1 /*- 2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/smp.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/pcpu.h> 36 #include <sys/proc.h> 37 #include <sys/sysctl.h> 38 39 #include <vm/vm.h> 40 #include <vm/pmap.h> 41 42 #include <machine/cpufunc.h> 43 #include <machine/psl.h> 44 #include <machine/md_var.h> 45 #include <machine/specialreg.h> 46 #include <machine/smp.h> 47 #include <machine/vmm.h> 48 #include <machine/vmm_dev.h> 49 #include <machine/vmm_instruction_emul.h> 50 51 #include "vmm_lapic.h" 52 #include "vmm_stat.h" 53 #include "vmm_ktr.h" 54 #include "vmm_ioport.h" 55 #include "vatpic.h" 56 #include "vlapic.h" 57 #include "vlapic_priv.h" 58 59 #include "x86.h" 60 #include "vmcb.h" 61 #include "svm.h" 62 #include "svm_softc.h" 63 #include "svm_msr.h" 64 #include "npt.h" 65 66 SYSCTL_DECL(_hw_vmm); 67 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * SVM CPUID function 0x8000_000A, edx bit decoding. 71 */ 72 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 73 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 74 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 75 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 76 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 77 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 78 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 79 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 80 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 81 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 82 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 83 84 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 85 VMCB_CACHE_IOPM | \ 86 VMCB_CACHE_I | \ 87 VMCB_CACHE_TPR | \ 88 VMCB_CACHE_CR2 | \ 89 VMCB_CACHE_CR | \ 90 VMCB_CACHE_DR | \ 91 VMCB_CACHE_DT | \ 92 VMCB_CACHE_SEG | \ 93 VMCB_CACHE_NP) 94 95 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 96 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 97 0, NULL); 98 99 static MALLOC_DEFINE(M_SVM, "svm", "svm"); 100 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); 101 102 /* Per-CPU context area. */ 103 extern struct pcpu __pcpu[]; 104 105 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 106 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0, 107 "SVM features advertised by CPUID.8000000AH:EDX"); 108 109 static int disable_npf_assist; 110 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, 111 &disable_npf_assist, 0, NULL); 112 113 /* Maximum ASIDs supported by the processor */ 114 static uint32_t nasid; 115 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0, 116 "Number of ASIDs supported by this processor"); 117 118 /* Current ASID generation for each host cpu */ 119 static struct asid asid[MAXCPU]; 120 121 /* 122 * SVM host state saved area of size 4KB for each core. 123 */ 124 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 125 126 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 127 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 128 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 129 130 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 131 132 static __inline int 133 flush_by_asid(void) 134 { 135 136 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); 137 } 138 139 static __inline int 140 decode_assist(void) 141 { 142 143 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); 144 } 145 146 static void 147 svm_disable(void *arg __unused) 148 { 149 uint64_t efer; 150 151 efer = rdmsr(MSR_EFER); 152 efer &= ~EFER_SVM; 153 wrmsr(MSR_EFER, efer); 154 } 155 156 /* 157 * Disable SVM on all CPUs. 158 */ 159 static int 160 svm_cleanup(void) 161 { 162 163 smp_rendezvous(NULL, svm_disable, NULL, NULL); 164 return (0); 165 } 166 167 /* 168 * Verify that all the features required by bhyve are available. 169 */ 170 static int 171 check_svm_features(void) 172 { 173 u_int regs[4]; 174 175 /* CPUID Fn8000_000A is for SVM */ 176 do_cpuid(0x8000000A, regs); 177 svm_feature &= regs[3]; 178 179 /* 180 * The number of ASIDs can be configured to be less than what is 181 * supported by the hardware but not more. 182 */ 183 if (nasid == 0 || nasid > regs[1]) 184 nasid = regs[1]; 185 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); 186 187 /* bhyve requires the Nested Paging feature */ 188 if (!(svm_feature & AMD_CPUID_SVM_NP)) { 189 printf("SVM: Nested Paging feature not available.\n"); 190 return (ENXIO); 191 } 192 193 /* bhyve requires the NRIP Save feature */ 194 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { 195 printf("SVM: NRIP Save feature not available.\n"); 196 return (ENXIO); 197 } 198 199 return (0); 200 } 201 202 static void 203 svm_enable(void *arg __unused) 204 { 205 uint64_t efer; 206 207 efer = rdmsr(MSR_EFER); 208 efer |= EFER_SVM; 209 wrmsr(MSR_EFER, efer); 210 211 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); 212 } 213 214 /* 215 * Return 1 if SVM is enabled on this processor and 0 otherwise. 216 */ 217 static int 218 svm_available(void) 219 { 220 uint64_t msr; 221 222 /* Section 15.4 Enabling SVM from APM2. */ 223 if ((amd_feature2 & AMDID2_SVM) == 0) { 224 printf("SVM: not available.\n"); 225 return (0); 226 } 227 228 msr = rdmsr(MSR_VM_CR); 229 if ((msr & VM_CR_SVMDIS) != 0) { 230 printf("SVM: disabled by BIOS.\n"); 231 return (0); 232 } 233 234 return (1); 235 } 236 237 static int 238 svm_init(int ipinum) 239 { 240 int error, cpu; 241 242 if (!svm_available()) 243 return (ENXIO); 244 245 error = check_svm_features(); 246 if (error) 247 return (error); 248 249 vmcb_clean &= VMCB_CACHE_DEFAULT; 250 251 for (cpu = 0; cpu < MAXCPU; cpu++) { 252 /* 253 * Initialize the host ASIDs to their "highest" valid values. 254 * 255 * The next ASID allocation will rollover both 'gen' and 'num' 256 * and start off the sequence at {1,1}. 257 */ 258 asid[cpu].gen = ~0UL; 259 asid[cpu].num = nasid - 1; 260 } 261 262 svm_msr_init(); 263 svm_npt_init(ipinum); 264 265 /* Enable SVM on all CPUs */ 266 smp_rendezvous(NULL, svm_enable, NULL, NULL); 267 268 return (0); 269 } 270 271 static void 272 svm_restore(void) 273 { 274 275 svm_enable(NULL); 276 } 277 278 /* Pentium compatible MSRs */ 279 #define MSR_PENTIUM_START 0 280 #define MSR_PENTIUM_END 0x1FFF 281 /* AMD 6th generation and Intel compatible MSRs */ 282 #define MSR_AMD6TH_START 0xC0000000UL 283 #define MSR_AMD6TH_END 0xC0001FFFUL 284 /* AMD 7th and 8th generation compatible MSRs */ 285 #define MSR_AMD7TH_START 0xC0010000UL 286 #define MSR_AMD7TH_END 0xC0011FFFUL 287 288 /* 289 * Get the index and bit position for a MSR in permission bitmap. 290 * Two bits are used for each MSR: lower bit for read and higher bit for write. 291 */ 292 static int 293 svm_msr_index(uint64_t msr, int *index, int *bit) 294 { 295 uint32_t base, off; 296 297 *index = -1; 298 *bit = (msr % 4) * 2; 299 base = 0; 300 301 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { 302 *index = msr / 4; 303 return (0); 304 } 305 306 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 307 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 308 off = (msr - MSR_AMD6TH_START); 309 *index = (off + base) / 4; 310 return (0); 311 } 312 313 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 314 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 315 off = (msr - MSR_AMD7TH_START); 316 *index = (off + base) / 4; 317 return (0); 318 } 319 320 return (EINVAL); 321 } 322 323 /* 324 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 325 */ 326 static void 327 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 328 { 329 int index, bit, error; 330 331 error = svm_msr_index(msr, &index, &bit); 332 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); 333 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 334 ("%s: invalid index %d for msr %#lx", __func__, index, msr)); 335 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 336 "msr %#lx", __func__, bit, msr)); 337 338 if (read) 339 perm_bitmap[index] &= ~(1UL << bit); 340 341 if (write) 342 perm_bitmap[index] &= ~(2UL << bit); 343 } 344 345 static void 346 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 347 { 348 349 svm_msr_perm(perm_bitmap, msr, true, true); 350 } 351 352 static void 353 