xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision d0bd1251350a0564fb20f0044f061f1c6b6079c2)
1 /*-
2  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/cpufunc.h>
43 #include <machine/psl.h>
44 #include <machine/pmap.h>
45 #include <machine/md_var.h>
46 #include <machine/specialreg.h>
47 #include <machine/smp.h>
48 #include <machine/vmm.h>
49 #include <machine/vmm_dev.h>
50 #include <machine/vmm_instruction_emul.h>
51 
52 #include "vmm_lapic.h"
53 #include "vmm_stat.h"
54 #include "vmm_ktr.h"
55 #include "vmm_ioport.h"
56 #include "vatpic.h"
57 #include "vlapic.h"
58 #include "vlapic_priv.h"
59 
60 #include "x86.h"
61 #include "vmcb.h"
62 #include "svm.h"
63 #include "svm_softc.h"
64 #include "svm_msr.h"
65 #include "npt.h"
66 
67 SYSCTL_DECL(_hw_vmm);
68 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69 
70 /*
71  * SVM CPUID function 0x8000_000A, edx bit decoding.
72  */
73 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83 
84 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
85 				VMCB_CACHE_IOPM		|	\
86 				VMCB_CACHE_I		|	\
87 				VMCB_CACHE_TPR		|	\
88 				VMCB_CACHE_CR2		|	\
89 				VMCB_CACHE_CR		|	\
90 				VMCB_CACHE_DT		|	\
91 				VMCB_CACHE_SEG		|	\
92 				VMCB_CACHE_NP)
93 
94 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
95 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
96     0, NULL);
97 
98 static MALLOC_DEFINE(M_SVM, "svm", "svm");
99 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
100 
101 /* Per-CPU context area. */
102 extern struct pcpu __pcpu[];
103 
104 static uint32_t svm_feature;	/* AMD SVM features. */
105 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
106     "SVM features advertised by CPUID.8000000AH:EDX");
107 
108 static int disable_npf_assist;
109 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
110     &disable_npf_assist, 0, NULL);
111 
112 /* Maximum ASIDs supported by the processor */
113 static uint32_t nasid;
114 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
115     "Number of ASIDs supported by this processor");
116 
117 /* Current ASID generation for each host cpu */
118 static struct asid asid[MAXCPU];
119 
120 /*
121  * SVM host state saved area of size 4KB for each core.
122  */
123 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124 
125 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
126 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
127 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
128 
129 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
130 
131 static __inline int
132 flush_by_asid(void)
133 {
134 
135 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
136 }
137 
138 static __inline int
139 decode_assist(void)
140 {
141 
142 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
143 }
144 
145 static void
146 svm_disable(void *arg __unused)
147 {
148 	uint64_t efer;
149 
150 	efer = rdmsr(MSR_EFER);
151 	efer &= ~EFER_SVM;
152 	wrmsr(MSR_EFER, efer);
153 }
154 
155 /*
156  * Disable SVM on all CPUs.
157  */
158 static int
159 svm_cleanup(void)
160 {
161 
162 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
163 	return (0);
164 }
165 
166 /*
167  * Verify that all the features required by bhyve are available.
168  */
169 static int
170 check_svm_features(void)
171 {
172 	u_int regs[4];
173 
174 	/* CPUID Fn8000_000A is for SVM */
175 	do_cpuid(0x8000000A, regs);
176 	svm_feature = regs[3];
177 
178 	nasid = regs[1];
179 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
180 
181 	/* bhyve requires the Nested Paging feature */
182 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
183 		printf("SVM: Nested Paging feature not available.\n");
184 		return (ENXIO);
185 	}
186 
187 	/* bhyve requires the NRIP Save feature */
188 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
189 		printf("SVM: NRIP Save feature not available.\n");
190 		return (ENXIO);
191 	}
192 
193 	return (0);
194 }
195 
196 static void
197 svm_enable(void *arg __unused)
198 {
199 	uint64_t efer;
200 
201 	efer = rdmsr(MSR_EFER);
202 	efer |= EFER_SVM;
203 	wrmsr(MSR_EFER, efer);
204 
205 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
206 }
207 
208 /*
209  * Return 1 if SVM is enabled on this processor and 0 otherwise.
210  */
211 static int
212 svm_available(void)
213 {
214 	uint64_t msr;
215 
216 	/* Section 15.4 Enabling SVM from APM2. */
217 	if ((amd_feature2 & AMDID2_SVM) == 0) {
218 		printf("SVM: not available.\n");
219 		return (0);
220 	}
221 
222 	msr = rdmsr(MSR_VM_CR);
223 	if ((msr & VM_CR_SVMDIS) != 0) {
224 		printf("SVM: disabled by BIOS.\n");
225 		return (0);
226 	}
227 
228 	return (1);
229 }
230 
231 static int
232 svm_init(int ipinum)
233 {
234 	int error, cpu;
235 
236 	if (!svm_available())
237 		return (ENXIO);
238 
239 	error = check_svm_features();
240 	if (error)
241 		return (error);
242 
243 	vmcb_clean &= VMCB_CACHE_DEFAULT;
244 
245 	for (cpu = 0; cpu < MAXCPU; cpu++) {
246 		/*
247 		 * Initialize the host ASIDs to their "highest" valid values.
248 		 *
249 		 * The next ASID allocation will rollover both 'gen' and 'num'
250 		 * and start off the sequence at {1,1}.
251 		 */
252 		asid[cpu].gen = ~0UL;
253 		asid[cpu].num = nasid - 1;
254 	}
255 
256 	svm_msr_init();
257 	svm_npt_init(ipinum);
258 
259 	/* Enable SVM on all CPUs */
260 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
261 
262 	return (0);
263 }
264 
265 static void
266 svm_restore(void)
267 {
268 
269 	svm_enable(NULL);
270 }
271 
272 /* Pentium compatible MSRs */
273 #define MSR_PENTIUM_START 	0
274 #define MSR_PENTIUM_END 	0x1FFF
275 /* AMD 6th generation and Intel compatible MSRs */
276 #define MSR_AMD6TH_START 	0xC0000000UL
277 #define MSR_AMD6TH_END 		0xC0001FFFUL
278 /* AMD 7th and 8th generation compatible MSRs */
279 #define MSR_AMD7TH_START 	0xC0010000UL
280 #define MSR_AMD7TH_END 		0xC0011FFFUL
281 
282 /*
283  * Get the index and bit position for a MSR in permission bitmap.
284  * Two bits are used for each MSR: lower bit for read and higher bit for write.
