xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 98e0ffaefb0f241cda3a72395d3be04192ae0d47)
1 /*-
2  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/cpufunc.h>
43 #include <machine/psl.h>
44 #include <machine/pmap.h>
45 #include <machine/md_var.h>
46 #include <machine/specialreg.h>
47 #include <machine/smp.h>
48 #include <machine/vmm.h>
49 #include <machine/vmm_dev.h>
50 #include <machine/vmm_instruction_emul.h>
51 
52 #include "vmm_lapic.h"
53 #include "vmm_stat.h"
54 #include "vmm_ktr.h"
55 #include "vmm_ioport.h"
56 #include "vatpic.h"
57 #include "vlapic.h"
58 #include "vlapic_priv.h"
59 
60 #include "x86.h"
61 #include "vmcb.h"
62 #include "svm.h"
63 #include "svm_softc.h"
64 #include "svm_msr.h"
65 #include "npt.h"
66 
67 SYSCTL_DECL(_hw_vmm);
68 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
69 
70 /*
71  * SVM CPUID function 0x8000_000A, edx bit decoding.
72  */
73 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
74 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
75 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
76 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
77 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
78 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
79 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
80 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
81 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
82 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
83 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
84 
85 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
86 				VMCB_CACHE_IOPM		|	\
87 				VMCB_CACHE_I		|	\
88 				VMCB_CACHE_TPR		|	\
89 				VMCB_CACHE_CR2		|	\
90 				VMCB_CACHE_CR		|	\
91 				VMCB_CACHE_DT		|	\
92 				VMCB_CACHE_SEG		|	\
93 				VMCB_CACHE_NP)
94 
95 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
96 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
97     0, NULL);
98 
99 static MALLOC_DEFINE(M_SVM, "svm", "svm");
100 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
101 
102 /* Per-CPU context area. */
103 extern struct pcpu __pcpu[];
104 
105 static uint32_t svm_feature;	/* AMD SVM features. */
106 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
107     "SVM features advertised by CPUID.8000000AH:EDX");
108 
109 static int disable_npf_assist;
110 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111     &disable_npf_assist, 0, NULL);
112 
113 /* Maximum ASIDs supported by the processor */
114 static uint32_t nasid;
115 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
116     "Number of ASIDs supported by this processor");
117 
118 /* Current ASID generation for each host cpu */
119 static struct asid asid[MAXCPU];
120 
121 /*
122  * SVM host state saved area of size 4KB for each core.
123  */
124 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129 
130 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131 
132 static __inline int
133 flush_by_asid(void)
134 {
135 
136 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137 }
138 
139 static __inline int
140 decode_assist(void)
141 {
142 
143 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144 }
145 
146 static void
147 svm_disable(void *arg __unused)
148 {
149 	uint64_t efer;
150 
151 	efer = rdmsr(MSR_EFER);
152 	efer &= ~EFER_SVM;
153 	wrmsr(MSR_EFER, efer);
154 }
155 
156 /*
157  * Disable SVM on all CPUs.
158  */
159 static int
160 svm_cleanup(void)
161 {
162 
163 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164 	return (0);
165 }
166 
167 /*
168  * Verify that all the features required by bhyve are available.
169  */
170 static int
171 check_svm_features(void)
172 {
173 	u_int regs[4];
174 
175 	/* CPUID Fn8000_000A is for SVM */
176 	do_cpuid(0x8000000A, regs);
177 	svm_feature = regs[3];
178 
179 	nasid = regs[1];
180 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
181 
182 	/* bhyve requires the Nested Paging feature */
183 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
184 		printf("SVM: Nested Paging feature not available.\n");
185 		return (ENXIO);
186 	}
187 
188 	/* bhyve requires the NRIP Save feature */
189 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
190 		printf("SVM: NRIP Save feature not available.\n");
191 		return (ENXIO);
192 	}
193 
194 	return (0);
195 }
196 
197 static void
198 svm_enable(void *arg __unused)
199 {
200 	uint64_t efer;
201 
202 	efer = rdmsr(MSR_EFER);
203 	efer |= EFER_SVM;
204 	wrmsr(MSR_EFER, efer);
205 
206 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
207 }
208 
209 /*
210  * Return 1 if SVM is enabled on this processor and 0 otherwise.
211  */
212 static int
213 svm_available(void)
214 {
215 	uint64_t msr;
216 
217 	/* Section 15.4 Enabling SVM from APM2. */
218 	if ((amd_feature2 & AMDID2_SVM) == 0) {
219 		printf("SVM: not available.\n");
220 		return (0);
221 	}
222 
223 	msr = rdmsr(MSR_VM_CR);
224 	if ((msr & VM_CR_SVMDIS) != 0) {
225 		printf("SVM: disabled by BIOS.\n");
226 		return (0);
227 	}
228 
229 	return (1);
230 }
231 
232 static int
233 svm_init(int ipinum)
234 {
235 	int error, cpu;
236 
237 	if (!svm_available())
238 		return (ENXIO);
239 
240 	error = check_svm_features();
241 	if (error)
242 		return (error);
243 
244 	vmcb_clean &= VMCB_CACHE_DEFAULT;
245 
246 	for (cpu = 0; cpu < MAXCPU; cpu++) {
247 		/*
248 		 * Initialize the host ASIDs to their "highest" valid values.
249 		 *
250 		 * The next ASID allocation will rollover both 'gen' and 'num'
251 		 * and start off the sequence at {1,1}.
252 		 */
253 		asid[cpu].gen = ~0UL;
254 		asid[cpu].num = nasid - 1;
255 	}
256 
257 	svm_msr_init();
258 	svm_npt_init(ipinum);
259 
260 	/* Enable SVM on all CPUs */
261 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
262 
263 	return (0);
264 }
265 
266 static void
267 svm_restore(void)
268 {
269 
270 	svm_enable(NULL);
271 }
272 
273 /* Pentium compatible MSRs */
274 #define MSR_PENTIUM_START 	0
275 #define MSR_PENTIUM_END 	0x1FFF
276 /* AMD 6th generation and Intel compatible MSRs */
277 #define MSR_AMD6TH_START 	0xC0000000UL
278 #define MSR_AMD6TH_END 		0xC0001FFFUL
279 /* AMD 7th and 8th generation compatible MSRs */
280 #define MSR_AMD7TH_START 	0xC0010000UL
281 #define MSR_AMD7TH_END 		0xC0011FFFUL
282 
283 /*
284  * Get the index and bit position for a MSR in permission bitmap.