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 354 { 355 356 svm_msr_perm(perm_bitmap, msr, true, false); 357 } 358 359 static __inline int 360 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 361 { 362 struct vmcb_ctrl *ctrl; 363 364 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 365 366 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 367 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 368 } 369 370 static __inline void 371 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 372 int enabled) 373 { 374 struct vmcb_ctrl *ctrl; 375 uint32_t oldval; 376 377 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 378 379 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 380 oldval = ctrl->intercept[idx]; 381 382 if (enabled) 383 ctrl->intercept[idx] |= bitmask; 384 else 385 ctrl->intercept[idx] &= ~bitmask; 386 387 if (ctrl->intercept[idx] != oldval) { 388 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 389 VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " 390 "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); 391 } 392 } 393 394 static __inline void 395 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 396 { 397 398 svm_set_intercept(sc, vcpu, off, bitmask, 0); 399 } 400 401 static __inline void 402 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 403 { 404 405 svm_set_intercept(sc, vcpu, off, bitmask, 1); 406 } 407 408 static void 409 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 410 uint64_t msrpm_base_pa, uint64_t np_pml4) 411 { 412 struct vmcb_ctrl *ctrl; 413 struct vmcb_state *state; 414 uint32_t mask; 415 int n; 416 417 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 418 state = svm_get_vmcb_state(sc, vcpu); 419 420 ctrl->iopm_base_pa = iopm_base_pa; 421 ctrl->msrpm_base_pa = msrpm_base_pa; 422 423 /* Enable nested paging */ 424 ctrl->np_enable = 1; 425 ctrl->n_cr3 = np_pml4; 426 427 /* 428 * Intercept accesses to the control registers that are not shadowed 429 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 430 */ 431 for (n = 0; n < 16; n++) { 432 mask = (BIT(n) << 16) | BIT(n); 433 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 434 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 435 else 436 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 437 } 438 439 440 /* 441 * Intercept everything when tracing guest exceptions otherwise 442 * just intercept machine check exception. 443 */ 444 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 445 for (n = 0; n < 32; n++) { 446 /* 447 * Skip unimplemented vectors in the exception bitmap. 448 */ 449 if (n == 2 || n == 9) { 450 continue; 451 } 452 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 453 } 454 } else { 455 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 456 } 457 458 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 459 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 460 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 461 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 462 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 463 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 464 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 465 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 466 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 467 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 468 VMCB_INTCPT_FERR_FREEZE); 469 470 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 471 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 472 473 /* 474 * From section "Canonicalization and Consistency Checks" in APMv2 475 * the VMRUN intercept bit must be set to pass the consistency check. 476 */ 477 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 478 479 /* 480 * The ASID will be set to a non-zero value just before VMRUN. 481 */ 482 ctrl->asid = 0; 483 484 /* 485 * Section 15.21.1, Interrupt Masking in EFLAGS 486 * Section 15.21.2, Virtualizing APIC.TPR 487 * 488 * This must be set for %rflag and %cr8 isolation of guest and host. 489 */ 490 ctrl->v_intr_masking = 1; 491 492 /* Enable Last Branch Record aka LBR for debugging */ 493 ctrl->lbr_virt_en = 1; 494 state->dbgctl = BIT(0); 495 496 /* EFER_SVM must always be set when the guest is executing */ 497 state->efer = EFER_SVM; 498 499 /* Set up the PAT to power-on state */ 500 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 501 PAT_VALUE(1, PAT_WRITE_THROUGH) | 502 PAT_VALUE(2, PAT_UNCACHED) | 503 PAT_VALUE(3, PAT_UNCACHEABLE) | 504 PAT_VALUE(4, PAT_WRITE_BACK) | 505 PAT_VALUE(5, PAT_WRITE_THROUGH) | 506 PAT_VALUE(6, PAT_UNCACHED) | 507 PAT_VALUE(7, PAT_UNCACHEABLE); 508 509 /* Set up DR6/7 to power-on state */ 510 state->dr6 = 0xffff0ff0; 511 state->dr7 = 0x400; 512 } 513 514 /* 515 * Initialize a virtual machine. 516 */ 517 static void * 518 svm_vminit(struct vm *vm, pmap_t pmap) 519 { 520 struct svm_softc *svm_sc; 521 struct svm_vcpu *vcpu; 522 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 523 int i; 524 525 svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO); 526 if (((uintptr_t)svm_sc & PAGE_MASK) != 0) 527 panic("malloc of svm_softc not aligned on page boundary"); 528 529 svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM, 530 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 531 if (svm_sc->msr_bitmap == NULL) 532 panic("contigmalloc of SVM MSR bitmap failed"); 533 svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM, 534 M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); 535 if (svm_sc->iopm_bitmap == NULL) 536 panic("contigmalloc of SVM IO bitmap failed"); 537 538 svm_sc->vm = vm; 539 svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); 540 541 /* 542 * Intercept read and write accesses to all MSRs. 543 */ 544 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); 545 546 /* 547 * Access to the following MSRs is redirected to the VMCB when the 548 * guest is executing. Therefore it is safe to allow the guest to 549 * read/write these MSRs directly without hypervisor involvement. 550 */ 551 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 552 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 553 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 554 555 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 556 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 557 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 558 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 559 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 560 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 561 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 562 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 563 564 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 565 566 /* 567 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 568 */ 569 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 570 571 /* Intercept access to all I/O ports. */ 572 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); 573 574 iopm_pa = vtophys(svm_sc->iopm_bitmap); 575 msrpm_pa = vtophys(svm_sc->msr_bitmap); 576 pml4_pa = svm_sc->nptp; 577 for (i = 0; i < VM_MAXCPU; i++) { 578 vcpu = svm_get_vcpu(svm_sc, i); 579 vcpu->nextrip = ~0; 580 vcpu->lastcpu = NOCPU; 581 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 582 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 583 svm_msr_guest_init(svm_sc, i); 584 } 585 return (svm_sc); 586 } 587 588 /* 589 * Collateral for a generic SVM VM-exit. 590 */ 591 static void 592 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 593 { 594 595 vme->exitcode = VM_EXITCODE_SVM; 596 vme->u.svm.exitcode = code; 597 vme->u.svm.exitinfo1 = info1; 598 vme->u.svm.exitinfo2 = info2; 599 } 600 601 static int 602 svm_cpl(struct vmcb_state *state) 603 { 604 605 /* 606 * From APMv2: 607 * "Retrieve the CPL from the CPL field in the VMCB, not 608 * from any segment DPL" 609 */ 610 return (state->cpl); 611 } 612 613 static enum vm_cpu_mode 614 svm_vcpu_mode(struct vmcb *vmcb) 615 { 616 struct vmcb_segment seg; 617 struct vmcb_state *state; 618 int error; 619 620 state = &vmcb->state; 621 622 if (state->efer & EFER_LMA) { 623 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 624 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, 625 error)); 626 627 /* 628 * Section 4.8.1 for APM2, check if Code Segment has 629 * Long attribute set in descriptor. 