285  */
286 static int
287 svm_msr_index(uint64_t msr, int *index, int *bit)
288 {
289 	uint32_t base, off;
290 
291 	*index = -1;
292 	*bit = (msr % 4) * 2;
293 	base = 0;
294 
295 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
296 		*index = msr / 4;
297 		return (0);
298 	}
299 
300 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
301 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
302 		off = (msr - MSR_AMD6TH_START);
303 		*index = (off + base) / 4;
304 		return (0);
305 	}
306 
307 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
308 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
309 		off = (msr - MSR_AMD7TH_START);
310 		*index = (off + base) / 4;
311 		return (0);
312 	}
313 
314 	return (EINVAL);
315 }
316 
317 /*
318  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
319  */
320 static void
321 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
322 {
323 	int index, bit, error;
324 
325 	error = svm_msr_index(msr, &index, &bit);
326 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
327 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
328 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
329 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
330 	    "msr %#lx", __func__, bit, msr));
331 
332 	if (read)
333 		perm_bitmap[index] &= ~(1UL << bit);
334 
335 	if (write)
336 		perm_bitmap[index] &= ~(2UL << bit);
337 }
338 
339 static void
340 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
341 {
342 
343 	svm_msr_perm(perm_bitmap, msr, true, true);
344 }
345 
346 static void
347 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
348 {
349 
350 	svm_msr_perm(perm_bitmap, msr, true, false);
351 }
352 
353 static __inline int
354 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
355 {
356 	struct vmcb_ctrl *ctrl;
357 
358 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
359 
360 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
361 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
362 }
363 
364 static __inline void
365 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
366     int enabled)
367 {
368 	struct vmcb_ctrl *ctrl;
369 	uint32_t oldval;
370 
371 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
372 
373 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
374 	oldval = ctrl->intercept[idx];
375 
376 	if (enabled)
377 		ctrl->intercept[idx] |= bitmask;
378 	else
379 		ctrl->intercept[idx] &= ~bitmask;
380 
381 	if (ctrl->intercept[idx] != oldval) {
382 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
383 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
384 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
385 	}
386 }
387 
388 static __inline void
389 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
390 {
391 
392 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
393 }
394 
395 static __inline void
396 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
397 {
398 
399 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
400 }
401 
402 static void
403 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
404     uint64_t msrpm_base_pa, uint64_t np_pml4)
405 {
406 	struct vmcb_ctrl *ctrl;
407 	struct vmcb_state *state;
408 	uint32_t mask;
409 	int n;
410 
411 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
412 	state = svm_get_vmcb_state(sc, vcpu);
413 
414 	ctrl->iopm_base_pa = iopm_base_pa;
415 	ctrl->msrpm_base_pa = msrpm_base_pa;
416 
417 	/* Enable nested paging */
418 	ctrl->np_enable = 1;
419 	ctrl->n_cr3 = np_pml4;
420 
421 	/*
422 	 * Intercept accesses to the control registers that are not shadowed
423 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
424 	 */
425 	for (n = 0; n < 16; n++) {
426 		mask = (BIT(n) << 16) | BIT(n);
427 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
428 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
429 		else
430 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
431 	}
432 
433 
434 	/*
435 	 * Intercept everything when tracing guest exceptions otherwise
436 	 * just intercept machine check exception.
437 	 */
438 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
439 		for (n = 0; n < 32; n++) {
440 			/*
441 			 * Skip unimplemented vectors in the exception bitmap.
442 			 */
443 			if (n == 2 || n == 9) {
444 				continue;
445 			}
446 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
447 		}
448 	} else {
449 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
450 	}
451 
452 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
453 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
454 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
455 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
456 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
457 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
458 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
462 	    VMCB_INTCPT_FERR_FREEZE);
463 
464 	/*
465 	 * From section "Canonicalization and Consistency Checks" in APMv2
466 	 * the VMRUN intercept bit must be set to pass the consistency check.
467 	 */
468 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
469 
470 	/*
471 	 * The ASID will be set to a non-zero value just before VMRUN.
472 	 */
473 	ctrl->asid = 0;
474 
475 	/*
476 	 * Section 15.21.1, Interrupt Masking in EFLAGS
477 	 * Section 15.21.2, Virtualizing APIC.TPR
478 	 *
479 	 * This must be set for %rflag and %cr8 isolation of guest and host.
480 	 */
481 	ctrl->v_intr_masking = 1;
482 
483 	/* Enable Last Branch Record aka LBR for debugging */
484 	ctrl->lbr_virt_en = 1;
485 	state->dbgctl = BIT(0);
486 
487 	/* EFER_SVM must always be set when the guest is executing */
488 	state->efer = EFER_SVM;
489 
490 	/* Set up the PAT to power-on state */
491 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
492 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
493 	    PAT_VALUE(2, PAT_UNCACHED)		|
494 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
495 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
496 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
497 	    PAT_VALUE(6, PAT_UNCACHED)		|
498 	    PAT_VALUE(7, PAT_UNCACHEABLE);
499 }
500 
501 /*
502  * Initialize a virtual machine.
503  */
504 static void *
505 svm_vminit(struct vm *vm, pmap_t pmap)
506 {
507 	struct svm_softc *svm_sc;
508 	struct svm_vcpu *vcpu;
509 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
510 	int i;
511 
512 	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
513 	svm_sc->vm = vm;
514 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
515 
516 	/*
517 	 * Intercept read and write accesses to all MSRs.
518 	 */
519 	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
520 
521 	/*
522 	 * Access to the following MSRs is redirected to the VMCB when the
523 	 * guest is executing. Therefore it is safe to allow the guest to
524 	 * read/write these MSRs directly without hypervisor involvement.
525 	 */
526 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
527 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
528 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
529 
530 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
531 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
532 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
533 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
534 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
535 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
536 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
537 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
538 
539 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
540 
541 	/*
542 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
543 	 */
544 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
545 
546 	/* Intercept access to all I/O ports. */
547 	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
548 
549 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
550 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
551 	pml4_pa = svm_sc->nptp;
552 	for (i = 0; i < VM_MAXCPU; i++) {
553 		vcpu = svm_get_vcpu(svm_sc, i);
554 		vcpu->lastcpu = NOCPU;
555 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
556 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
557 		svm_msr_guest_init(svm_sc, i);
558 	}
559 	return (svm_sc);
560 }
561 
562 static int
563 svm_cpl(struct vmcb_state *state)
564 {
565 
566 	/*
567 	 * From APMv2:
568 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
569 	 *    from any segment DPL"
570 	 */
571 	return (state->cpl);
572 }
573 
574 static enum vm_cpu_mode
575 svm_vcpu_mode(struct vmcb *vmcb)
576 {
577 	struct vmcb_segment seg;
578 	struct vmcb_state *state;
579 	int error;
580 
581 	state = &vmcb->state;
582 
583 	if (state->efer & EFER_LMA) {
584 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
585 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
586 		    error));
587 
588 		/*
589 		 * Section 4.8.1 for APM2, check if Code Segment has
590 		 * Long attribute set in descriptor.
591 		 */
592 		if (seg.attrib & VMCB_CS_ATTRIB_L)
593 			return (CPU_MODE_64BIT);
594 		else
595 			return (CPU_MODE_COMPATIBILITY);
596 	} else  if (state->cr0 & CR0_PE) {
597 		return (CPU_MODE_PROTECTED);
598 	} else {
599 		return (CPU_MODE_REAL);
600 	}
601 }
602 
603 static enum vm_paging_mode
604 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
605 {
606 
607 	if ((cr0 & CR0_PG) == 0)
608 		return (PAGING_MODE_FLAT);
609 	if ((cr4 & CR4_PAE) == 0)
610 		return (PAGING_MODE_32);
611 	if (efer & EFER_LME)
612 		return (PAGING_MODE_64);
613 	else
614 		return (PAGING_MODE_PAE);
615 }
616 
617 /*
618  * ins/outs utility routines
619  */
620 static uint64_t
621 svm_inout_str_index(struct svm_regctx *regs, int in)
622 {
623 	uint64_t val;
624 
625 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
626 
627 	return (val);
628 }
629 
630 static uint64_t
631 svm_inout_str_count(struct svm_regctx *regs, int rep)
632 {
633 	uint64_t val;
634 
635 	val = rep ? regs->sctx_rcx : 1;
636 
637 	return (val);
638 }
639 
640 static void
641 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
642     int in, struct vm_inout_str *vis)
643 {
644 	int error, s;
645 
646 	if (in) {
647 		vis->seg_name = VM_REG_GUEST_ES;
648 	} else {
649 		/* The segment field has standard encoding */
650 		s = (info1 >> 10) & 0x7;
651 		vis->seg_name = vm_segment_name(s);
652 	}
653 
654 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
655 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
656 }
657 
658 static int
659 svm_inout_str_addrsize(uint64_t info1)
660 {
661         uint32_t size;
662 
663         size = (info1 >> 7) & 0x7;
664         switch (size) {
665         case 1:
666                 return (2);     /* 16 bit */
667         case 2:
668                 return (4);     /* 32 bit */
669         case 4:
670                 return (8);     /* 64 bit */
671         default:
672                 panic("%s: invalid size encoding %d", __func__, size);
673         }
674 }
675 
676 static void
677 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
678 {
679 	struct vmcb_state *state;
680 
681 	state = &vmcb->state;
682 	paging->cr3 = state->cr3;
683 	paging->cpl = svm_cpl(state);
684 	paging->cpu_mode = svm_vcpu_mode(vmcb);
685 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
686 	    state->efer);
687 }
688 
689 #define	UNHANDLED 0
690 
691 /*
692  * Handle guest I/O intercept.