285  * Two bits are used for each MSR: lower bit for read and higher bit for write.
286  */
287 static int
288 svm_msr_index(uint64_t msr, int *index, int *bit)
289 {
290 	uint32_t base, off;
291 
292 	*index = -1;
293 	*bit = (msr % 4) * 2;
294 	base = 0;
295 
296 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
297 		*index = msr / 4;
298 		return (0);
299 	}
300 
301 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
302 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
303 		off = (msr - MSR_AMD6TH_START);
304 		*index = (off + base) / 4;
305 		return (0);
306 	}
307 
308 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
309 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
310 		off = (msr - MSR_AMD7TH_START);
311 		*index = (off + base) / 4;
312 		return (0);
313 	}
314 
315 	return (EINVAL);
316 }
317 
318 /*
319  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
320  */
321 static void
322 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
323 {
324 	int index, bit, error;
325 
326 	error = svm_msr_index(msr, &index, &bit);
327 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
328 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
329 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
330 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
331 	    "msr %#lx", __func__, bit, msr));
332 
333 	if (read)
334 		perm_bitmap[index] &= ~(1UL << bit);
335 
336 	if (write)
337 		perm_bitmap[index] &= ~(2UL << bit);
338 }
339 
340 static void
341 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
342 {
343 
344 	svm_msr_perm(perm_bitmap, msr, true, true);
345 }
346 
347 static void
348 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
349 {
350 
351 	svm_msr_perm(perm_bitmap, msr, true, false);
352 }
353 
354 static __inline int
355 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
356 {
357 	struct vmcb_ctrl *ctrl;
358 
359 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
360 
361 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
362 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
363 }
364 
365 static __inline void
366 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
367     int enabled)
368 {
369 	struct vmcb_ctrl *ctrl;
370 	uint32_t oldval;
371 
372 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
373 
374 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
375 	oldval = ctrl->intercept[idx];
376 
377 	if (enabled)
378 		ctrl->intercept[idx] |= bitmask;
379 	else
380 		ctrl->intercept[idx] &= ~bitmask;
381 
382 	if (ctrl->intercept[idx] != oldval) {
383 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
384 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
385 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
386 	}
387 }
388 
389 static __inline void
390 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
391 {
392 
393 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
394 }
395 
396 static __inline void
397 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
398 {
399 
400 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
401 }
402 
403 static void
404 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
405     uint64_t msrpm_base_pa, uint64_t np_pml4)
406 {
407 	struct vmcb_ctrl *ctrl;
408 	struct vmcb_state *state;
409 	uint32_t mask;
410 	int n;
411 
412 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
413 	state = svm_get_vmcb_state(sc, vcpu);
414 
415 	ctrl->iopm_base_pa = iopm_base_pa;
416 	ctrl->msrpm_base_pa = msrpm_base_pa;
417 
418 	/* Enable nested paging */
419 	ctrl->np_enable = 1;
420 	ctrl->n_cr3 = np_pml4;
421 
422 	/*
423 	 * Intercept accesses to the control registers that are not shadowed
424 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
425 	 */
426 	for (n = 0; n < 16; n++) {
427 		mask = (BIT(n) << 16) | BIT(n);
428 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
429 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
430 		else
431 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
432 	}
433 
434 
435 	/*
436 	 * Intercept everything when tracing guest exceptions otherwise
437 	 * just intercept machine check exception.
438 	 */
439 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
440 		for (n = 0; n < 32; n++) {
441 			/*
442 			 * Skip unimplemented vectors in the exception bitmap.
443 			 */
444 			if (n == 2 || n == 9) {
445 				continue;
446 			}
447 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
448 		}
449 	} else {
450 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
451 	}
452 
453 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
454 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
455 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
456 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
457 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
458 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
462 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
463 	    VMCB_INTCPT_FERR_FREEZE);
464 
465 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
466 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
467 
468 	/*
469 	 * From section "Canonicalization and Consistency Checks" in APMv2
470 	 * the VMRUN intercept bit must be set to pass the consistency check.
471 	 */
472 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
473 
474 	/*
475 	 * The ASID will be set to a non-zero value just before VMRUN.
476 	 */
477 	ctrl->asid = 0;
478 
479 	/*
480 	 * Section 15.21.1, Interrupt Masking in EFLAGS
481 	 * Section 15.21.2, Virtualizing APIC.TPR
482 	 *
483 	 * This must be set for %rflag and %cr8 isolation of guest and host.
484 	 */
485 	ctrl->v_intr_masking = 1;
486 
487 	/* Enable Last Branch Record aka LBR for debugging */
488 	ctrl->lbr_virt_en = 1;
489 	state->dbgctl = BIT(0);
490 
491 	/* EFER_SVM must always be set when the guest is executing */
492 	state->efer = EFER_SVM;
493 
494 	/* Set up the PAT to power-on state */
495 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
496 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
497 	    PAT_VALUE(2, PAT_UNCACHED)		|
498 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
499 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
500 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
501 	    PAT_VALUE(6, PAT_UNCACHED)		|
502 	    PAT_VALUE(7, PAT_UNCACHEABLE);
503 }
504 
505 /*
506  * Initialize a virtual machine.
507  */
508 static void *
509 svm_vminit(struct vm *vm, pmap_t pmap)
510 {
511 	struct svm_softc *svm_sc;
512 	struct svm_vcpu *vcpu;
513 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
514 	int i;
515 
516 	svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
517 	svm_sc->vm = vm;
518 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
519 
520 	/*
521 	 * Intercept read and write accesses to all MSRs.
522 	 */
523 	memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
524 
525 	/*
526 	 * Access to the following MSRs is redirected to the VMCB when the
527 	 * guest is executing. Therefore it is safe to allow the guest to
528 	 * read/write these MSRs directly without hypervisor involvement.