630 */ 631 if (seg.attrib & VMCB_CS_ATTRIB_L) 632 return (CPU_MODE_64BIT); 633 else 634 return (CPU_MODE_COMPATIBILITY); 635 } else if (state->cr0 & CR0_PE) { 636 return (CPU_MODE_PROTECTED); 637 } else { 638 return (CPU_MODE_REAL); 639 } 640 } 641 642 static enum vm_paging_mode 643 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 644 { 645 646 if ((cr0 & CR0_PG) == 0) 647 return (PAGING_MODE_FLAT); 648 if ((cr4 & CR4_PAE) == 0) 649 return (PAGING_MODE_32); 650 if (efer & EFER_LME) 651 return (PAGING_MODE_64); 652 else 653 return (PAGING_MODE_PAE); 654 } 655 656 /* 657 * ins/outs utility routines 658 */ 659 static uint64_t 660 svm_inout_str_index(struct svm_regctx *regs, int in) 661 { 662 uint64_t val; 663 664 val = in ? regs->sctx_rdi : regs->sctx_rsi; 665 666 return (val); 667 } 668 669 static uint64_t 670 svm_inout_str_count(struct svm_regctx *regs, int rep) 671 { 672 uint64_t val; 673 674 val = rep ? regs->sctx_rcx : 1; 675 676 return (val); 677 } 678 679 static void 680 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, 681 int in, struct vm_inout_str *vis) 682 { 683 int error, s; 684 685 if (in) { 686 vis->seg_name = VM_REG_GUEST_ES; 687 } else { 688 /* The segment field has standard encoding */ 689 s = (info1 >> 10) & 0x7; 690 vis->seg_name = vm_segment_name(s); 691 } 692 693 error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); 694 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); 695 } 696 697 static int 698 svm_inout_str_addrsize(uint64_t info1) 699 { 700 uint32_t size; 701 702 size = (info1 >> 7) & 0x7; 703 switch (size) { 704 case 1: 705 return (2); /* 16 bit */ 706 case 2: 707 return (4); /* 32 bit */ 708 case 4: 709 return (8); /* 64 bit */ 710 default: 711 panic("%s: invalid size encoding %d", __func__, size); 712 } 713 } 714 715 static void 716 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 717 { 718 struct vmcb_state *state; 719 720 state = &vmcb->state; 721 paging->cr3 = state->cr3; 722 paging->cpl = svm_cpl(state); 723 paging->cpu_mode = svm_vcpu_mode(vmcb); 724 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 725 state->efer); 726 } 727 728 #define UNHANDLED 0 729 730 /* 731 * Handle guest I/O intercept. 732 */ 733 static int 734 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 735 { 736 struct vmcb_ctrl *ctrl; 737 struct vmcb_state *state; 738 struct svm_regctx *regs; 739 struct vm_inout_str *vis; 740 uint64_t info1; 741 int inout_string; 742 743 state = svm_get_vmcb_state(svm_sc, vcpu); 744 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 745 regs = svm_get_guest_regctx(svm_sc, vcpu); 746 747 info1 = ctrl->exitinfo1; 748 inout_string = info1 & BIT(2) ? 1 : 0; 749 750 /* 751 * The effective segment number in EXITINFO1[12:10] is populated 752 * only if the processor has the DecodeAssist capability. 753 * 754 * XXX this is not specified explicitly in APMv2 but can be verified 755 * empirically. 756 */ 757 if (inout_string && !decode_assist()) 758 return (UNHANDLED); 759 760 vmexit->exitcode = VM_EXITCODE_INOUT; 761 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; 762 vmexit->u.inout.string = inout_string; 763 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; 764 vmexit->u.inout.bytes = (info1 >> 4) & 0x7; 765 vmexit->u.inout.port = (uint16_t)(info1 >> 16); 766 vmexit->u.inout.eax = (uint32_t)(state->rax); 767 768 if (inout_string) { 769 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 770 vis = &vmexit->u.inout_str; 771 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); 772 vis->rflags = state->rflags; 773 vis->cr0 = state->cr0; 774 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); 775 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); 776 vis->addrsize = svm_inout_str_addrsize(info1); 777 svm_inout_str_seginfo(svm_sc, vcpu, info1, 778 vmexit->u.inout.in, vis); 779 } 780 781 return (UNHANDLED); 782 } 783 784 static int 785 npf_fault_type(uint64_t exitinfo1) 786 { 787 788 if (exitinfo1 & VMCB_NPF_INFO1_W) 789 return (VM_PROT_WRITE); 790 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 791 return (VM_PROT_EXECUTE); 792 else 793 return (VM_PROT_READ); 794 } 795 796 static bool 797 svm_npf_emul_fault(uint64_t exitinfo1) 798 { 799 800 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 801 return (false); 802 } 803 804 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 805 return (false); 806 } 807 808 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 809 return (false); 810 } 811 812 return (true); 813 } 814 815 static void 816 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) 817 { 818 struct vm_guest_paging *paging; 819 struct vmcb_segment seg; 820 struct vmcb_ctrl *ctrl; 821 char *inst_bytes; 822 int error, inst_len; 823 824 ctrl = &vmcb->ctrl; 825 paging = &vmexit->u.inst_emul.paging; 826 827 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 828 vmexit->u.inst_emul.gpa = gpa; 829 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 830 svm_paging_info(vmcb, paging); 831 832 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 833 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); 834 835 switch(paging->cpu_mode) { 836 case CPU_MODE_REAL: 837 vmexit->u.inst_emul.cs_base = seg.base; 838 vmexit->u.inst_emul.cs_d = 0; 839 break; 840 case CPU_MODE_PROTECTED: 841 case CPU_MODE_COMPATIBILITY: 842 vmexit->u.inst_emul.cs_base = seg.base; 843 844 /* 845 * Section 4.8.1 of APM2, Default Operand Size or D bit. 846 */ 847 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 848 1 : 0; 849 break; 850 default: 851 vmexit->u.inst_emul.cs_base = 0; 852 vmexit->u.inst_emul.cs_d = 0; 853 break; 854 } 855 856 /* 857 * Copy the instruction bytes into 'vie' if available. 858 */ 859 if (decode_assist() && !disable_npf_assist) { 860 inst_len = ctrl->inst_len; 861 inst_bytes = ctrl->inst_bytes; 862 } else { 863 inst_len = 0; 864 inst_bytes = NULL; 865 } 866 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); 867 } 868 869 #ifdef KTR 870 static const char * 871 intrtype_to_str(int intr_type) 872 { 873 switch (intr_type) { 874 case VMCB_EVENTINJ_TYPE_INTR: 875 return ("hwintr"); 876 case VMCB_EVENTINJ_TYPE_NMI: 877 return ("nmi"); 878 case VMCB_EVENTINJ_TYPE_INTn: 879 return ("swintr"); 880 case VMCB_EVENTINJ_TYPE_EXCEPTION: 881 return ("exception"); 882 default: 883 panic("%s: unknown intr_type %d", __func__, intr_type); 884 } 885 } 886 #endif 887 888 /* 889 * Inject an event to vcpu as described in section 15.20, "Event injection". 890 */ 891 static void 892 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, 893 uint32_t error, bool ec_valid) 894 { 895 struct vmcb_ctrl *ctrl; 896 897 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 898 899 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, 900 ("%s: event already pending %#lx", __func__, ctrl->eventinj)); 901 902 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", 903 __func__, vector)); 904 905 switch (intr_type) { 906 case VMCB_EVENTINJ_TYPE_INTR: 907 case VMCB_EVENTINJ_TYPE_NMI: 908 case VMCB_EVENTINJ_TYPE_INTn: 909 break; 910 case VMCB_EVENTINJ_TYPE_EXCEPTION: 911 if (vector >= 0 && vector <= 31 && vector != 2) 912 break; 913 /* FALLTHROUGH */ 914 default: 915 panic("%s: invalid intr_type/vector: %d/%d", __func__, 916 intr_type, vector); 917 } 918 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; 919 if (ec_valid) { 920 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 921 ctrl->eventinj |= (uint64_t)error << 32; 922 VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", 923 intrtype_to_str(intr_type), vector, error); 924 } else { 925 VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", 926 intrtype_to_str(intr_type), vector); 927 } 928 } 929 930 static void 931 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 932 { 933 struct vm *vm; 934 struct vlapic *vlapic; 935 struct vmcb_ctrl *ctrl; 936 int pending; 937 938 vm = sc->vm; 939 vlapic = vm_lapic(vm, vcpu); 940 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 941 942 /* Update %cr8 in the emulated vlapic */ 943 vlapic_set_cr8(vlapic, ctrl->v_tpr); 944 945 /* 946 * If V_IRQ indicates that the interrupt injection attempted on then 947 * last VMRUN was successful then update the vlapic accordingly. 