693  */
694 static int
695 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
696 {
697 	struct vmcb_ctrl *ctrl;
698 	struct vmcb_state *state;
699 	struct svm_regctx *regs;
700 	struct vm_inout_str *vis;
701 	uint64_t info1;
702 	int inout_string;
703 
704 	state = svm_get_vmcb_state(svm_sc, vcpu);
705 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
706 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
707 
708 	info1 = ctrl->exitinfo1;
709 	inout_string = info1 & BIT(2) ? 1 : 0;
710 
711 	/*
712 	 * The effective segment number in EXITINFO1[12:10] is populated
713 	 * only if the processor has the DecodeAssist capability.
714 	 *
715 	 * XXX this is not specified explicitly in APMv2 but can be verified
716 	 * empirically.
717 	 */
718 	if (inout_string && !decode_assist())
719 		return (UNHANDLED);
720 
721 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
722 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
723 	vmexit->u.inout.string 	= inout_string;
724 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
725 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
726 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
727 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
728 
729 	if (inout_string) {
730 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
731 		vis = &vmexit->u.inout_str;
732 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
733 		vis->rflags = state->rflags;
734 		vis->cr0 = state->cr0;
735 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
736 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
737 		vis->addrsize = svm_inout_str_addrsize(info1);
738 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
739 		    vmexit->u.inout.in, vis);
740 	}
741 
742 	return (UNHANDLED);
743 }
744 
745 static int
746 npf_fault_type(uint64_t exitinfo1)
747 {
748 
749 	if (exitinfo1 & VMCB_NPF_INFO1_W)
750 		return (VM_PROT_WRITE);
751 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
752 		return (VM_PROT_EXECUTE);
753 	else
754 		return (VM_PROT_READ);
755 }
756 
757 static bool
758 svm_npf_emul_fault(uint64_t exitinfo1)
759 {
760 
761 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
762 		return (false);
763 	}
764 
765 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
766 		return (false);
767 	}
768 
769 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
770 		return (false);
771 	}
772 
773 	return (true);
774 }
775 
776 static void
777 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
778 {
779 	struct vm_guest_paging *paging;
780 	struct vmcb_segment seg;
781 	struct vmcb_ctrl *ctrl;
782 	char *inst_bytes;
783 	int error, inst_len;
784 
785 	ctrl = &vmcb->ctrl;
786 	paging = &vmexit->u.inst_emul.paging;
787 
788 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
789 	vmexit->u.inst_emul.gpa = gpa;
790 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
791 	svm_paging_info(vmcb, paging);
792 
793 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
794 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
795 
796 	switch(paging->cpu_mode) {
797 	case CPU_MODE_PROTECTED:
798 	case CPU_MODE_COMPATIBILITY:
799 		/*
800 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
801 		 */
802 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
803 		    1 : 0;
804 		break;
805 	default:
806 		vmexit->u.inst_emul.cs_d = 0;
807 		break;
808 	}
809 
810 	/*
811 	 * Copy the instruction bytes into 'vie' if available.
812 	 */
813 	if (decode_assist() && !disable_npf_assist) {
814 		inst_len = ctrl->inst_len;
815 		inst_bytes = ctrl->inst_bytes;
816 	} else {
817 		inst_len = 0;
818 		inst_bytes = NULL;
819 	}
820 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
821 }
822 
823 #ifdef KTR
824 static const char *
825 intrtype_to_str(int intr_type)
826 {
827 	switch (intr_type) {
828 	case VMCB_EVENTINJ_TYPE_INTR:
829 		return ("hwintr");
830 	case VMCB_EVENTINJ_TYPE_NMI:
831 		return ("nmi");
832 	case VMCB_EVENTINJ_TYPE_INTn:
833 		return ("swintr");
834 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
835 		return ("exception");
836 	default:
837 		panic("%s: unknown intr_type %d", __func__, intr_type);
838 	}
839 }
840 #endif
841 
842 /*
843  * Inject an event to vcpu as described in section 15.20, "Event injection".
844  */
845 static void
846 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
847 		 uint32_t error, bool ec_valid)
848 {
849 	struct vmcb_ctrl *ctrl;
850 
851 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
852 
853 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
854 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
855 
856 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
857 	    __func__, vector));
858 
859 	switch (intr_type) {
860 	case VMCB_EVENTINJ_TYPE_INTR:
861 	case VMCB_EVENTINJ_TYPE_NMI:
862 	case VMCB_EVENTINJ_TYPE_INTn:
863 		break;
864 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
865 		if (vector >= 0 && vector <= 31 && vector != 2)
866 			break;
867 		/* FALLTHROUGH */
868 	default:
869 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
870 		    intr_type, vector);
871 	}
872 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
873 	if (ec_valid) {
874 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
875 		ctrl->eventinj |= (uint64_t)error << 32;
876 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
877 		    intrtype_to_str(intr_type), vector, error);
878 	} else {
879 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
880 		    intrtype_to_str(intr_type), vector);
881 	}
882 }
883 
884 static void
885 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
886 {
887 	struct vm *vm;
888 	struct vlapic *vlapic;
889 	struct vmcb_ctrl *ctrl;
890 	int pending;
891 
892 	vm = sc->vm;
893 	vlapic = vm_lapic(vm, vcpu);
894 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
895 
896 	/* Update %cr8 in the emulated vlapic */
897 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
898 
899 	/*
900 	 * If V_IRQ indicates that the interrupt injection attempted on then
901 	 * last VMRUN was successful then update the vlapic accordingly.
902 	 */
903 	if (ctrl->v_intr_vector != 0) {
904 		pending = ctrl->v_irq;
905 		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
906 		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
907 		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
908 		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
909 		    pending ? "pending" : "accepted");
910 		if (!pending)
911 			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
912 	}
913 }
914 
915 static void
916 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
917 {
918 	struct vmcb_ctrl *ctrl;
919 	uint64_t intinfo;
920 
921 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
922 	intinfo = ctrl->exitintinfo;
923 	if (!VMCB_EXITINTINFO_VALID(intinfo))
924 		return;
925 
926 	/*
927 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
928 	 *
929 	 * If a #VMEXIT happened during event delivery then record the event
930 	 * that was being delivered.