529 	 */
530 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
531 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
532 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
533 
534 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
535 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
536 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
537 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
538 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
539 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
540 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
541 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
542 
543 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
544 
545 	/*
546 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
547 	 */
548 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
549 
550 	/* Intercept access to all I/O ports. */
551 	memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
552 
553 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
554 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
555 	pml4_pa = svm_sc->nptp;
556 	for (i = 0; i < VM_MAXCPU; i++) {
557 		vcpu = svm_get_vcpu(svm_sc, i);
558 		vcpu->nextrip = ~0;
559 		vcpu->lastcpu = NOCPU;
560 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
561 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
562 		svm_msr_guest_init(svm_sc, i);
563 	}
564 	return (svm_sc);
565 }
566 
567 /*
568  * Collateral for a generic SVM VM-exit.
569  */
570 static void
571 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
572 {
573 
574 	vme->exitcode = VM_EXITCODE_SVM;
575 	vme->u.svm.exitcode = code;
576 	vme->u.svm.exitinfo1 = info1;
577 	vme->u.svm.exitinfo2 = info2;
578 }
579 
580 static int
581 svm_cpl(struct vmcb_state *state)
582 {
583 
584 	/*
585 	 * From APMv2:
586 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
587 	 *    from any segment DPL"
588 	 */
589 	return (state->cpl);
590 }
591 
592 static enum vm_cpu_mode
593 svm_vcpu_mode(struct vmcb *vmcb)
594 {
595 	struct vmcb_segment seg;
596 	struct vmcb_state *state;
597 	int error;
598 
599 	state = &vmcb->state;
600 
601 	if (state->efer & EFER_LMA) {
602 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
603 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
604 		    error));
605 
606 		/*
607 		 * Section 4.8.1 for APM2, check if Code Segment has
608 		 * Long attribute set in descriptor.
609 		 */
610 		if (seg.attrib & VMCB_CS_ATTRIB_L)
611 			return (CPU_MODE_64BIT);
612 		else
613 			return (CPU_MODE_COMPATIBILITY);
614 	} else  if (state->cr0 & CR0_PE) {
615 		return (CPU_MODE_PROTECTED);
616 	} else {
617 		return (CPU_MODE_REAL);
618 	}
619 }
620 
621 static enum vm_paging_mode
622 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
623 {
624 
625 	if ((cr0 & CR0_PG) == 0)
626 		return (PAGING_MODE_FLAT);
627 	if ((cr4 & CR4_PAE) == 0)
628 		return (PAGING_MODE_32);
629 	if (efer & EFER_LME)
630 		return (PAGING_MODE_64);
631 	else
632 		return (PAGING_MODE_PAE);
633 }
634 
635 /*
636  * ins/outs utility routines
637  */
638 static uint64_t
639 svm_inout_str_index(struct svm_regctx *regs, int in)
640 {
641 	uint64_t val;
642 
643 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
644 
645 	return (val);
646 }
647 
648 static uint64_t
649 svm_inout_str_count(struct svm_regctx *regs, int rep)
650 {
651 	uint64_t val;
652 
653 	val = rep ? regs->sctx_rcx : 1;
654 
655 	return (val);
656 }
657 
658 static void
659 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
660     int in, struct vm_inout_str *vis)
661 {
662 	int error, s;
663 
664 	if (in) {
665 		vis->seg_name = VM_REG_GUEST_ES;
666 	} else {
667 		/* The segment field has standard encoding */
668 		s = (info1 >> 10) & 0x7;
669 		vis->seg_name = vm_segment_name(s);
670 	}
671 
672 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
673 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
674 }
675 
676 static int
677 svm_inout_str_addrsize(uint64_t info1)
678 {
679         uint32_t size;
680 
681         size = (info1 >> 7) & 0x7;
682         switch (size) {
683         case 1:
684                 return (2);     /* 16 bit */
685         case 2:
686                 return (4);     /* 32 bit */
687         case 4:
688                 return (8);     /* 64 bit */
689         default:
690                 panic("%s: invalid size encoding %d", __func__, size);
691         }
692 }
693 
694 static void
695 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
696 {
697 	struct vmcb_state *state;
698 
699 	state = &vmcb->state;
700 	paging->cr3 = state->cr3;
701 	paging->cpl = svm_cpl(state);
702 	paging->cpu_mode = svm_vcpu_mode(vmcb);
703 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
704 	    state->efer);
705 }
706 
707 #define	UNHANDLED 0
708 
709 /*
710  * Handle guest I/O intercept.
711  */
712 static int
713 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
714 {
715 	struct vmcb_ctrl *ctrl;
716 	struct vmcb_state *state;
717 	struct svm_regctx *regs;
718 	struct vm_inout_str *vis;
719 	uint64_t info1;
720 	int inout_string;
721 
722 	state = svm_get_vmcb_state(svm_sc, vcpu);
723 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
724 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
725 
726 	info1 = ctrl->exitinfo1;
727 	inout_string = info1 & BIT(2) ? 1 : 0;
728 
729 	/*
730 	 * The effective segment number in EXITINFO1[12:10] is populated
731 	 * only if the processor has the DecodeAssist capability.
732 	 *
733 	 * XXX this is not specified explicitly in APMv2 but can be verified
734 	 * empirically.
735 	 */
736 	if (inout_string && !decode_assist())
737 		return (UNHANDLED);
738 
739 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
740 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
741 	vmexit->u.inout.string 	= inout_string;
742 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
743 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
744 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
745 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
746 
747 	if (inout_string) {
748 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
749 		vis = &vmexit->u.inout_str;
750 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
751 		vis->rflags = state->rflags;
752 		vis->cr0 = state->cr0;
753 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
754 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
755 		vis->addrsize = svm_inout_str_addrsize(info1);
756 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
757 		    vmexit->u.inout.in, vis);
758 	}
759 
760 	return (UNHANDLED);
761 }
762 
763 static int
764 npf_fault_type(uint64_t exitinfo1)
765 {
766 
767 	if (exitinfo1 & VMCB_NPF_INFO1_W)
768 		return (VM_PROT_WRITE);
769 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
770 		return (VM_PROT_EXECUTE);
771 	else
772 		return (VM_PROT_READ);
773 }
774 
775 static bool
776 svm_npf_emul_fault(uint64_t exitinfo1)
777 {
778 
779 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
780 		return (false);
781 	}
782 
783 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
784 		return (false);
785 	}
786 
787 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
788 		return (false);
789 	}
790 
791 	return (true);
792 }
793 
794 static void
795 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
796 {
797 	struct vm_guest_paging *paging;
798 	struct vmcb_segment seg;
799 	struct vmcb_ctrl *ctrl;
800 	char *inst_bytes;
801 	int error, inst_len;
802 
803 	ctrl = &vmcb->ctrl;
804 	paging = &vmexit->u.inst_emul.paging;
805 
806 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
807 	vmexit->u.inst_emul.gpa = gpa;
808 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
809 	svm_paging_info(vmcb, paging);
810 
811 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
812 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
813 
814 	switch(paging->cpu_mode) {
815 	case CPU_MODE_REAL:
816 		vmexit->u.inst_emul.cs_base = seg.base;
817 		vmexit->u.inst_emul.cs_d = 0;
818 		break;
819 	case CPU_MODE_PROTECTED:
820 	case CPU_MODE_COMPATIBILITY:
821 		vmexit->u.inst_emul.cs_base = seg.base;
822 
823 		/*
824 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
825 		 */
826 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
827 		    1 : 0;
828 		break;
829 	default:
830 		vmexit->u.inst_emul.cs_base = 0;
831 		vmexit->u.inst_emul.cs_d = 0;
832 		break;
833 	}
834 
835 	/*
836 	 * Copy the instruction bytes into 'vie' if available.