948 */ 949 if (ctrl->v_intr_vector != 0) { 950 pending = ctrl->v_irq; 951 KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid " 952 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 953 KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 954 VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector, 955 pending ? "pending" : "accepted"); 956 if (!pending) 957 vlapic_intr_accepted(vlapic, ctrl->v_intr_vector); 958 } 959 } 960 961 static void 962 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) 963 { 964 struct vmcb_ctrl *ctrl; 965 uint64_t intinfo; 966 967 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 968 intinfo = ctrl->exitintinfo; 969 if (!VMCB_EXITINTINFO_VALID(intinfo)) 970 return; 971 972 /* 973 * From APMv2, Section "Intercepts during IDT interrupt delivery" 974 * 975 * If a #VMEXIT happened during event delivery then record the event 976 * that was being delivered. 977 */ 978 VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", 979 intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); 980 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 981 vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); 982 } 983 984 static __inline int 985 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 986 { 987 988 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 989 VMCB_INTCPT_VINTR)); 990 } 991 992 static __inline void 993 enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 994 { 995 struct vmcb_ctrl *ctrl; 996 997 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 998 999 if (ctrl->v_irq && ctrl->v_intr_vector == 0) { 1000 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 1001 KASSERT(vintr_intercept_enabled(sc, vcpu), 1002 ("%s: vintr intercept should be enabled", __func__)); 1003 return; 1004 } 1005 1006 VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); 1007 ctrl->v_irq = 1; 1008 ctrl->v_ign_tpr = 1; 1009 ctrl->v_intr_vector = 0; 1010 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1011 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1012 } 1013 1014 static __inline void 1015 disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 1016 { 1017 struct vmcb_ctrl *ctrl; 1018 1019 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1020 1021 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { 1022 KASSERT(!vintr_intercept_enabled(sc, vcpu), 1023 ("%s: vintr intercept should be disabled", __func__)); 1024 return; 1025 } 1026 1027 #ifdef KTR 1028 if (ctrl->v_intr_vector == 0) 1029 VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); 1030 else 1031 VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection"); 1032 #endif 1033 ctrl->v_irq = 0; 1034 ctrl->v_intr_vector = 0; 1035 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1036 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1037 } 1038 1039 static int 1040 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val) 1041 { 1042 struct vmcb_ctrl *ctrl; 1043 int oldval, newval; 1044 1045 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1046 oldval = ctrl->intr_shadow; 1047 newval = val ? 1 : 0; 1048 if (newval != oldval) { 1049 ctrl->intr_shadow = newval; 1050 VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval); 1051 } 1052 return (0); 1053 } 1054 1055 static int 1056 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val) 1057 { 1058 struct vmcb_ctrl *ctrl; 1059 1060 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1061 *val = ctrl->intr_shadow; 1062 return (0); 1063 } 1064 1065 /* 1066 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1067 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1068 * to track when the vcpu is done handling the NMI. 1069 */ 1070 static int 1071 nmi_blocked(struct svm_softc *sc, int vcpu) 1072 { 1073 int blocked; 1074 1075 blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1076 VMCB_INTCPT_IRET); 1077 return (blocked); 1078 } 1079 1080 static void 1081 enable_nmi_blocking(struct svm_softc *sc, int vcpu) 1082 { 1083 1084 KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked")); 1085 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled"); 1086 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1087 } 1088 1089 static void 1090 clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1091 { 1092 int error; 1093 1094 KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1095 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared"); 1096 /* 1097 * When the IRET intercept is cleared the vcpu will attempt to execute 1098 * the "iret" when it runs next. However, it is possible to inject 1099 * another NMI into the vcpu before the "iret" has actually executed. 1100 * 1101 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1102 * it will trap back into the hypervisor. If an NMI is pending for 1103 * the vcpu it will be injected into the guest. 1104 * 1105 * XXX this needs to be fixed 1106 */ 1107 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1108 1109 /* 1110 * Set 'intr_shadow' to prevent an NMI from being injected on the 1111 * immediate VMRUN. 1112 */ 1113 error = svm_modify_intr_shadow(sc, vcpu, 1); 1114 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); 1115 } 1116 1117 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1118 1119 static int 1120 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu) 1121 { 1122 struct vm_exit *vme; 1123 struct vmcb_state *state; 1124 uint64_t changed, lma, oldval; 1125 int error; 1126 1127 state = svm_get_vmcb_state(sc, vcpu); 1128 1129 oldval = state->efer; 1130 VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval); 1131 1132 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1133 changed = oldval ^ newval; 1134 1135 if (newval & EFER_MBZ_BITS) 1136 goto gpf; 1137 1138 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1139 if (changed & EFER_LME) { 1140 if (state->cr0 & CR0_PG) 1141 goto gpf; 1142 } 1143 1144 /* EFER.LMA = EFER.LME & CR0.PG */ 1145 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) 1146 lma = EFER_LMA; 1147 else 1148 lma = 0; 1149 1150 if ((newval & EFER_LMA) != lma) 1151 goto gpf; 1152 1153 if (newval & EFER_NXE) { 1154 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) 1155 goto gpf; 1156 } 1157 1158 /* 1159 * XXX bhyve does not enforce segment limits in 64-bit mode. Until 1160 * this is fixed flag guest attempt to set EFER_LMSLE as an error. 1161 */ 1162 if (newval & EFER_LMSLE) { 1163 vme = vm_exitinfo(sc->vm, vcpu); 1164 vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0); 1165 *retu = true; 1166 return (0); 1167 } 1168 1169 if (newval & EFER_FFXSR) { 1170 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) 1171 goto gpf; 1172 } 1173 1174 if (newval & EFER_TCE) { 1175 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) 1176 goto gpf; 1177 } 1178 1179 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); 1180 KASSERT(error == 0, ("%s: error %d updating efer", __func__, error)); 1181 return (0); 1182 gpf: 1183 vm_inject_gp(sc->vm, vcpu); 1184 return (0); 1185 } 1186 1187 static int 1188 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val, 1189 bool *retu) 1190 { 1191 int error; 1192 1193 if (lapic_msr(num)) 1194 error = lapic_wrmsr(sc->vm, vcpu, num, val, retu); 1195 else if (num == MSR_EFER) 1196 error = svm_write_efer(sc, vcpu, val, retu); 1197 else 1198 error = svm_wrmsr(sc, vcpu, num, val, retu); 1199 1200 return (error); 1201 } 1202 1203 static int 1204 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu) 1205 { 1206 struct vmcb_state *state; 1207 struct svm_regctx *ctx; 1208 uint64_t result; 1209 int error; 1210 1211 if (lapic_msr(num)) 1212 error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu); 1213 else 1214 error = svm_rdmsr(sc, vcpu, num, &result, retu); 1215 1216 if (error == 0) { 1217 state = svm_get_vmcb_state(sc, vcpu); 1218 ctx = svm_get_guest_regctx(sc, vcpu); 1219 state->rax = result & 0xffffffff; 1220 ctx->sctx_rdx = result >> 32; 1221 } 1222 1223 return (error); 1224 } 1225 1226 #ifdef KTR 1227 static const char * 1228 exit_reason_to_str(uint64_t reason) 1229 { 1230 static char reasonbuf[32]; 1231 1232 switch (reason) { 1233 case VMCB_EXIT_INVALID: 1234 return ("invalvmcb"); 1235 case VMCB_EXIT_SHUTDOWN: 1236 return ("shutdown"); 1237 case VMCB_EXIT_NPF: 1238 return ("nptfault"); 1239 case VMCB_EXIT_PAUSE: 1240 return ("pause"); 1241 case VMCB_EXIT_HLT: 1242 return ("hlt"); 1243 case VMCB_EXIT_CPUID: 1244 return ("cpuid"); 1245 case VMCB_EXIT_IO: 1246 return ("inout"); 1247 case VMCB_EXIT_MC: 1248 return ("mchk"); 1249 case VMCB_EXIT_INTR: 1250 return ("extintr"); 1251 case VMCB_EXIT_NMI: 1252 return ("nmi"); 1253 case VMCB_EXIT_VINTR: 1254 return ("vintr"); 1255 case VMCB_EXIT_MSR: 1256 return ("msr"); 1257 case VMCB_EXIT_IRET: 1258 return ("iret"); 1259 case VMCB_EXIT_MONITOR: 1260 return ("monitor"); 1261 case VMCB_EXIT_MWAIT: 1262 return ("mwait"); 1263 default: 1264 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); 1265 return (reasonbuf); 1266 } 1267 } 1268 #endif /* KTR */ 1269 1270 /* 1271 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1272 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1273 * and exceptions caused by INT3, INTO and BOUND instructions. 