931 	 */
932 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
933 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
934 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
935 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
936 }
937 
938 static __inline int
939 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
940 {
941 
942 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
943 	    VMCB_INTCPT_VINTR));
944 }
945 
946 static __inline void
947 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
948 {
949 	struct vmcb_ctrl *ctrl;
950 
951 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
952 
953 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
954 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
955 		KASSERT(vintr_intercept_enabled(sc, vcpu),
956 		    ("%s: vintr intercept should be enabled", __func__));
957 		return;
958 	}
959 
960 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
961 	ctrl->v_irq = 1;
962 	ctrl->v_ign_tpr = 1;
963 	ctrl->v_intr_vector = 0;
964 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
965 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
966 }
967 
968 static __inline void
969 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
970 {
971 	struct vmcb_ctrl *ctrl;
972 
973 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
974 
975 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
976 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
977 		    ("%s: vintr intercept should be disabled", __func__));
978 		return;
979 	}
980 
981 #ifdef KTR
982 	if (ctrl->v_intr_vector == 0)
983 		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
984 	else
985 		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
986 #endif
987 	ctrl->v_irq = 0;
988 	ctrl->v_intr_vector = 0;
989 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
990 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
991 }
992 
993 static int
994 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
995 {
996 	struct vmcb_ctrl *ctrl;
997 	int oldval, newval;
998 
999 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1000 	oldval = ctrl->intr_shadow;
1001 	newval = val ? 1 : 0;
1002 	if (newval != oldval) {
1003 		ctrl->intr_shadow = newval;
1004 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1005 	}
1006 	return (0);
1007 }
1008 
1009 static int
1010 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1011 {
1012 	struct vmcb_ctrl *ctrl;
1013 
1014 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1015 	*val = ctrl->intr_shadow;
1016 	return (0);
1017 }
1018 
1019 /*
1020  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1021  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1022  * to track when the vcpu is done handling the NMI.
1023  */
1024 static int
1025 nmi_blocked(struct svm_softc *sc, int vcpu)
1026 {
1027 	int blocked;
1028 
1029 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1030 	    VMCB_INTCPT_IRET);
1031 	return (blocked);
1032 }
1033 
1034 static void
1035 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1036 {
1037 
1038 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1039 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1040 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1041 }
1042 
1043 static void
1044 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1045 {
1046 	int error;
1047 
1048 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1049 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1050 	/*
1051 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1052 	 * the "iret" when it runs next. However, it is possible to inject
1053 	 * another NMI into the vcpu before the "iret" has actually executed.
1054 	 *
1055 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1056 	 * it will trap back into the hypervisor. If an NMI is pending for
1057 	 * the vcpu it will be injected into the guest.
1058 	 *
1059 	 * XXX this needs to be fixed
1060 	 */
1061 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1062 
1063 	/*
1064 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1065 	 * immediate VMRUN.
1066 	 */
1067 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1068 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1069 }
1070 
1071 static int
1072 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1073     bool *retu)
1074 {
1075 	int error;
1076 
1077 	if (lapic_msr(num))
1078 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1079 	else if (num == MSR_EFER)
1080 		error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
1081 	else
1082 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1083 
1084 	return (error);
1085 }
1086 
1087 static int
1088 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1089 {
1090 	struct vmcb_state *state;
1091 	struct svm_regctx *ctx;
1092 	uint64_t result;
1093 	int error;
1094 
1095 	if (lapic_msr(num))
1096 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1097 	else
1098 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1099 
1100 	if (error == 0) {
1101 		state = svm_get_vmcb_state(sc, vcpu);
1102 		ctx = svm_get_guest_regctx(sc, vcpu);
1103 		state->rax = result & 0xffffffff;
1104 		ctx->sctx_rdx = result >> 32;
1105 	}
1106 
1107 	return (error);
1108 }
1109 
1110 #ifdef KTR
1111 static const char *
1112 exit_reason_to_str(uint64_t reason)
1113 {
1114 	static char reasonbuf[32];
1115 
1116 	switch (reason) {
1117 	case VMCB_EXIT_INVALID:
1118 		return ("invalvmcb");
1119 	case VMCB_EXIT_SHUTDOWN:
1120 		return ("shutdown");
1121 	case VMCB_EXIT_NPF:
1122 		return ("nptfault");
1123 	case VMCB_EXIT_PAUSE:
1124 		return ("pause");
1125 	case VMCB_EXIT_HLT:
1126 		return ("hlt");
1127 	case VMCB_EXIT_CPUID:
1128 		return ("cpuid");
1129 	case VMCB_EXIT_IO:
1130 		return ("inout");
1131 	case VMCB_EXIT_MC:
1132 		return ("mchk");
1133 	case VMCB_EXIT_INTR:
1134 		return ("extintr");
1135 	case VMCB_EXIT_NMI:
1136 		return ("nmi");
1137 	case VMCB_EXIT_VINTR:
1138 		return ("vintr");
1139 	case VMCB_EXIT_MSR:
1140 		return ("msr");
1141 	case VMCB_EXIT_IRET:
1142 		return ("iret");
1143 	default:
1144 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1145 		return (reasonbuf);
1146 	}
1147 }
1148 #endif	/* KTR */
1149 
1150 /*
1151  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1152  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1153  * and exceptions caused by INT3, INTO and BOUND instructions.
1154  *
1155  * Return 1 if the nRIP is valid and 0 otherwise.
1156  */
1157 static int
1158 nrip_valid(uint64_t exitcode)
1159 {
1160 	switch (exitcode) {
1161 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1162 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1163 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1164 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1165 	case 0x43:		/* INT3 */
1166 	case 0x44:		/* INTO */
1167 	case 0x45:		/* BOUND */
1168 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1169 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1170 		return (1);
1171 	default:
1172 		return (0);
1173 	}
1174 }
1175 
1176 /*
1177  * Collateral for a generic SVM VM-exit.
1178  */
1179 static void
1180 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
1181 {
1182 
1183 	vme->exitcode = VM_EXITCODE_SVM;
1184 	vme->u.svm.exitcode = code;
1185 	vme->u.svm.exitinfo1 = info1;
1186 	vme->u.svm.exitinfo2 = info2;
1187 }
1188 
1189 static int
1190 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1191 {
1192 	struct vmcb *vmcb;
1193 	struct vmcb_state *state;
1194 	struct vmcb_ctrl *ctrl;
1195 	struct svm_regctx *ctx;
1196 	struct vm_exception exception;
1197 	uint64_t code, info1, info2, val;
1198 	uint32_t eax, ecx, edx;
1199 	int error, errcode_valid, handled, idtvec, reflect;
1200 	bool retu;
1201 
1202 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1203 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1204 	state = &vmcb->state;
1205 	ctrl = &vmcb->ctrl;
1206 
1207 	handled = 0;
1208 	code = ctrl->exitcode;
1209 	info1 = ctrl->exitinfo1;
1210 	info2 = ctrl->exitinfo2;
1211 
1212 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1213 	vmexit->rip = state->rip;
1214 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1215 
1216 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1217 
1218 	/*
1219 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1220 	 * in an inconsistent state and can trigger assertions that would
1221 	 * never happen otherwise.