837 	 */
838 	if (decode_assist() && !disable_npf_assist) {
839 		inst_len = ctrl->inst_len;
840 		inst_bytes = ctrl->inst_bytes;
841 	} else {
842 		inst_len = 0;
843 		inst_bytes = NULL;
844 	}
845 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
846 }
847 
848 #ifdef KTR
849 static const char *
850 intrtype_to_str(int intr_type)
851 {
852 	switch (intr_type) {
853 	case VMCB_EVENTINJ_TYPE_INTR:
854 		return ("hwintr");
855 	case VMCB_EVENTINJ_TYPE_NMI:
856 		return ("nmi");
857 	case VMCB_EVENTINJ_TYPE_INTn:
858 		return ("swintr");
859 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
860 		return ("exception");
861 	default:
862 		panic("%s: unknown intr_type %d", __func__, intr_type);
863 	}
864 }
865 #endif
866 
867 /*
868  * Inject an event to vcpu as described in section 15.20, "Event injection".
869  */
870 static void
871 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
872 		 uint32_t error, bool ec_valid)
873 {
874 	struct vmcb_ctrl *ctrl;
875 
876 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
877 
878 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
879 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
880 
881 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
882 	    __func__, vector));
883 
884 	switch (intr_type) {
885 	case VMCB_EVENTINJ_TYPE_INTR:
886 	case VMCB_EVENTINJ_TYPE_NMI:
887 	case VMCB_EVENTINJ_TYPE_INTn:
888 		break;
889 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
890 		if (vector >= 0 && vector <= 31 && vector != 2)
891 			break;
892 		/* FALLTHROUGH */
893 	default:
894 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
895 		    intr_type, vector);
896 	}
897 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
898 	if (ec_valid) {
899 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
900 		ctrl->eventinj |= (uint64_t)error << 32;
901 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
902 		    intrtype_to_str(intr_type), vector, error);
903 	} else {
904 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
905 		    intrtype_to_str(intr_type), vector);
906 	}
907 }
908 
909 static void
910 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
911 {
912 	struct vm *vm;
913 	struct vlapic *vlapic;
914 	struct vmcb_ctrl *ctrl;
915 	int pending;
916 
917 	vm = sc->vm;
918 	vlapic = vm_lapic(vm, vcpu);
919 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
920 
921 	/* Update %cr8 in the emulated vlapic */
922 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
923 
924 	/*
925 	 * If V_IRQ indicates that the interrupt injection attempted on then
926 	 * last VMRUN was successful then update the vlapic accordingly.
927 	 */
928 	if (ctrl->v_intr_vector != 0) {
929 		pending = ctrl->v_irq;
930 		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
931 		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
932 		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
933 		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
934 		    pending ? "pending" : "accepted");
935 		if (!pending)
936 			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
937 	}
938 }
939 
940 static void
941 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
942 {
943 	struct vmcb_ctrl *ctrl;
944 	uint64_t intinfo;
945 
946 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
947 	intinfo = ctrl->exitintinfo;
948 	if (!VMCB_EXITINTINFO_VALID(intinfo))
949 		return;
950 
951 	/*
952 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
953 	 *
954 	 * If a #VMEXIT happened during event delivery then record the event
955 	 * that was being delivered.
956 	 */
957 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
958 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
959 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
960 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
961 }
962 
963 static __inline int
964 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
965 {
966 
967 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
968 	    VMCB_INTCPT_VINTR));
969 }
970 
971 static __inline void
972 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
973 {
974 	struct vmcb_ctrl *ctrl;
975 
976 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
977 
978 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
979 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
980 		KASSERT(vintr_intercept_enabled(sc, vcpu),
981 		    ("%s: vintr intercept should be enabled", __func__));
982 		return;
983 	}
984 
985 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
986 	ctrl->v_irq = 1;
987 	ctrl->v_ign_tpr = 1;
988 	ctrl->v_intr_vector = 0;
989 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
990 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
991 }
992 
993 static __inline void
994 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
995 {
996 	struct vmcb_ctrl *ctrl;
997 
998 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
999 
1000 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1001 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1002 		    ("%s: vintr intercept should be disabled", __func__));
1003 		return;
1004 	}
1005 
1006 #ifdef KTR
1007 	if (ctrl->v_intr_vector == 0)
1008 		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1009 	else
1010 		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
1011 #endif
1012 	ctrl->v_irq = 0;
1013 	ctrl->v_intr_vector = 0;
1014 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1015 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1016 }
1017 
1018 static int
1019 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1020 {
1021 	struct vmcb_ctrl *ctrl;
1022 	int oldval, newval;
1023 
1024 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1025 	oldval = ctrl->intr_shadow;
1026 	newval = val ? 1 : 0;
1027 	if (newval != oldval) {
1028 		ctrl->intr_shadow = newval;
1029 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1030 	}
1031 	return (0);
1032 }
1033 
1034 static int
1035 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1036 {
1037 	struct vmcb_ctrl *ctrl;
1038 
1039 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1040 	*val = ctrl->intr_shadow;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1046  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1047  * to track when the vcpu is done handling the NMI.