1274 * 1275 * Return 1 if the nRIP is valid and 0 otherwise. 1276 */ 1277 static int 1278 nrip_valid(uint64_t exitcode) 1279 { 1280 switch (exitcode) { 1281 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1282 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1283 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1284 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1285 case 0x43: /* INT3 */ 1286 case 0x44: /* INTO */ 1287 case 0x45: /* BOUND */ 1288 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1289 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1290 return (1); 1291 default: 1292 return (0); 1293 } 1294 } 1295 1296 static int 1297 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1298 { 1299 struct vmcb *vmcb; 1300 struct vmcb_state *state; 1301 struct vmcb_ctrl *ctrl; 1302 struct svm_regctx *ctx; 1303 uint64_t code, info1, info2, val; 1304 uint32_t eax, ecx, edx; 1305 int error, errcode_valid, handled, idtvec, reflect; 1306 bool retu; 1307 1308 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1309 vmcb = svm_get_vmcb(svm_sc, vcpu); 1310 state = &vmcb->state; 1311 ctrl = &vmcb->ctrl; 1312 1313 handled = 0; 1314 code = ctrl->exitcode; 1315 info1 = ctrl->exitinfo1; 1316 info2 = ctrl->exitinfo2; 1317 1318 vmexit->exitcode = VM_EXITCODE_BOGUS; 1319 vmexit->rip = state->rip; 1320 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1321 1322 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1323 1324 /* 1325 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1326 * in an inconsistent state and can trigger assertions that would 1327 * never happen otherwise. 1328 */ 1329 if (code == VMCB_EXIT_INVALID) { 1330 vm_exit_svm(vmexit, code, info1, info2); 1331 return (0); 1332 } 1333 1334 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1335 "injection valid bit is set %#lx", __func__, ctrl->eventinj)); 1336 1337 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1338 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", 1339 vmexit->inst_length, code, info1, info2)); 1340 1341 svm_update_virqinfo(svm_sc, vcpu); 1342 svm_save_intinfo(svm_sc, vcpu); 1343 1344 switch (code) { 1345 case VMCB_EXIT_IRET: 1346 /* 1347 * Restart execution at "iret" but with the intercept cleared. 1348 */ 1349 vmexit->inst_length = 0; 1350 clear_nmi_blocking(svm_sc, vcpu); 1351 handled = 1; 1352 break; 1353 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1354 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1355 handled = 1; 1356 break; 1357 case VMCB_EXIT_INTR: /* external interrupt */ 1358 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1359 handled = 1; 1360 break; 1361 case VMCB_EXIT_NMI: /* external NMI */ 1362 handled = 1; 1363 break; 1364 case 0x40 ... 0x5F: 1365 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1366 reflect = 1; 1367 idtvec = code - 0x40; 1368 switch (idtvec) { 1369 case IDT_MC: 1370 /* 1371 * Call the machine check handler by hand. Also don't 1372 * reflect the machine check back into the guest. 1373 */ 1374 reflect = 0; 1375 VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler"); 1376 __asm __volatile("int $18"); 1377 break; 1378 case IDT_PF: 1379 error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1380 info2); 1381 KASSERT(error == 0, ("%s: error %d updating cr2", 1382 __func__, error)); 1383 /* fallthru */ 1384 case IDT_NP: 1385 case IDT_SS: 1386 case IDT_GP: 1387 case IDT_AC: 1388 case IDT_TS: 1389 errcode_valid = 1; 1390 break; 1391 1392 case IDT_DF: 1393 errcode_valid = 1; 1394 info1 = 0; 1395 break; 1396 1397 case IDT_BP: 1398 case IDT_OF: 1399 case IDT_BR: 1400 /* 1401 * The 'nrip' field is populated for INT3, INTO and 1402 * BOUND exceptions and this also implies that 1403 * 'inst_length' is non-zero. 1404 * 1405 * Reset 'inst_length' to zero so the guest %rip at 1406 * event injection is identical to what it was when 1407 * the exception originally happened. 1408 */ 1409 VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d " 1410 "to zero before injecting exception %d", 1411 vmexit->inst_length, idtvec); 1412 vmexit->inst_length = 0; 1413 /* fallthru */ 1414 default: 1415 errcode_valid = 0; 1416 info1 = 0; 1417 break; 1418 } 1419 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " 1420 "when reflecting exception %d into guest", 1421 vmexit->inst_length, idtvec)); 1422 1423 if (reflect) { 1424 /* Reflect the exception back into the guest */ 1425 VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception " 1426 "%d/%#x into the guest", idtvec, (int)info1); 1427 error = vm_inject_exception(svm_sc->vm, vcpu, idtvec, 1428 errcode_valid, info1, 0); 1429 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 1430 __func__, error)); 1431 } 1432 handled = 1; 1433 break; 1434 case VMCB_EXIT_MSR: /* MSR access. */ 1435 eax = state->rax; 1436 ecx = ctx->sctx_rcx; 1437 edx = ctx->sctx_rdx; 1438 retu = false; 1439 1440 if (info1) { 1441 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1442 val = (uint64_t)edx << 32 | eax; 1443 VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx", 1444 ecx, val); 1445 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { 1446 vmexit->exitcode = VM_EXITCODE_WRMSR; 1447 vmexit->u.msr.code = ecx; 1448 vmexit->u.msr.wval = val; 1449 } else if (!retu) { 1450 handled = 1; 1451 } else { 1452 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1453 ("emulate_wrmsr retu with bogus exitcode")); 1454 } 1455 } else { 1456 VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx); 1457 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1458 if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) { 1459 vmexit->exitcode = VM_EXITCODE_RDMSR; 1460 vmexit->u.msr.code = ecx; 1461 } else if (!retu) { 1462 handled = 1; 1463 } else { 1464 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1465 ("emulate_rdmsr retu with bogus exitcode")); 1466 } 1467 } 1468 break; 1469 case VMCB_EXIT_IO: 1470 handled = svm_handle_io(svm_sc, vcpu, vmexit); 1471 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1472 break; 1473 case VMCB_EXIT_CPUID: 1474 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1475 handled = x86_emulate_cpuid(svm_sc->vm, vcpu, 1476 (uint32_t *)&state->rax, 1477 (uint32_t *)&ctx->sctx_rbx, 1478 (uint32_t *)&ctx->sctx_rcx, 1479 (uint32_t *)&ctx->sctx_rdx); 1480 break; 1481 case VMCB_EXIT_HLT: 1482 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1483 vmexit->exitcode = VM_EXITCODE_HLT; 1484 vmexit->u.hlt.rflags = state->rflags; 1485 break; 1486 case VMCB_EXIT_PAUSE: 1487 vmexit->exitcode = VM_EXITCODE_PAUSE; 1488 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1489 break; 1490 case VMCB_EXIT_NPF: 1491 /* EXITINFO2 contains the faulting guest physical address */ 1492 if (info1 & VMCB_NPF_INFO1_RSV) { 1493 VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " 1494 "reserved bits set: info1(%#lx) info2(%#lx)", 1495 info1, info2); 1496 } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { 1497 vmexit->exitcode = VM_EXITCODE_PAGING; 1498 vmexit->u.paging.gpa = info2; 1499 vmexit->u.paging.fault_type = npf_fault_type(info1); 1500 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1501 VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " 1502 "on gpa %#lx/%#lx at rip %#lx", 1503 info2, info1, state->rip); 1504 } else if (svm_npf_emul_fault(info1)) { 1505 svm_handle_inst_emul(vmcb, info2, vmexit); 1506 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); 1507 VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " 1508 "for gpa %#lx/%#lx at rip %#lx", 1509 info2, info1, state->rip); 1510 } 1511 break; 1512 case VMCB_EXIT_MONITOR: 1513 vmexit->exitcode = VM_EXITCODE_MONITOR; 1514 break; 1515 case VMCB_EXIT_MWAIT: 1516 vmexit->exitcode = VM_EXITCODE_MWAIT; 1517 break; 1518 default: 1519 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1520 break; 1521 } 1522 1523 VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d", 1524 handled ? "handled" : "unhandled", exit_reason_to_str(code), 1525 vmexit->rip, vmexit->inst_length); 1526 1527 if (handled) { 1528 vmexit->rip += vmexit->inst_length; 1529 vmexit->inst_length = 0; 1530 state->rip = vmexit->rip; 1531 } else { 1532 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1533 /* 1534 * If this VM exit was not claimed by anybody then 1535 * treat it as a generic SVM exit. 1536 */ 1537 vm_exit_svm(vmexit, code, info1, info2); 1538 } else { 1539 /* 1540 * The exitcode and collateral have been populated. 1541 * The VM exit will be processed further in userland. 1542 */ 1543 } 1544 } 1545 return (handled); 1546 } 1547 1548 static void 1549 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) 1550 { 1551 uint64_t intinfo; 1552 1553 if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) 1554 return; 1555 1556 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " 1557 "valid: %#lx", __func__, intinfo)); 1558 1559 svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), 1560 VMCB_EXITINTINFO_VECTOR(intinfo), 1561 VMCB_EXITINTINFO_EC(intinfo), 1562 VMCB_EXITINTINFO_EC_VALID(intinfo)); 1563 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1564 VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); 1565 } 1566 1567 /* 1568 * Inject event to virtual cpu. 1569 */ 1570 static void 1571 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) 1572 { 1573 struct vmcb_ctrl *ctrl; 1574 struct vmcb_state *state; 1575 struct svm_vcpu *vcpustate; 1576 uint8_t v_tpr; 1577 int vector, need_intr_window, pending_apic_vector; 1578 1579 state = svm_get_vmcb_state(sc, vcpu); 1580 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1581 vcpustate = svm_get_vcpu(sc, vcpu); 1582 1583 need_intr_window = 0; 1584 pending_apic_vector = 0; 1585 1586 if (vcpustate->nextrip != state->rip) { 1587 ctrl->intr_shadow = 0; 1588 VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking " 1589 "cleared due to rip change: %#lx/%#lx", 1590 vcpustate->nextrip, state->rip); 1591 } 1592 1593 /* 1594 * Inject pending events or exceptions for this vcpu. 1595 * 1596 * An event might be pending because the previous #VMEXIT happened 1597 * during event delivery (i.e. ctrl->exitintinfo). 1598 * 1599 * An event might also be pending because an exception was injected 1600 * by the hypervisor (e.g. #PF during instruction emulation). 1601 */ 1602 svm_inj_intinfo(sc, vcpu); 1603 1604 /* NMI event has priority over interrupts. */ 1605 if (vm_nmi_pending(sc->vm, vcpu)) { 1606 if (nmi_blocked(sc, vcpu)) { 1607 /* 1608 * Can't inject another NMI if the guest has not 1609 * yet executed an "iret" after the last NMI. 1610 */ 1611 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " 1612 "to NMI-blocking"); 1613 } else if (ctrl->intr_shadow) { 1614 /* 1615 * Can't inject an NMI if the vcpu is in an intr_shadow. 1616 */ 1617 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to " 1618 "interrupt shadow"); 1619 need_intr_window = 1; 1620 goto done; 1621 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1622 /* 1623 * If there is already an exception/interrupt pending 1624 * then defer the NMI until after that. 1625 */ 1626 VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " 1627 "eventinj %#lx", ctrl->eventinj); 1628 1629 /* 1630 * Use self-IPI to trigger a VM-exit as soon as 1631 * possible after the event injection is completed. 1632 * 1633 * This works only if the external interrupt exiting 1634 * is at a lower priority than the event injection. 1635 * 1636 * Although not explicitly specified in APMv2 the 1637 * relative priorities were verified empirically. 1638 */ 1639 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ 1640 } else { 1641 vm_nmi_clear(sc->vm, vcpu); 1642 1643 /* Inject NMI, vector number is not used */ 1644 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, 1645 IDT_NMI, 0, false); 1646 1647 /* virtual NMI blocking is now in effect */ 1648 enable_nmi_blocking(sc, vcpu); 1649 1650 VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); 1651 } 1652 } 1653 1654 if (!vm_extint_pending(sc->vm, vcpu)) { 1655 /* 1656 * APIC interrupts are delivered using the V_IRQ offload. 1657 * 1658 * The primary benefit is that the hypervisor doesn't need to 1659 * deal with the various conditions that inhibit interrupts. 1660 * It also means that TPR changes via CR8 will be handled 1661 * without any hypervisor involvement. 1662 * 1663 * Note that the APIC vector must remain pending in the vIRR 1664 * until it is confirmed that it was delivered to the guest. 1665 * This can be confirmed based on the value of V_IRQ at the 1666 * next #VMEXIT (1 = pending, 0 = delivered). 1667 * 1668 * Also note that it is possible that another higher priority 1669 * vector can become pending before this vector is delivered 1670 * to the guest. This is alright because vcpu_notify_event() 1671 * will send an IPI and force the vcpu to trap back into the 1672 * hypervisor. The higher priority vector will be injected on 1673 * the next VMRUN. 1674 */ 1675 if (vlapic_pending_intr(vlapic, &vector)) { 1676 KASSERT(vector >= 16 && vector <= 255, 1677 ("invalid vector %d from local APIC", vector)); 1678 pending_apic_vector = vector; 1679 } 1680 goto done; 1681 } 1682 1683 /* Ask the legacy pic for a vector to inject */ 1684 vatpic_pending_intr(sc->vm, &vector); 1685 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR", 1686 vector)); 1687 1688 /* 1689 * If the guest has disabled interrupts or is in an interrupt shadow 1690 * then we cannot inject the pending interrupt. 1691 */ 1692 if ((state->rflags & PSL_I) == 0) { 1693 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1694 "rflags %#lx", vector, state->rflags); 1695 need_intr_window = 1; 1696 goto done; 1697 } 1698 1699 if (ctrl->intr_shadow) { 1700 VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " 1701 "interrupt shadow", vector); 1702 need_intr_window = 1; 1703 goto done; 1704 } 1705 1706 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1707 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1708 "eventinj %#lx", vector, ctrl->eventinj); 1709 need_intr_window = 1; 1710 goto done; 1711 } 1712 1713 /* 1714 * Legacy PIC interrupts are delivered via the event injection 1715 * mechanism. 1716 */ 1717 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); 1718 1719 vm_extint_clear(sc->vm, vcpu); 1720 vatpic_intr_accepted(sc->vm, vector); 1721 1722 /* 1723 * Force a VM-exit as soon as the vcpu is ready to accept another 1724 * interrupt. This is done because the PIC might have another vector 1725 * that it wants to inject. Also, if the APIC has a pending interrupt 1726 * that was preempted by the ExtInt then it allows us to inject the 1727 * APIC vector as soon as possible. 1728 */ 1729 need_intr_window = 1; 1730 done: 1731 /* 1732 * The guest can modify the TPR by writing to %CR8. In guest mode 1733 * the processor reflects this write to V_TPR without hypervisor 1734 * intervention. 1735 * 1736 * The guest can also modify the TPR by writing to it via the memory 1737 * mapped APIC page. In this case, the write will be emulated by the 1738 * hypervisor. For this reason V_TPR must be updated before every 1739 * VMRUN. 