1222 	 */
1223 	if (code == VMCB_EXIT_INVALID) {
1224 		vm_exit_svm(vmexit, code, info1, info2);
1225 		return (0);
1226 	}
1227 
1228 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1229 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1230 
1231 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1232 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1233 	    vmexit->inst_length, code, info1, info2));
1234 
1235 	svm_update_virqinfo(svm_sc, vcpu);
1236 	svm_save_intinfo(svm_sc, vcpu);
1237 
1238 	switch (code) {
1239 	case VMCB_EXIT_IRET:
1240 		/*
1241 		 * Restart execution at "iret" but with the intercept cleared.
1242 		 */
1243 		vmexit->inst_length = 0;
1244 		clear_nmi_blocking(svm_sc, vcpu);
1245 		handled = 1;
1246 		break;
1247 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1248 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1249 		handled = 1;
1250 		break;
1251 	case VMCB_EXIT_INTR:	/* external interrupt */
1252 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1253 		handled = 1;
1254 		break;
1255 	case VMCB_EXIT_NMI:	/* external NMI */
1256 		handled = 1;
1257 		break;
1258 	case 0x40 ... 0x5F:
1259 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1260 		reflect = 1;
1261 		idtvec = code - 0x40;
1262 		switch (idtvec) {
1263 		case IDT_MC:
1264 			/*
1265 			 * Call the machine check handler by hand. Also don't
1266 			 * reflect the machine check back into the guest.
1267 			 */
1268 			reflect = 0;
1269 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1270 			__asm __volatile("int $18");
1271 			break;
1272 		case IDT_PF:
1273 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1274 			    info2);
1275 			KASSERT(error == 0, ("%s: error %d updating cr2",
1276 			    __func__, error));
1277 			/* fallthru */
1278 		case IDT_NP:
1279 		case IDT_SS:
1280 		case IDT_GP:
1281 		case IDT_AC:
1282 		case IDT_TS:
1283 			errcode_valid = 1;
1284 			break;
1285 
1286 		case IDT_DF:
1287 			errcode_valid = 1;
1288 			info1 = 0;
1289 			break;
1290 
1291 		case IDT_BP:
1292 		case IDT_OF:
1293 		case IDT_BR:
1294 			/*
1295 			 * The 'nrip' field is populated for INT3, INTO and
1296 			 * BOUND exceptions and this also implies that
1297 			 * 'inst_length' is non-zero.
1298 			 *
1299 			 * Reset 'inst_length' to zero so the guest %rip at
1300 			 * event injection is identical to what it was when
1301 			 * the exception originally happened.
1302 			 */
1303 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1304 			    "to zero before injecting exception %d",
1305 			    vmexit->inst_length, idtvec);
1306 			vmexit->inst_length = 0;
1307 			/* fallthru */
1308 		default:
1309 			errcode_valid = 0;
1310 			break;
1311 		}
1312 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1313 		    "when reflecting exception %d into guest",
1314 		    vmexit->inst_length, idtvec));
1315 
1316 		if (reflect) {
1317 			/* Reflect the exception back into the guest */
1318 			exception.vector = idtvec;
1319 			exception.error_code_valid = errcode_valid;
1320 			exception.error_code = errcode_valid ? info1 : 0;
1321 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1322 			    "%d/%#x into the guest", exception.vector,
1323 			    exception.error_code);
1324 			error = vm_inject_exception(svm_sc->vm, vcpu,
1325 			    &exception);
1326 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1327 			    __func__, error));
1328 		}
1329 		handled = 1;
1330 		break;
1331 	case VMCB_EXIT_MSR:	/* MSR access. */
1332 		eax = state->rax;
1333 		ecx = ctx->sctx_rcx;
1334 		edx = ctx->sctx_rdx;
1335 		retu = false;
1336 
1337 		if (info1) {
1338 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1339 			val = (uint64_t)edx << 32 | eax;
1340 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1341 			    ecx, val);
1342 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1343 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1344 				vmexit->u.msr.code = ecx;
1345 				vmexit->u.msr.wval = val;
1346 			} else if (!retu) {
1347 				handled = 1;
1348 			} else {
1349 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1350 				    ("emulate_wrmsr retu with bogus exitcode"));
1351 			}
1352 		} else {
1353 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1354 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1355 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1356 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1357 				vmexit->u.msr.code = ecx;
1358 			} else if (!retu) {
1359 				handled = 1;
1360 			} else {
1361 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1362 				    ("emulate_rdmsr retu with bogus exitcode"));
1363 			}
1364 		}
1365 		break;
1366 	case VMCB_EXIT_IO:
1367 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1368 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1369 		break;
1370 	case VMCB_EXIT_CPUID:
1371 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1372 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1373 		    (uint32_t *)&state->rax,
1374 		    (uint32_t *)&ctx->sctx_rbx,
1375 		    (uint32_t *)&ctx->sctx_rcx,
1376 		    (uint32_t *)&ctx->sctx_rdx);
1377 		break;
1378 	case VMCB_EXIT_HLT:
1379 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1380 		vmexit->exitcode = VM_EXITCODE_HLT;
1381 		vmexit->u.hlt.rflags = state->rflags;
1382 		break;
1383 	case VMCB_EXIT_PAUSE:
1384 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1385 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1386 		break;
1387 	case VMCB_EXIT_NPF:
1388 		/* EXITINFO2 contains the faulting guest physical address */
1389 		if (info1 & VMCB_NPF_INFO1_RSV) {
1390 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1391 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1392 			    info1, info2);
1393 		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1394 			vmexit->exitcode = VM_EXITCODE_PAGING;
1395 			vmexit->u.paging.gpa = info2;
1396 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1397 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1398 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1399 			    "on gpa %#lx/%#lx at rip %#lx",
1400 			    info2, info1, state->rip);
1401 		} else if (svm_npf_emul_fault(info1)) {
1402 			svm_handle_inst_emul(vmcb, info2, vmexit);
1403 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1404 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1405 			    "for gpa %#lx/%#lx at rip %#lx",
1406 			    info2, info1, state->rip);
1407 		}
1408 		break;
1409 	default:
1410 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1411 		break;
1412 	}
1413 
1414 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1415 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1416 	    vmexit->rip, vmexit->inst_length);
1417 
1418 	if (handled) {
1419 		vmexit->rip += vmexit->inst_length;
1420 		vmexit->inst_length = 0;
1421 		state->rip = vmexit->rip;
1422 	} else {
1423 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1424 			/*
1425 			 * If this VM exit was not claimed by anybody then
1426 			 * treat it as a generic SVM exit.
1427 			 */
1428 			vm_exit_svm(vmexit, code, info1, info2);
1429 		} else {
1430 			/*
1431 			 * The exitcode and collateral have been populated.
1432 			 * The VM exit will be processed further in userland.
1433 			 */
1434 		}
1435 	}
1436 	return (handled);
1437 }
1438 
1439 static void
1440 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1441 {
1442 	uint64_t intinfo;
1443 
1444 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1445 		return;
1446 
1447 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1448 	    "valid: %#lx", __func__, intinfo));
1449 
1450 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1451 		VMCB_EXITINTINFO_VECTOR(intinfo),
1452 		VMCB_EXITINTINFO_EC(intinfo),
1453 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1454 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1455 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1456 }
1457 
1458 /*
1459  * Inject event to virtual cpu.
1460  */
1461 static void
1462 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1463 {
1464 	struct vmcb_ctrl *ctrl;
1465 	struct vmcb_state *state;
1466 	uint8_t v_tpr;
1467 	int vector, need_intr_window, pending_apic_vector;
1468 
1469 	state = svm_get_vmcb_state(sc, vcpu);
1470 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1471 
1472 	need_intr_window = 0;
1473 	pending_apic_vector = 0;
1474 
1475 	/*
1476 	 * Inject pending events or exceptions for this vcpu.