1048  */
1049 static int
1050 nmi_blocked(struct svm_softc *sc, int vcpu)
1051 {
1052 	int blocked;
1053 
1054 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1055 	    VMCB_INTCPT_IRET);
1056 	return (blocked);
1057 }
1058 
1059 static void
1060 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1061 {
1062 
1063 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1064 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1065 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1066 }
1067 
1068 static void
1069 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1070 {
1071 	int error;
1072 
1073 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1074 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1075 	/*
1076 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1077 	 * the "iret" when it runs next. However, it is possible to inject
1078 	 * another NMI into the vcpu before the "iret" has actually executed.
1079 	 *
1080 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1081 	 * it will trap back into the hypervisor. If an NMI is pending for
1082 	 * the vcpu it will be injected into the guest.
1083 	 *
1084 	 * XXX this needs to be fixed
1085 	 */
1086 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1087 
1088 	/*
1089 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1090 	 * immediate VMRUN.
1091 	 */
1092 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1093 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1094 }
1095 
1096 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1097 
1098 static int
1099 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1100 {
1101 	struct vm_exit *vme;
1102 	struct vmcb_state *state;
1103 	uint64_t changed, lma, oldval;
1104 	int error;
1105 
1106 	state = svm_get_vmcb_state(sc, vcpu);
1107 
1108 	oldval = state->efer;
1109 	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1110 
1111 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1112 	changed = oldval ^ newval;
1113 
1114 	if (newval & EFER_MBZ_BITS)
1115 		goto gpf;
1116 
1117 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1118 	if (changed & EFER_LME) {
1119 		if (state->cr0 & CR0_PG)
1120 			goto gpf;
1121 	}
1122 
1123 	/* EFER.LMA = EFER.LME & CR0.PG */
1124 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1125 		lma = EFER_LMA;
1126 	else
1127 		lma = 0;
1128 
1129 	if ((newval & EFER_LMA) != lma)
1130 		goto gpf;
1131 
1132 	if (newval & EFER_NXE) {
1133 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1134 			goto gpf;
1135 	}
1136 
1137 	/*
1138 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1139 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1140 	 */
1141 	if (newval & EFER_LMSLE) {
1142 		vme = vm_exitinfo(sc->vm, vcpu);
1143 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1144 		*retu = true;
1145 		return (0);
1146 	}
1147 
1148 	if (newval & EFER_FFXSR) {
1149 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1150 			goto gpf;
1151 	}
1152 
1153 	if (newval & EFER_TCE) {
1154 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1155 			goto gpf;
1156 	}
1157 
1158 	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1159 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1160 	return (0);
1161 gpf:
1162 	vm_inject_gp(sc->vm, vcpu);
1163 	return (0);
1164 }
1165 
1166 static int
1167 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1168     bool *retu)
1169 {
1170 	int error;
1171 
1172 	if (lapic_msr(num))
1173 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1174 	else if (num == MSR_EFER)
1175 		error = svm_write_efer(sc, vcpu, val, retu);
1176 	else
1177 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1178 
1179 	return (error);
1180 }
1181 
1182 static int
1183 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1184 {
1185 	struct vmcb_state *state;
1186 	struct svm_regctx *ctx;
1187 	uint64_t result;
1188 	int error;
1189 
1190 	if (lapic_msr(num))
1191 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1192 	else
1193 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1194 
1195 	if (error == 0) {
1196 		state = svm_get_vmcb_state(sc, vcpu);
1197 		ctx = svm_get_guest_regctx(sc, vcpu);
1198 		state->rax = result & 0xffffffff;
1199 		ctx->sctx_rdx = result >> 32;
1200 	}
1201 
1202 	return (error);
1203 }
1204 
1205 #ifdef KTR
1206 static const char *
1207 exit_reason_to_str(uint64_t reason)
1208 {
1209 	static char reasonbuf[32];
1210 
1211 	switch (reason) {
1212 	case VMCB_EXIT_INVALID:
1213 		return ("invalvmcb");
1214 	case VMCB_EXIT_SHUTDOWN:
1215 		return ("shutdown");
1216 	case VMCB_EXIT_NPF:
1217 		return ("nptfault");
1218 	case VMCB_EXIT_PAUSE:
1219 		return ("pause");
1220 	case VMCB_EXIT_HLT:
1221 		return ("hlt");
1222 	case VMCB_EXIT_CPUID:
1223 		return ("cpuid");
1224 	case VMCB_EXIT_IO:
1225 		return ("inout");
1226 	case VMCB_EXIT_MC:
1227 		return ("mchk");
1228 	case VMCB_EXIT_INTR:
1229 		return ("extintr");
1230 	case VMCB_EXIT_NMI:
1231 		return ("nmi");
1232 	case VMCB_EXIT_VINTR:
1233 		return ("vintr");
1234 	case VMCB_EXIT_MSR:
1235 		return ("msr");
1236 	case VMCB_EXIT_IRET:
1237 		return ("iret");
1238 	case VMCB_EXIT_MONITOR:
1239 		return ("monitor");
1240 	case VMCB_EXIT_MWAIT:
1241 		return ("mwait");
1242 	default:
1243 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1244 		return (reasonbuf);
1245 	}
1246 }
1247 #endif	/* KTR */
1248 
1249 /*
1250  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1251  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1252  * and exceptions caused by INT3, INTO and BOUND instructions.
1253  *
1254  * Return 1 if the nRIP is valid and 0 otherwise.
1255  */
1256 static int
1257 nrip_valid(uint64_t exitcode)
1258 {
1259 	switch (exitcode) {
1260 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1261 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1262 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1263 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1264 	case 0x43:		/* INT3 */
1265 	case 0x44:		/* INTO */
1266 	case 0x45:		/* BOUND */
1267 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1268 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1269 		return (1);
1270 	default:
1271 		return (0);
1272 	}
1273 }
1274 
1275 static int
1276 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1277 {
1278 	struct vmcb *vmcb;
1279 	struct vmcb_state *state;
1280 	struct vmcb_ctrl *ctrl;
1281 	struct svm_regctx *ctx;
1282 	uint64_t code, info1, info2, val;
1283 	uint32_t eax, ecx, edx;
1284 	int error, errcode_valid, handled, idtvec, reflect;
1285 	bool retu;
1286 
1287 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1288 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1289 	state = &vmcb->state;
1290 	ctrl = &vmcb->ctrl;
1291 
1292 	handled = 0;
1293 	code = ctrl->exitcode;
1294 	info1 = ctrl->exitinfo1;
1295 	info2 = ctrl->exitinfo2;
1296 
1297 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1298 	vmexit->rip = state->rip;
1299 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1300 
1301 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1302 
1303 	/*
1304 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1305 	 * in an inconsistent state and can trigger assertions that would
1306 	 * never happen otherwise.
