcb_read(svm_sc, vcpu, ident, val) == 0) { 2013 return (0); 2014 } 2015 2016 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2017 2018 if (reg != NULL) { 2019 *val = *reg; 2020 return (0); 2021 } 2022 2023 VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident); 2024 return (EINVAL); 2025 } 2026 2027 static int 2028 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2029 { 2030 struct svm_softc *svm_sc; 2031 register_t *reg; 2032 2033 svm_sc = arg; 2034 2035 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2036 return (svm_modify_intr_shadow(svm_sc, vcpu, val)); 2037 } 2038 2039 if (vmcb_write(svm_sc, vcpu, ident, val) == 0) { 2040 return (0); 2041 } 2042 2043 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2044 2045 if (reg != NULL) { 2046 *reg = val; 2047 return (0); 2048 } 2049 2050 /* 2051 * XXX deal with CR3 and invalidate TLB entries tagged with the 2052 * vcpu's ASID. This needs to be treated differently depending on 2053 * whether 'running' is true/false. 2054 */ 2055 2056 VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident); 2057 return (EINVAL); 2058 } 2059 2060 static int 2061 svm_setcap(void *arg, int vcpu, int type, int val) 2062 { 2063 struct svm_softc *sc; 2064 int error; 2065 2066 sc = arg; 2067 error = 0; 2068 switch (type) { 2069 case VM_CAP_HALT_EXIT: 2070 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2071 VMCB_INTCPT_HLT, val); 2072 break; 2073 case VM_CAP_PAUSE_EXIT: 2074 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2075 VMCB_INTCPT_PAUSE, val); 2076 break; 2077 case VM_CAP_UNRESTRICTED_GUEST: 2078 /* Unrestricted guest execution cannot be disabled in SVM */ 2079 if (val == 0) 2080 error = EINVAL; 2081 break; 2082 default: 2083 error = ENOENT; 2084 break; 2085 } 2086 return (error); 2087 } 2088 2089 static int 2090 svm_getcap(void *arg, int vcpu, int type, int *retval) 2091 { 2092 struct svm_softc *sc; 2093 int error; 2094 2095 sc = arg; 2096 error = 0; 2097 2098 switch (type) { 2099 case VM_CAP_HALT_EXIT: 2100 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2101 VMCB_INTCPT_HLT); 2102 break; 2103 case VM_CAP_PAUSE_EXIT: 2104 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2105 VMCB_INTCPT_PAUSE); 2106 break; 2107 case VM_CAP_UNRESTRICTED_GUEST: 2108 *retval = 1; /* unrestricted guest is always enabled */ 2109 break; 2110 default: 2111 error = ENOENT; 2112 break; 2113 } 2114 return (error); 2115 } 2116 2117 static struct vlapic * 2118 svm_vlapic_init(void *arg, int vcpuid) 2119 { 2120 struct svm_softc *svm_sc; 2121 struct vlapic *vlapic; 2122 2123 svm_sc = arg; 2124 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); 2125 vlapic->vm = svm_sc->vm; 2126 vlapic->vcpuid = vcpuid; 2127 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2128 2129 vlapic_init(vlapic); 2130 2131 return (vlapic); 2132 } 2133 2134 static void 2135 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2136 { 2137 2138 vlapic_cleanup(vlapic); 2139 free(vlapic, M_SVM_VLAPIC); 2140 } 2141 2142 struct vmm_ops vmm_ops_amd = { 2143 svm_init, 2144 svm_cleanup, 2145 svm_restore, 2146 svm_vminit, 2147 svm_vmrun, 2148 svm_vmcleanup, 2149 svm_getreg, 2150 svm_setreg, 2151 vmcb_getdesc, 2152 vmcb_setdesc, 2153 svm_getcap, 2154 svm_setcap, 2155 svm_npt_alloc, 2156 svm_npt_free, 2157 svm_vlapic_init, 2158 svm_vlapic_cleanup 2159 }; 2160