1740 */ 1741 v_tpr = vlapic_get_cr8(vlapic); 1742 KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); 1743 if (ctrl->v_tpr != v_tpr) { 1744 VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x", 1745 ctrl->v_tpr, v_tpr); 1746 ctrl->v_tpr = v_tpr; 1747 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1748 } 1749 1750 if (pending_apic_vector) { 1751 /* 1752 * If an APIC vector is being injected then interrupt window 1753 * exiting is not possible on this VMRUN. 1754 */ 1755 KASSERT(!need_intr_window, ("intr_window exiting impossible")); 1756 VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ", 1757 pending_apic_vector); 1758 1759 ctrl->v_irq = 1; 1760 ctrl->v_ign_tpr = 0; 1761 ctrl->v_intr_vector = pending_apic_vector; 1762 ctrl->v_intr_prio = pending_apic_vector >> 4; 1763 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1764 } else if (need_intr_window) { 1765 /* 1766 * We use V_IRQ in conjunction with the VINTR intercept to 1767 * trap into the hypervisor as soon as a virtual interrupt 1768 * can be delivered. 1769 * 1770 * Since injected events are not subject to intercept checks 1771 * we need to ensure that the V_IRQ is not actually going to 1772 * be delivered on VM entry. The KASSERT below enforces this. 1773 */ 1774 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1775 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, 1776 ("Bogus intr_window_exiting: eventinj (%#lx), " 1777 "intr_shadow (%u), rflags (%#lx)", 1778 ctrl->eventinj, ctrl->intr_shadow, state->rflags)); 1779 enable_intr_window_exiting(sc, vcpu); 1780 } else { 1781 disable_intr_window_exiting(sc, vcpu); 1782 } 1783 } 1784 1785 static __inline void 1786 restore_host_tss(void) 1787 { 1788 struct system_segment_descriptor *tss_sd; 1789 1790 /* 1791 * The TSS descriptor was in use prior to launching the guest so it 1792 * has been marked busy. 1793 * 1794 * 'ltr' requires the descriptor to be marked available so change the 1795 * type to "64-bit available TSS". 1796 */ 1797 tss_sd = PCPU_GET(tss); 1798 tss_sd->sd_type = SDT_SYSTSS; 1799 ltr(GSEL(GPROC0_SEL, SEL_KPL)); 1800 } 1801 1802 static void 1803 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu) 1804 { 1805 struct svm_vcpu *vcpustate; 1806 struct vmcb_ctrl *ctrl; 1807 long eptgen; 1808 bool alloc_asid; 1809 1810 KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not " 1811 "active on cpu %u", __func__, thiscpu)); 1812 1813 vcpustate = svm_get_vcpu(sc, vcpuid); 1814 ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1815 1816 /* 1817 * The TLB entries associated with the vcpu's ASID are not valid 1818 * if either of the following conditions is true: 1819 * 1820 * 1. The vcpu's ASID generation is different than the host cpu's 1821 * ASID generation. This happens when the vcpu migrates to a new 1822 * host cpu. It can also happen when the number of vcpus executing 1823 * on a host cpu is greater than the number of ASIDs available. 1824 * 1825 * 2. The pmap generation number is different than the value cached in 1826 * the 'vcpustate'. This happens when the host invalidates pages 1827 * belonging to the guest. 1828 * 1829 * asidgen eptgen Action 1830 * mismatch mismatch 1831 * 0 0 (a) 1832 * 0 1 (b1) or (b2) 1833 * 1 0 (c) 1834 * 1 1 (d) 1835 * 1836 * (a) There is no mismatch in eptgen or ASID generation and therefore 1837 * no further action is needed. 1838 * 1839 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is 1840 * retained and the TLB entries associated with this ASID 1841 * are flushed by VMRUN. 1842 * 1843 * (b2) If the cpu does not support FlushByAsid then a new ASID is 1844 * allocated. 1845 * 1846 * (c) A new ASID is allocated. 1847 * 1848 * (d) A new ASID is allocated. 1849 */ 1850 1851 alloc_asid = false; 1852 eptgen = pmap->pm_eptgen; 1853 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; 1854 1855 if (vcpustate->asid.gen != asid[thiscpu].gen) { 1856 alloc_asid = true; /* (c) and (d) */ 1857 } else if (vcpustate->eptgen != eptgen) { 1858 if (flush_by_asid()) 1859 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ 1860 else 1861 alloc_asid = true; /* (b2) */ 1862 } else { 1863 /* 1864 * This is the common case (a). 1865 */ 1866 KASSERT(!alloc_asid, ("ASID allocation not necessary")); 1867 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, 1868 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); 1869 } 1870 1871 if (alloc_asid) { 1872 if (++asid[thiscpu].num >= nasid) { 1873 asid[thiscpu].num = 1; 1874 if (++asid[thiscpu].gen == 0) 1875 asid[thiscpu].gen = 1; 1876 /* 1877 * If this cpu does not support "flush-by-asid" 1878 * then flush the entire TLB on a generation 1879 * bump. Subsequent ASID allocation in this 1880 * generation can be done without a TLB flush. 1881 */ 1882 if (!flush_by_asid()) 1883 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; 1884 } 1885 vcpustate->asid.gen = asid[thiscpu].gen; 1886 vcpustate->asid.num = asid[thiscpu].num; 1887 1888 ctrl->asid = vcpustate->asid.num; 1889 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1890 /* 1891 * If this cpu supports "flush-by-asid" then the TLB 1892 * was not flushed after the generation bump. The TLB 1893 * is flushed selectively after every new ASID allocation. 1894 */ 1895 if (flush_by_asid()) 1896 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; 1897 } 1898 vcpustate->eptgen = eptgen; 1899 1900 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); 1901 KASSERT(ctrl->asid == vcpustate->asid.num, 1902 ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); 1903 } 1904 1905 static __inline void 1906 disable_gintr(void) 1907 { 1908 1909 __asm __volatile("clgi"); 1910 } 1911 1912 static __inline void 1913 enable_gintr(void) 1914 { 1915 1916 __asm __volatile("stgi"); 1917 } 1918 1919 static __inline void 1920 svm_dr_enter_guest(struct svm_regctx *gctx) 1921 { 1922 1923 /* Save host control debug registers. */ 1924 gctx->host_dr7 = rdr7(); 1925 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 1926 1927 /* 1928 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 1929 * exceptions in the host based on the guest DRx values. The 1930 * guest DR6, DR7, and DEBUGCTL are saved/restored in the 1931 * VMCB. 1932 */ 1933 load_dr7(0); 1934 wrmsr(MSR_DEBUGCTLMSR, 0); 1935 1936 /* Save host debug registers. */ 1937 gctx->host_dr0 = rdr0(); 1938 gctx->host_dr1 = rdr1(); 1939 gctx->host_dr2 = rdr2(); 1940 gctx->host_dr3 = rdr3(); 1941 gctx->host_dr6 = rdr6(); 1942 1943 /* Restore guest debug registers. */ 1944 load_dr0(gctx->sctx_dr0); 1945 load_dr1(gctx->sctx_dr1); 1946 load_dr2(gctx->sctx_dr2); 1947 load_dr3(gctx->sctx_dr3); 1948 } 1949 1950 static __inline void 1951 svm_dr_leave_guest(struct svm_regctx *gctx) 1952 { 1953 1954 /* Save guest debug registers. */ 1955 gctx->sctx_dr0 = rdr0(); 1956 gctx->sctx_dr1 = rdr1(); 1957 gctx->sctx_dr2 = rdr2(); 1958 gctx->sctx_dr3 = rdr3(); 1959 1960 /* 1961 * Restore host debug registers. Restore DR7 and DEBUGCTL 1962 * last. 1963 */ 1964 load_dr0(gctx->host_dr0); 1965 load_dr1(gctx->host_dr1); 1966 load_dr2(gctx->host_dr2); 1967 load_dr3(gctx->host_dr3); 1968 load_dr6(gctx->host_dr6); 1969 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); 1970 load_dr7(gctx->host_dr7); 1971 } 1972 1973 /* 1974 * Start vcpu with specified RIP. 1975 */ 1976 static int 1977 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, 1978 struct vm_eventinfo *evinfo) 1979 { 1980 struct svm_regctx *gctx; 1981 struct svm_softc *svm_sc; 1982 struct svm_vcpu *vcpustate; 1983 struct vmcb_state *state; 1984 struct vmcb_ctrl *ctrl; 1985 struct vm_exit *vmexit; 1986 struct vlapic *vlapic; 1987 struct vm *vm; 1988 uint64_t vmcb_pa; 1989 int handled; 1990 1991 svm_sc = arg; 1992 vm = svm_sc->vm; 1993 1994 vcpustate = svm_get_vcpu(svm_sc, vcpu); 1995 state = svm_get_vmcb_state(svm_sc, vcpu); 1996 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 1997 vmexit = vm_exitinfo(vm, vcpu); 1998 vlapic = vm_lapic(vm, vcpu); 1999 2000 gctx = svm_get_guest_regctx(svm_sc, vcpu); 2001 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 2002 2003 if (vcpustate->lastcpu != curcpu) { 2004 /* 2005 * Force new ASID allocation by invalidating the generation. 