1307 	 */
1308 	if (code == VMCB_EXIT_INVALID) {
1309 		vm_exit_svm(vmexit, code, info1, info2);
1310 		return (0);
1311 	}
1312 
1313 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1314 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1315 
1316 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1317 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1318 	    vmexit->inst_length, code, info1, info2));
1319 
1320 	svm_update_virqinfo(svm_sc, vcpu);
1321 	svm_save_intinfo(svm_sc, vcpu);
1322 
1323 	switch (code) {
1324 	case VMCB_EXIT_IRET:
1325 		/*
1326 		 * Restart execution at "iret" but with the intercept cleared.
1327 		 */
1328 		vmexit->inst_length = 0;
1329 		clear_nmi_blocking(svm_sc, vcpu);
1330 		handled = 1;
1331 		break;
1332 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1333 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1334 		handled = 1;
1335 		break;
1336 	case VMCB_EXIT_INTR:	/* external interrupt */
1337 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1338 		handled = 1;
1339 		break;
1340 	case VMCB_EXIT_NMI:	/* external NMI */
1341 		handled = 1;
1342 		break;
1343 	case 0x40 ... 0x5F:
1344 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1345 		reflect = 1;
1346 		idtvec = code - 0x40;
1347 		switch (idtvec) {
1348 		case IDT_MC:
1349 			/*
1350 			 * Call the machine check handler by hand. Also don't
1351 			 * reflect the machine check back into the guest.
1352 			 */
1353 			reflect = 0;
1354 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1355 			__asm __volatile("int $18");
1356 			break;
1357 		case IDT_PF:
1358 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1359 			    info2);
1360 			KASSERT(error == 0, ("%s: error %d updating cr2",
1361 			    __func__, error));
1362 			/* fallthru */
1363 		case IDT_NP:
1364 		case IDT_SS:
1365 		case IDT_GP:
1366 		case IDT_AC:
1367 		case IDT_TS:
1368 			errcode_valid = 1;
1369 			break;
1370 
1371 		case IDT_DF:
1372 			errcode_valid = 1;
1373 			info1 = 0;
1374 			break;
1375 
1376 		case IDT_BP:
1377 		case IDT_OF:
1378 		case IDT_BR:
1379 			/*
1380 			 * The 'nrip' field is populated for INT3, INTO and
1381 			 * BOUND exceptions and this also implies that
1382 			 * 'inst_length' is non-zero.
1383 			 *
1384 			 * Reset 'inst_length' to zero so the guest %rip at
1385 			 * event injection is identical to what it was when
1386 			 * the exception originally happened.
1387 			 */
1388 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1389 			    "to zero before injecting exception %d",
1390 			    vmexit->inst_length, idtvec);
1391 			vmexit->inst_length = 0;
1392 			/* fallthru */
1393 		default:
1394 			errcode_valid = 0;
1395 			info1 = 0;
1396 			break;
1397 		}
1398 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1399 		    "when reflecting exception %d into guest",
1400 		    vmexit->inst_length, idtvec));
1401 
1402 		if (reflect) {
1403 			/* Reflect the exception back into the guest */
1404 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1405 			    "%d/%#x into the guest", idtvec, (int)info1);
1406 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1407 			    errcode_valid, info1, 0);
1408 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1409 			    __func__, error));
1410 		}
1411 		handled = 1;
1412 		break;
1413 	case VMCB_EXIT_MSR:	/* MSR access. */
1414 		eax = state->rax;
1415 		ecx = ctx->sctx_rcx;
1416 		edx = ctx->sctx_rdx;
1417 		retu = false;
1418 
1419 		if (info1) {
1420 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1421 			val = (uint64_t)edx << 32 | eax;
1422 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1423 			    ecx, val);
1424 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1425 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1426 				vmexit->u.msr.code = ecx;
1427 				vmexit->u.msr.wval = val;
1428 			} else if (!retu) {
1429 				handled = 1;
1430 			} else {
1431 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1432 				    ("emulate_wrmsr retu with bogus exitcode"));
1433 			}
1434 		} else {
1435 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1436 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1437 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1438 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1439 				vmexit->u.msr.code = ecx;
1440 			} else if (!retu) {
1441 				handled = 1;
1442 			} else {
1443 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1444 				    ("emulate_rdmsr retu with bogus exitcode"));
1445 			}
1446 		}
1447 		break;
1448 	case VMCB_EXIT_IO:
1449 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1450 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1451 		break;
1452 	case VMCB_EXIT_CPUID:
1453 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1454 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1455 		    (uint32_t *)&state->rax,
1456 		    (uint32_t *)&ctx->sctx_rbx,
1457 		    (uint32_t *)&ctx->sctx_rcx,
1458 		    (uint32_t *)&ctx->sctx_rdx);
1459 		break;
1460 	case VMCB_EXIT_HLT:
1461 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1462 		vmexit->exitcode = VM_EXITCODE_HLT;
1463 		vmexit->u.hlt.rflags = state->rflags;
1464 		break;
1465 	case VMCB_EXIT_PAUSE:
1466 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1467 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1468 		break;
1469 	case VMCB_EXIT_NPF:
1470 		/* EXITINFO2 contains the faulting guest physical address */
1471 		if (info1 & VMCB_NPF_INFO1_RSV) {
1472 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1473 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1474 			    info1, info2);
1475 		} else if (vm_mem_allocated(svm_sc->vm, info2)) {
1476 			vmexit->exitcode = VM_EXITCODE_PAGING;
1477 			vmexit->u.paging.gpa = info2;
1478 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1479 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1480 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1481 			    "on gpa %#lx/%#lx at rip %#lx",
1482 			    info2, info1, state->rip);
1483 		} else if (svm_npf_emul_fault(info1)) {
1484 			svm_handle_inst_emul(vmcb, info2, vmexit);
1485 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1486 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1487 			    "for gpa %#lx/%#lx at rip %#lx",
1488 			    info2, info1, state->rip);
1489 		}
1490 		break;
1491 	case VMCB_EXIT_MONITOR:
1492 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1493 		break;
1494 	case VMCB_EXIT_MWAIT:
1495 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1496 		break;
1497 	default:
1498 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1499 		break;
1500 	}
1501 
1502 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1503 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1504 	    vmexit->rip, vmexit->inst_length);
1505 
1506 	if (handled) {
1507 		vmexit->rip += vmexit->inst_length;
1508 		vmexit->inst_length = 0;
1509 		state->rip = vmexit->rip;
1510 	} else {
1511 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1512 			/*
1513 			 * If this VM exit was not claimed by anybody then
1514 			 * treat it as a generic SVM exit.