1477 	 *
1478 	 * An event might be pending because the previous #VMEXIT happened
1479 	 * during event delivery (i.e. ctrl->exitintinfo).
1480 	 *
1481 	 * An event might also be pending because an exception was injected
1482 	 * by the hypervisor (e.g. #PF during instruction emulation).
1483 	 */
1484 	svm_inj_intinfo(sc, vcpu);
1485 
1486 	/* NMI event has priority over interrupts. */
1487 	if (vm_nmi_pending(sc->vm, vcpu)) {
1488 		if (nmi_blocked(sc, vcpu)) {
1489 			/*
1490 			 * Can't inject another NMI if the guest has not
1491 			 * yet executed an "iret" after the last NMI.
1492 			 */
1493 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1494 			    "to NMI-blocking");
1495 		} else if (ctrl->intr_shadow) {
1496 			/*
1497 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1498 			 */
1499 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1500 			    "interrupt shadow");
1501 			need_intr_window = 1;
1502 			goto done;
1503 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1504 			/*
1505 			 * If there is already an exception/interrupt pending
1506 			 * then defer the NMI until after that.
1507 			 */
1508 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1509 			    "eventinj %#lx", ctrl->eventinj);
1510 
1511 			/*
1512 			 * Use self-IPI to trigger a VM-exit as soon as
1513 			 * possible after the event injection is completed.
1514 			 *
1515 			 * This works only if the external interrupt exiting
1516 			 * is at a lower priority than the event injection.
1517 			 *
1518 			 * Although not explicitly specified in APMv2 the
1519 			 * relative priorities were verified empirically.
1520 			 */
1521 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1522 		} else {
1523 			vm_nmi_clear(sc->vm, vcpu);
1524 
1525 			/* Inject NMI, vector number is not used */
1526 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1527 			    IDT_NMI, 0, false);
1528 
1529 			/* virtual NMI blocking is now in effect */
1530 			enable_nmi_blocking(sc, vcpu);
1531 
1532 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1533 		}
1534 	}
1535 
1536 	if (!vm_extint_pending(sc->vm, vcpu)) {
1537 		/*
1538 		 * APIC interrupts are delivered using the V_IRQ offload.
1539 		 *
1540 		 * The primary benefit is that the hypervisor doesn't need to
1541 		 * deal with the various conditions that inhibit interrupts.
1542 		 * It also means that TPR changes via CR8 will be handled
1543 		 * without any hypervisor involvement.
1544 		 *
1545 		 * Note that the APIC vector must remain pending in the vIRR
1546 		 * until it is confirmed that it was delivered to the guest.
1547 		 * This can be confirmed based on the value of V_IRQ at the
1548 		 * next #VMEXIT (1 = pending, 0 = delivered).
1549 		 *
1550 		 * Also note that it is possible that another higher priority
1551 		 * vector can become pending before this vector is delivered
1552 		 * to the guest. This is alright because vcpu_notify_event()
1553 		 * will send an IPI and force the vcpu to trap back into the
1554 		 * hypervisor. The higher priority vector will be injected on
1555 		 * the next VMRUN.
1556 		 */
1557 		if (vlapic_pending_intr(vlapic, &vector)) {
1558 			KASSERT(vector >= 16 && vector <= 255,
1559 			    ("invalid vector %d from local APIC", vector));
1560 			pending_apic_vector = vector;
1561 		}
1562 		goto done;
1563 	}
1564 
1565 	/* Ask the legacy pic for a vector to inject */
1566 	vatpic_pending_intr(sc->vm, &vector);
1567 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1568 	    vector));
1569 
1570 	/*
1571 	 * If the guest has disabled interrupts or is in an interrupt shadow
1572 	 * then we cannot inject the pending interrupt.
1573 	 */
1574 	if ((state->rflags & PSL_I) == 0) {
1575 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1576 		    "rflags %#lx", vector, state->rflags);
1577 		need_intr_window = 1;
1578 		goto done;
1579 	}
1580 
1581 	if (ctrl->intr_shadow) {
1582 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1583 		    "interrupt shadow", vector);
1584 		need_intr_window = 1;
1585 		goto done;
1586 	}
1587 
1588 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1589 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1590 		    "eventinj %#lx", vector, ctrl->eventinj);
1591 		need_intr_window = 1;
1592 		goto done;
1593 	}
1594 
1595 	/*
1596 	 * Legacy PIC interrupts are delivered via the event injection
1597 	 * mechanism.
1598 	 */
1599 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1600 
1601 	vm_extint_clear(sc->vm, vcpu);
1602 	vatpic_intr_accepted(sc->vm, vector);
1603 
1604 	/*
1605 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1606 	 * interrupt. This is done because the PIC might have another vector
1607 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1608 	 * that was preempted by the ExtInt then it allows us to inject the
1609 	 * APIC vector as soon as possible.
1610 	 */
1611 	need_intr_window = 1;
1612 done:
1613 	/*
1614 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1615 	 * the processor reflects this write to V_TPR without hypervisor
1616 	 * intervention.
1617 	 *
1618 	 * The guest can also modify the TPR by writing to it via the memory
1619 	 * mapped APIC page. In this case, the write will be emulated by the
1620 	 * hypervisor. For this reason V_TPR must be updated before every
1621 	 * VMRUN.
1622 	 */
1623 	v_tpr = vlapic_get_cr8(vlapic);
1624 	KASSERT(v_tpr >= 0 && v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1625 	if (ctrl->v_tpr != v_tpr) {
1626 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1627 		    ctrl->v_tpr, v_tpr);
1628 		ctrl->v_tpr = v_tpr;
1629 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1630 	}
1631 
1632 	if (pending_apic_vector) {
1633 		/*
1634 		 * If an APIC vector is being injected then interrupt window
1635 		 * exiting is not possible on this VMRUN.
1636 		 */
1637 		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1638 		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1639 		    pending_apic_vector);
1640 
1641 		ctrl->v_irq = 1;
1642 		ctrl->v_ign_tpr = 0;
1643 		ctrl->v_intr_vector = pending_apic_vector;
1644 		ctrl->v_intr_prio = pending_apic_vector >> 4;
1645 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1646 	} else if (need_intr_window) {
1647 		/*
1648 		 * We use V_IRQ in conjunction with the VINTR intercept to
1649 		 * trap into the hypervisor as soon as a virtual interrupt
1650 		 * can be delivered.
1651 		 *
1652 		 * Since injected events are not subject to intercept checks
1653 		 * we need to ensure that the V_IRQ is not actually going to
1654 		 * be delivered on VM entry. The KASSERT below enforces this.
1655 		 */
1656 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1657 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1658 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1659 		    "intr_shadow (%u), rflags (%#lx)",
1660 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1661 		enable_intr_window_exiting(sc, vcpu);
1662 	} else {
1663 		disable_intr_window_exiting(sc, vcpu);
1664 	}
1665 }
1666 
1667 static __inline void
1668 restore_host_tss(void)
1669 {
1670 	struct system_segment_descriptor *tss_sd;
1671 
1672 	/*
1673 	 * The TSS descriptor was in use prior to launching the guest so it
1674 	 * has been marked busy.
1675 	 *
1676 	 * 'ltr' requires the descriptor to be marked available so change the
1677 	 * type to "64-bit available TSS".