2006 */ 2007 vcpustate->asid.gen = 0; 2008 2009 /* 2010 * Invalidate the VMCB state cache by marking all fields dirty. 2011 */ 2012 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 2013 2014 /* 2015 * XXX 2016 * Setting 'vcpustate->lastcpu' here is bit premature because 2017 * we may return from this function without actually executing 2018 * the VMRUN instruction. This could happen if a rendezvous 2019 * or an AST is pending on the first time through the loop. 2020 * 2021 * This works for now but any new side-effects of vcpu 2022 * migration should take this case into account. 2023 */ 2024 vcpustate->lastcpu = curcpu; 2025 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 2026 } 2027 2028 svm_msr_guest_enter(svm_sc, vcpu); 2029 2030 /* Update Guest RIP */ 2031 state->rip = rip; 2032 2033 do { 2034 /* 2035 * Disable global interrupts to guarantee atomicity during 2036 * loading of guest state. This includes not only the state 2037 * loaded by the "vmrun" instruction but also software state 2038 * maintained by the hypervisor: suspended and rendezvous 2039 * state, NPT generation number, vlapic interrupts etc. 2040 */ 2041 disable_gintr(); 2042 2043 if (vcpu_suspended(evinfo)) { 2044 enable_gintr(); 2045 vm_exit_suspended(vm, vcpu, state->rip); 2046 break; 2047 } 2048 2049 if (vcpu_rendezvous_pending(evinfo)) { 2050 enable_gintr(); 2051 vm_exit_rendezvous(vm, vcpu, state->rip); 2052 break; 2053 } 2054 2055 if (vcpu_reqidle(evinfo)) { 2056 enable_gintr(); 2057 vm_exit_reqidle(vm, vcpu, state->rip); 2058 break; 2059 } 2060 2061 /* We are asked to give the cpu by scheduler. */ 2062 if (vcpu_should_yield(vm, vcpu)) { 2063 enable_gintr(); 2064 vm_exit_astpending(vm, vcpu, state->rip); 2065 break; 2066 } 2067 2068 svm_inj_interrupts(svm_sc, vcpu, vlapic); 2069 2070 /* Activate the nested pmap on 'curcpu' */ 2071 CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active); 2072 2073 /* 2074 * Check the pmap generation and the ASID generation to 2075 * ensure that the vcpu does not use stale TLB mappings. 2076 */ 2077 check_asid(svm_sc, vcpu, pmap, curcpu); 2078 2079 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 2080 vcpustate->dirty = 0; 2081 VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); 2082 2083 /* Launch Virtual Machine. */ 2084 VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); 2085 svm_dr_enter_guest(gctx); 2086 svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]); 2087 svm_dr_leave_guest(gctx); 2088 2089 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 2090 2091 /* 2092 * The host GDTR and IDTR is saved by VMRUN and restored 2093 * automatically on #VMEXIT. However, the host TSS needs 2094 * to be restored explicitly. 2095 */ 2096 restore_host_tss(); 2097 2098 /* #VMEXIT disables interrupts so re-enable them here. */ 2099 enable_gintr(); 2100 2101 /* Update 'nextrip' */ 2102 vcpustate->nextrip = state->rip; 2103 2104 /* Handle #VMEXIT and if required return to user space. */ 2105 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2106 } while (handled); 2107 2108 svm_msr_guest_exit(svm_sc, vcpu); 2109 2110 return (0); 2111 } 2112 2113 static void 2114 svm_vmcleanup(void *arg) 2115 { 2116 struct svm_softc *sc = arg; 2117 2118 contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM); 2119 contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM); 2120 free(sc, M_SVM); 2121 } 2122 2123 static register_t * 2124 swctx_regptr(struct svm_regctx *regctx, int reg) 2125 { 2126 2127 switch (reg) { 2128 case VM_REG_GUEST_RBX: 2129 return (®ctx->sctx_rbx); 2130 case VM_REG_GUEST_RCX: 2131 return (®ctx->sctx_rcx); 2132 case VM_REG_GUEST_RDX: 2133 return (®ctx->sctx_rdx); 2134 case VM_REG_GUEST_RDI: 2135 return (®ctx->sctx_rdi); 2136 case VM_REG_GUEST_RSI: 2137 return (®ctx->sctx_rsi); 2138 case VM_REG_GUEST_RBP: 2139 return (®ctx->sctx_rbp); 2140 case VM_REG_GUEST_R8: 2141 return (®ctx->sctx_r8); 2142 case VM_REG_GUEST_R9: 2143 return (®ctx->sctx_r9); 2144 case VM_REG_GUEST_R10: 2145 return (®ctx->sctx_r10); 2146 case VM_REG_GUEST_R11: 2147 return (®ctx->sctx_r11); 2148 case VM_REG_GUEST_R12: 2149 return (®ctx->sctx_r12); 2150 case VM_REG_GUEST_R13: 2151 return (®ctx->sctx_r13); 2152 case VM_REG_GUEST_R14: 2153 return (®ctx->sctx_r14); 2154 case VM_REG_GUEST_R15: 2155 return (®ctx->sctx_r15); 2156 case VM_REG_GUEST_DR0: 2157 return (®ctx->sctx_dr0); 2158 case VM_REG_GUEST_DR1: 2159 return (®ctx->sctx_dr1); 2160 case VM_REG_GUEST_DR2: 2161 return (®ctx->sctx_dr2); 2162 case VM_REG_GUEST_DR3: 2163 return (®ctx->sctx_dr3); 2164 default: 2165 return (NULL); 2166 } 2167 } 2168 2169 static int 2170 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2171 { 2172 struct svm_softc *svm_sc; 2173 register_t *reg; 2174 2175 svm_sc = arg; 2176 2177 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2178 return (svm_get_intr_shadow(svm_sc, vcpu, val)); 2179 } 2180 2181 if (vmcb_read(svm_sc, vcpu, ident, val) == 0) { 2182 return (0); 2183 } 2184 2185 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2186 2187 if (reg != NULL) { 2188 *val = *reg; 2189 return (0); 2190 } 2191 2192 VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident); 2193 return (EINVAL); 2194 } 2195 2196 static int 2197 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2198 { 2199 struct svm_softc *svm_sc; 2200 register_t *reg; 2201 2202 svm_sc = arg; 2203 2204 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2205 return (svm_modify_intr_shadow(svm_sc, vcpu, val)); 2206 } 2207 2208 if (vmcb_write(svm_sc, vcpu, ident, val) == 0) { 2209 return (0); 2210 } 2211 2212 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2213 2214 if (reg != NULL) { 2215 *reg = val; 2216 return (0); 2217 } 2218 2219 /* 2220 * XXX deal with CR3 and invalidate TLB entries tagged with the 2221 * vcpu's ASID. This needs to be treated differently depending on 2222 * whether 'running' is true/false. 2223 */ 2224 2225 VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident); 2226 return (EINVAL); 2227 } 2228 2229 static int 2230 svm_setcap(void *arg, int vcpu, int type, int val) 2231 { 2232 struct svm_softc *sc; 2233 int error; 2234 2235 sc = arg; 2236 error = 0; 2237 switch (type) { 2238 case VM_CAP_HALT_EXIT: 2239 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2240 VMCB_INTCPT_HLT, val); 2241 break; 2242 case VM_CAP_PAUSE_EXIT: 2243 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2244 VMCB_INTCPT_PAUSE, val); 2245 break; 2246 case VM_CAP_UNRESTRICTED_GUEST: 2247 /* Unrestricted guest execution cannot be disabled in SVM */ 2248 if (val == 0) 2249 error = EINVAL; 2250 break; 2251 default: 2252 error = ENOENT; 2253 break; 2254 } 2255 return (error); 2256 } 2257 2258 static int 2259 svm_getcap(void *arg, int vcpu, int type, int *retval) 2260 { 2261 struct svm_softc *sc; 2262 int error; 2263 2264 sc = arg; 2265 error = 0; 2266 2267 switch (type) { 2268 case VM_CAP_HALT_EXIT: 2269 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2270 VMCB_INTCPT_HLT); 2271 break; 2272 case VM_CAP_PAUSE_EXIT: 2273 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2274 VMCB_INTCPT_PAUSE); 2275 break; 2276 case VM_CAP_UNRESTRICTED_GUEST: 2277 *retval = 1; /* unrestricted guest is always enabled */ 2278 break; 2279 default: 2280 error = ENOENT; 2281 break; 2282 } 2283 return (error); 2284 } 2285 2286 static struct vlapic * 2287 svm_vlapic_init(void *arg, int vcpuid) 2288 { 2289 struct svm_softc *svm_sc; 2290 struct vlapic *vlapic; 2291 2292 svm_sc = arg; 2293 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); 2294 vlapic->vm = svm_sc->vm; 2295 vlapic->vcpuid = vcpuid; 2296 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2297 2298 vlapic_init(vlapic); 2299 2300 return (vlapic); 2301 } 2302 2303 static void 2304 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2305 { 2306 2307 vlapic_cleanup(vlapic); 2308 free(vlapic, M_SVM_VLAPIC); 2309 } 2310 2311 struct vmm_ops vmm_ops_amd = { 2312 svm_init, 2313 svm_cleanup, 2314 svm_restore, 2315 svm_vminit, 2316 svm_vmrun, 2317 svm_vmcleanup, 2318 svm_getreg, 2319 svm_setreg, 2320 vmcb_getdesc, 2321 vmcb_setdesc, 2322 svm_getcap, 2323 svm_setcap, 2324 svm_npt_alloc, 2325 svm_npt_free, 2326 svm_vlapic_init, 2327 svm_vlapic_cleanup 2328 }; 2329