1515 			 */
1516 			vm_exit_svm(vmexit, code, info1, info2);
1517 		} else {
1518 			/*
1519 			 * The exitcode and collateral have been populated.
1520 			 * The VM exit will be processed further in userland.
1521 			 */
1522 		}
1523 	}
1524 	return (handled);
1525 }
1526 
1527 static void
1528 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1529 {
1530 	uint64_t intinfo;
1531 
1532 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1533 		return;
1534 
1535 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1536 	    "valid: %#lx", __func__, intinfo));
1537 
1538 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1539 		VMCB_EXITINTINFO_VECTOR(intinfo),
1540 		VMCB_EXITINTINFO_EC(intinfo),
1541 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1542 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1543 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1544 }
1545 
1546 /*
1547  * Inject event to virtual cpu.
1548  */
1549 static void
1550 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1551 {
1552 	struct vmcb_ctrl *ctrl;
1553 	struct vmcb_state *state;
1554 	struct svm_vcpu *vcpustate;
1555 	uint8_t v_tpr;
1556 	int vector, need_intr_window, pending_apic_vector;
1557 
1558 	state = svm_get_vmcb_state(sc, vcpu);
1559 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1560 	vcpustate = svm_get_vcpu(sc, vcpu);
1561 
1562 	need_intr_window = 0;
1563 	pending_apic_vector = 0;
1564 
1565 	if (vcpustate->nextrip != state->rip) {
1566 		ctrl->intr_shadow = 0;
1567 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1568 		    "cleared due to rip change: %#lx/%#lx",
1569 		    vcpustate->nextrip, state->rip);
1570 	}
1571 
1572 	/*
1573 	 * Inject pending events or exceptions for this vcpu.
1574 	 *
1575 	 * An event might be pending because the previous #VMEXIT happened
1576 	 * during event delivery (i.e. ctrl->exitintinfo).
1577 	 *
1578 	 * An event might also be pending because an exception was injected
1579 	 * by the hypervisor (e.g. #PF during instruction emulation).
1580 	 */
1581 	svm_inj_intinfo(sc, vcpu);
1582 
1583 	/* NMI event has priority over interrupts. */
1584 	if (vm_nmi_pending(sc->vm, vcpu)) {
1585 		if (nmi_blocked(sc, vcpu)) {
1586 			/*
1587 			 * Can't inject another NMI if the guest has not
1588 			 * yet executed an "iret" after the last NMI.
1589 			 */
1590 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1591 			    "to NMI-blocking");
1592 		} else if (ctrl->intr_shadow) {
1593 			/*
1594 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1595 			 */
1596 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1597 			    "interrupt shadow");
1598 			need_intr_window = 1;
1599 			goto done;
1600 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1601 			/*
1602 			 * If there is already an exception/interrupt pending
1603 			 * then defer the NMI until after that.
1604 			 */
1605 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1606 			    "eventinj %#lx", ctrl->eventinj);
1607 
1608 			/*
1609 			 * Use self-IPI to trigger a VM-exit as soon as
1610 			 * possible after the event injection is completed.
1611 			 *
1612 			 * This works only if the external interrupt exiting
1613 			 * is at a lower priority than the event injection.
1614 			 *
1615 			 * Although not explicitly specified in APMv2 the
1616 			 * relative priorities were verified empirically.
1617 			 */
1618 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1619 		} else {
1620 			vm_nmi_clear(sc->vm, vcpu);
1621 
1622 			/* Inject NMI, vector number is not used */
1623 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1624 			    IDT_NMI, 0, false);
1625 
1626 			/* virtual NMI blocking is now in effect */
1627 			enable_nmi_blocking(sc, vcpu);
1628 
1629 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1630 		}
1631 	}
1632 
1633 	if (!vm_extint_pending(sc->vm, vcpu)) {
1634 		/*
1635 		 * APIC interrupts are delivered using the V_IRQ offload.
1636 		 *
1637 		 * The primary benefit is that the hypervisor doesn't need to
1638 		 * deal with the various conditions that inhibit interrupts.
1639 		 * It also means that TPR changes via CR8 will be handled
1640 		 * without any hypervisor involvement.
1641 		 *
1642 		 * Note that the APIC vector must remain pending in the vIRR
1643 		 * until it is confirmed that it was delivered to the guest.
1644 		 * This can be confirmed based on the value of V_IRQ at the
1645 		 * next #VMEXIT (1 = pending, 0 = delivered).
1646 		 *
1647 		 * Also note that it is possible that another higher priority
1648 		 * vector can become pending before this vector is delivered
1649 		 * to the guest. This is alright because vcpu_notify_event()
1650 		 * will send an IPI and force the vcpu to trap back into the
1651 		 * hypervisor. The higher priority vector will be injected on
1652 		 * the next VMRUN.
1653 		 */
1654 		if (vlapic_pending_intr(vlapic, &vector)) {
1655 			KASSERT(vector >= 16 && vector <= 255,
1656 			    ("invalid vector %d from local APIC", vector));
1657 			pending_apic_vector = vector;
1658 		}
1659 		goto done;
1660 	}
1661 
1662 	/* Ask the legacy pic for a vector to inject */
1663 	vatpic_pending_intr(sc->vm, &vector);
1664 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1665 	    vector));
1666 
1667 	/*
1668 	 * If the guest has disabled interrupts or is in an interrupt shadow
1669 	 * then we cannot inject the pending interrupt.