1678 	 */
1679 	tss_sd = PCPU_GET(tss);
1680 	tss_sd->sd_type = SDT_SYSTSS;
1681 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1682 }
1683 
1684 static void
1685 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1686 {
1687 	struct svm_vcpu *vcpustate;
1688 	struct vmcb_ctrl *ctrl;
1689 	long eptgen;
1690 	bool alloc_asid;
1691 
1692 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1693 	    "active on cpu %u", __func__, thiscpu));
1694 
1695 	vcpustate = svm_get_vcpu(sc, vcpuid);
1696 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1697 
1698 	/*
1699 	 * The TLB entries associated with the vcpu's ASID are not valid
1700 	 * if either of the following conditions is true:
1701 	 *
1702 	 * 1. The vcpu's ASID generation is different than the host cpu's
1703 	 *    ASID generation. This happens when the vcpu migrates to a new
1704 	 *    host cpu. It can also happen when the number of vcpus executing
1705 	 *    on a host cpu is greater than the number of ASIDs available.
1706 	 *
1707 	 * 2. The pmap generation number is different than the value cached in
1708 	 *    the 'vcpustate'. This happens when the host invalidates pages
1709 	 *    belonging to the guest.
1710 	 *
1711 	 *	asidgen		eptgen	      Action
1712 	 *	mismatch	mismatch
1713 	 *	   0		   0		(a)
1714 	 *	   0		   1		(b1) or (b2)
1715 	 *	   1		   0		(c)
1716 	 *	   1		   1		(d)
1717 	 *
1718 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1719 	 *     no further action is needed.
1720 	 *
1721 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1722 	 *      retained and the TLB entries associated with this ASID
1723 	 *      are flushed by VMRUN.
1724 	 *
1725 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1726 	 *      allocated.
1727 	 *
1728 	 * (c) A new ASID is allocated.
1729 	 *
1730 	 * (d) A new ASID is allocated.
1731 	 */
1732 
1733 	alloc_asid = false;
1734 	eptgen = pmap->pm_eptgen;
1735 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1736 
1737 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1738 		alloc_asid = true;	/* (c) and (d) */
1739 	} else if (vcpustate->eptgen != eptgen) {
1740 		if (flush_by_asid())
1741 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1742 		else
1743 			alloc_asid = true;			/* (b2) */
1744 	} else {
1745 		/*
1746 		 * This is the common case (a).
1747 		 */
1748 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1749 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1750 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1751 	}
1752 
1753 	if (alloc_asid) {
1754 		if (++asid[thiscpu].num >= nasid) {
1755 			asid[thiscpu].num = 1;
1756 			if (++asid[thiscpu].gen == 0)
1757 				asid[thiscpu].gen = 1;
1758 			/*
1759 			 * If this cpu does not support "flush-by-asid"
1760 			 * then flush the entire TLB on a generation
1761 			 * bump. Subsequent ASID allocation in this
1762 			 * generation can be done without a TLB flush.
1763 			 */
1764 			if (!flush_by_asid())
1765 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1766 		}
1767 		vcpustate->asid.gen = asid[thiscpu].gen;
1768 		vcpustate->asid.num = asid[thiscpu].num;
1769 
1770 		ctrl->asid = vcpustate->asid.num;
1771 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1772 		/*
1773 		 * If this cpu supports "flush-by-asid" then the TLB
1774 		 * was not flushed after the generation bump. The TLB
1775 		 * is flushed selectively after every new ASID allocation.
1776 		 */
1777 		if (flush_by_asid())
1778 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1779 	}
1780 	vcpustate->eptgen = eptgen;
1781 
1782 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1783 	KASSERT(ctrl->asid == vcpustate->asid.num,
1784 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1785 }
1786 
1787 static __inline void
1788 disable_gintr(void)
1789 {
1790 
1791         __asm __volatile("clgi" : : :);
1792 }
1793 
1794 static __inline void
1795 enable_gintr(void)
1796 {
1797 
1798         __asm __volatile("stgi" : : :);
1799 }
1800 
1801 /*
1802  * Start vcpu with specified RIP.
1803  */
1804 static int
1805 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1806 	void *rend_cookie, void *suspended_cookie)
1807 {
1808 	struct svm_regctx *gctx;
1809 	struct svm_softc *svm_sc;
1810 	struct svm_vcpu *vcpustate;
1811 	struct vmcb_state *state;
1812 	struct vmcb_ctrl *ctrl;
1813 	struct vm_exit *vmexit;
1814 	struct vlapic *vlapic;
1815 	struct vm *vm;
1816 	uint64_t vmcb_pa;
1817 	u_int thiscpu;
1818 	int handled;
1819 
1820 	svm_sc = arg;
1821 	vm = svm_sc->vm;
1822 
1823 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1824 	state = svm_get_vmcb_state(svm_sc, vcpu);
1825 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1826 	vmexit = vm_exitinfo(vm, vcpu);
1827 	vlapic = vm_lapic(vm, vcpu);
1828 
1829 	/*
1830 	 * Stash 'curcpu' on the stack as 'thiscpu'.
1831 	 *
1832 	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1833 	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1834 	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1835 	 */
1836 	thiscpu = curcpu;
1837 
1838 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1839 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1840 
1841 	if (vcpustate->lastcpu != thiscpu) {
1842 		/*
1843 		 * Force new ASID allocation by invalidating the generation.
1844 		 */
1845 		vcpustate->asid.gen = 0;
1846 
1847 		/*
1848 		 * Invalidate the VMCB state cache by marking all fields dirty.
1849 		 */
1850 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1851 
1852 		/*
1853 		 * XXX
1854 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1855 		 * we may return from this function without actually executing
1856 		 * the VMRUN  instruction. This could happen if a rendezvous
1857 		 * or an AST is pending on the first time through the loop.
1858 		 *
1859 		 * This works for now but any new side-effects of vcpu
1860 		 * migration should take this case into account.
1861 		 */
1862 		vcpustate->lastcpu = thiscpu;
1863 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1864 	}
1865 
1866 	svm_msr_guest_enter(svm_sc, vcpu);
1867 
1868 	/* Update Guest RIP */
1869 	state->rip = rip;
1870 
1871 	do {
1872 		/*
1873 		 * Disable global interrupts to guarantee atomicity during
1874 		 * loading of guest state. This includes not only the state
1875 		 * loaded by the "vmrun" instruction but also software state
1876 		 * maintained by the hypervisor: suspended and rendezvous
1877 		 * state, NPT generation number, vlapic interrupts etc.
1878 		 */
1879 		disable_gintr();
1880 
1881 		if (vcpu_suspended(suspended_cookie)) {
1882 			enable_gintr();
1883 			vm_exit_suspended(vm, vcpu, state->rip);
1884 			break;
1885 		}
1886 
1887 		if (vcpu_rendezvous_pending(rend_cookie)) {
1888 			enable_gintr();
1889 			vm_exit_rendezvous(vm, vcpu, state->rip);
1890 			break;
1891 		}
1892 
1893 		/* We are asked to give the cpu by scheduler. */
1894 		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1895 			enable_gintr();
1896 			vm_exit_astpending(vm, vcpu, state->rip);
1897 			break;
1898 		}
1899 
1900 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1901 
1902 		/* Activate the nested pmap on 'thiscpu' */
1903 		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
1904 
1905 		/*
1906 		 * Check the pmap generation and the ASID generation to
1907 		 * ensure that the vcpu does not use stale TLB mappings.
1908 		 */
1909 		check_asid(svm_sc, vcpu, pmap, thiscpu);
1910 
1911 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
1912 		vcpustate->dirty = 0;
1913 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
1914 
1915 		/* Launch Virtual Machine. */
1916 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
1917 		svm_launch(vmcb_pa, gctx);
1918 
1919 		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
1920 
1921 		/*
1922 		 * Restore MSR_GSBASE to point to the pcpu data area.
1923 		 *
1924 		 * Note that accesses done via PCPU_GET/PCPU_SET will work
1925 		 * only after MSR_GSBASE is restored.
1926 		 *
1927 		 * Also note that we don't bother restoring MSR_KGSBASE
1928 		 * since it is not used in the kernel and will be restored
1929 		 * when the VMRUN ioctl returns to userspace.
1930 		 */
1931 		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
1932 		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
1933 		    thiscpu, curcpu));
1934 
1935 		/*
1936 		 * The host GDTR and IDTR is saved by VMRUN and restored
1937 		 * automatically on #VMEXIT. However, the host TSS needs
1938 		 * to be restored explicitly.
1939 		 */
1940 		restore_host_tss();
1941 
1942 		/* #VMEXIT disables interrupts so re-enable them here. */
1943 		enable_gintr();
1944 
1945 		/* Handle #VMEXIT and if required return to user space. */
1946 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
1947 	} while (handled);
1948 
1949 	svm_msr_guest_exit(svm_sc, vcpu);
1950 
1951 	return (0);
1952 }
1953 
1954 static void
1955 svm_vmcleanup(void *arg)
1956 {
1957 	struct svm_softc *sc = arg;
1958 
1959 	free(sc, M_SVM);
1960 }
1961 
1962 static register_t *
1963 swctx_regptr(struct svm_regctx *regctx, int reg)
1964 {
1965 
1966 	switch (reg) {
1967 	case VM_REG_GUEST_RBX:
1968 		return (&regctx->sctx_rbx);
1969 	case VM_REG_GUEST_RCX:
1970 		return (&regctx->sctx_rcx);
1971 	case VM_REG_GUEST_RDX:
1972 		return (&regctx->sctx_rdx);
1973 	case VM_REG_GUEST_RDI:
1974 		return (&regctx->sctx_rdi);
1975 	case VM_REG_GUEST_RSI:
1976 		return (&regctx->sctx_rsi);
1977 	case VM_REG_GUEST_RBP:
1978 		return (&regctx->sctx_rbp);
1979 	case VM_REG_GUEST_R8:
1980 		return (&regctx->sctx_r8);
1981 	case VM_REG_GUEST_R9:
1982 		return (&regctx->sctx_r9);
1983 	case VM_REG_GUEST_R10:
1984 		return (&regctx->sctx_r10);
1985 	case VM_REG_GUEST_R11:
1986 		return (&regctx->sctx_r11);
1987 	case VM_REG_GUEST_R12:
1988 		return (&regctx->sctx_r12);
1989 	case VM_REG_GUEST_R13:
1990 		return (&regctx->sctx_r13);
1991 	case VM_REG_GUEST_R14:
1992 		return (&regctx->sctx_r14);
1993 	case VM_REG_GUEST_R15:
1994 		return (&regctx->sctx_r15);
1995 	default:
1996 		return (NULL);
1997 	}
1998 }
1999 
2000 static int
2001 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2002 {
2003 	struct svm_softc *svm_sc;
2004 	register_t *reg;
2005 
2006 	svm_sc = arg;
2007 
2008 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2009 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2010 	}
2011 
2012 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2013 		return (0);
2014 	}
2015 
2016 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2017 
2018 	if (reg != NULL) {
2019 		*val = *reg;
2020 		return (0);
2021 	}
2022 
2023 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2024 	return (EINVAL);
2025 }
2026 
2027 static int
2028 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2029 {
2030 	struct svm_softc *svm_sc;
2031 	register_t *reg;
2032 
2033 	svm_sc = arg;
2034 
2035 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2036 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2037 	}
2038 
2039 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2040 		return (0);
2041 	}
2042 
2043 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2044 
2045 	if (reg != NULL) {
2046 		*reg = val;
2047 		return (0);
2048 	}
2049 
2050 	/*
2051 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2052 	 * vcpu's ASID. This needs to be treated differently depending on
2053 	 * whether 'running' is true/false.
2054 	 */
2055 
2056 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2057 	return (EINVAL);
2058 }
2059 
2060 static int
2061 svm_setcap(void *arg, int vcpu, int type, int val)
2062 {
2063 	struct svm_softc *sc;
2064 	int error;
2065 
2066 	sc = arg;
2067 	error = 0;
2068 	switch (type) {
2069 	case VM_CAP_HALT_EXIT:
2070 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2071 		    VMCB_INTCPT_HLT, val);
2072 		break;
2073 	case VM_CAP_PAUSE_EXIT:
2074 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2075 		    VMCB_INTCPT_PAUSE, val);
2076 		break;
2077 	case VM_CAP_UNRESTRICTED_GUEST:
2078 		/* Unrestricted guest execution cannot be disabled in SVM */
2079 		if (val == 0)
2080 			error = EINVAL;
2081 		break;
2082 	default:
2083 		error = ENOENT;
2084 		break;
2085 	}
2086 	return (error);
2087 }
2088 
2089 static int
2090 svm_getcap(void *arg, int vcpu, int type, int *retval)
2091 {
2092 	struct svm_softc *sc;
2093 	int error;
2094 
2095 	sc = arg;
2096 	error = 0;
2097 
2098 	switch (type) {
2099 	case VM_CAP_HALT_EXIT:
2100 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2101 		    VMCB_INTCPT_HLT);
2102 		break;
2103 	case VM_CAP_PAUSE_EXIT:
2104 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2105 		    VMCB_INTCPT_PAUSE);
2106 		break;
2107 	case VM_CAP_UNRESTRICTED_GUEST:
2108 		*retval = 1;	/* unrestricted guest is always enabled */
2109 		break;
2110 	default:
2111 		error = ENOENT;
2112 		break;
2113 	}
2114 	return (error);
2115 }
2116 
2117 static struct vlapic *
2118 svm_vlapic_init(void *arg, int vcpuid)
2119 {
2120 	struct svm_softc *svm_sc;
2121 	struct vlapic *vlapic;
2122 
2123 	svm_sc = arg;
2124 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2125 	vlapic->vm = svm_sc->vm;
2126 	vlapic->vcpuid = vcpuid;
2127 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2128 
2129 	vlapic_init(vlapic);
2130 
2131 	return (vlapic);
2132 }
2133 
2134 static void
2135 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2136 {
2137 
2138         vlapic_cleanup(vlapic);
2139         free(vlapic, M_SVM_VLAPIC);
2140 }
2141 
2142 struct vmm_ops vmm_ops_amd = {
2143 	svm_init,
2144 	svm_cleanup,
2145 	svm_restore,
2146 	svm_vminit,
2147 	svm_vmrun,
2148 	svm_vmcleanup,
2149 	svm_getreg,
2150 	svm_setreg,
2151 	vmcb_getdesc,
2152 	vmcb_setdesc,
2153 	svm_getcap,
2154 	svm_setcap,
2155 	svm_npt_alloc,
2156 	svm_npt_free,
2157 	svm_vlapic_init,
2158 	svm_vlapic_cleanup
2159 };
2160