1670 	 */
1671 	if ((state->rflags & PSL_I) == 0) {
1672 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1673 		    "rflags %#lx", vector, state->rflags);
1674 		need_intr_window = 1;
1675 		goto done;
1676 	}
1677 
1678 	if (ctrl->intr_shadow) {
1679 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1680 		    "interrupt shadow", vector);
1681 		need_intr_window = 1;
1682 		goto done;
1683 	}
1684 
1685 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1686 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1687 		    "eventinj %#lx", vector, ctrl->eventinj);
1688 		need_intr_window = 1;
1689 		goto done;
1690 	}
1691 
1692 	/*
1693 	 * Legacy PIC interrupts are delivered via the event injection
1694 	 * mechanism.
1695 	 */
1696 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1697 
1698 	vm_extint_clear(sc->vm, vcpu);
1699 	vatpic_intr_accepted(sc->vm, vector);
1700 
1701 	/*
1702 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1703 	 * interrupt. This is done because the PIC might have another vector
1704 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1705 	 * that was preempted by the ExtInt then it allows us to inject the
1706 	 * APIC vector as soon as possible.
1707 	 */
1708 	need_intr_window = 1;
1709 done:
1710 	/*
1711 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1712 	 * the processor reflects this write to V_TPR without hypervisor
1713 	 * intervention.
1714 	 *
1715 	 * The guest can also modify the TPR by writing to it via the memory
1716 	 * mapped APIC page. In this case, the write will be emulated by the
1717 	 * hypervisor. For this reason V_TPR must be updated before every
1718 	 * VMRUN.
1719 	 */
1720 	v_tpr = vlapic_get_cr8(vlapic);
1721 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1722 	if (ctrl->v_tpr != v_tpr) {
1723 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1724 		    ctrl->v_tpr, v_tpr);
1725 		ctrl->v_tpr = v_tpr;
1726 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1727 	}
1728 
1729 	if (pending_apic_vector) {
1730 		/*
1731 		 * If an APIC vector is being injected then interrupt window
1732 		 * exiting is not possible on this VMRUN.
1733 		 */
1734 		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1735 		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1736 		    pending_apic_vector);
1737 
1738 		ctrl->v_irq = 1;
1739 		ctrl->v_ign_tpr = 0;
1740 		ctrl->v_intr_vector = pending_apic_vector;
1741 		ctrl->v_intr_prio = pending_apic_vector >> 4;
1742 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1743 	} else if (need_intr_window) {
1744 		/*
1745 		 * We use V_IRQ in conjunction with the VINTR intercept to
1746 		 * trap into the hypervisor as soon as a virtual interrupt
1747 		 * can be delivered.
1748 		 *
1749 		 * Since injected events are not subject to intercept checks
1750 		 * we need to ensure that the V_IRQ is not actually going to
1751 		 * be delivered on VM entry. The KASSERT below enforces this.
1752 		 */
1753 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1754 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1755 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1756 		    "intr_shadow (%u), rflags (%#lx)",
1757 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1758 		enable_intr_window_exiting(sc, vcpu);
1759 	} else {
1760 		disable_intr_window_exiting(sc, vcpu);
1761 	}
1762 }
1763 
1764 static __inline void
1765 restore_host_tss(void)
1766 {
1767 	struct system_segment_descriptor *tss_sd;
1768 
1769 	/*
1770 	 * The TSS descriptor was in use prior to launching the guest so it
1771 	 * has been marked busy.
1772 	 *
1773 	 * 'ltr' requires the descriptor to be marked available so change the
1774 	 * type to "64-bit available TSS".
1775 	 */
1776 	tss_sd = PCPU_GET(tss);
1777 	tss_sd->sd_type = SDT_SYSTSS;
1778 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1779 }
1780 
1781 static void
1782 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1783 {
1784 	struct svm_vcpu *vcpustate;
1785 	struct vmcb_ctrl *ctrl;
1786 	long eptgen;
1787 	bool alloc_asid;
1788 
1789 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1790 	    "active on cpu %u", __func__, thiscpu));
1791 
1792 	vcpustate = svm_get_vcpu(sc, vcpuid);
1793 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1794 
1795 	/*
1796 	 * The TLB entries associated with the vcpu's ASID are not valid
1797 	 * if either of the following conditions is true:
1798 	 *
1799 	 * 1. The vcpu's ASID generation is different than the host cpu's
1800 	 *    ASID generation. This happens when the vcpu migrates to a new
1801 	 *    host cpu. It can also happen when the number of vcpus executing
1802 	 *    on a host cpu is greater than the number of ASIDs available.
1803 	 *
1804 	 * 2. The pmap generation number is different than the value cached in
1805 	 *    the 'vcpustate'. This happens when the host invalidates pages
1806 	 *    belonging to the guest.
1807 	 *
1808 	 *	asidgen		eptgen	      Action
1809 	 *	mismatch	mismatch
1810 	 *	   0		   0		(a)
1811 	 *	   0		   1		(b1) or (b2)
1812 	 *	   1		   0		(c)
1813 	 *	   1		   1		(d)
1814 	 *
1815 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1816 	 *     no further action is needed.
1817 	 *
1818 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1819 	 *      retained and the TLB entries associated with this ASID
1820 	 *      are flushed by VMRUN.
1821 	 *
1822 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1823 	 *      allocated.
1824 	 *
1825 	 * (c) A new ASID is allocated.
1826 	 *
1827 	 * (d) A new ASID is allocated.
1828 	 */
1829 
1830 	alloc_asid = false;
1831 	eptgen = pmap->pm_eptgen;
1832 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1833 
1834 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1835 		alloc_asid = true;	/* (c) and (d) */
1836 	} else if (vcpustate->eptgen != eptgen) {
1837 		if (flush_by_asid())
1838 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1839 		else
1840 			alloc_asid = true;			/* (b2) */
1841 	} else {
1842 		/*
1843 		 * This is the common case (a).
1844 		 */
1845 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1846 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1847 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1848 	}
1849 
1850 	if (alloc_asid) {
1851 		if (++asid[thiscpu].num >= nasid) {
1852 			asid[thiscpu].num = 1;
1853 			if (++asid[thiscpu].gen == 0)
1854 				asid[thiscpu].gen = 1;
1855 			/*
1856 			 * If this cpu does not support "flush-by-asid"
1857 			 * then flush the entire TLB on a generation
1858 			 * bump. Subsequent ASID allocation in this
1859 			 * generation can be done without a TLB flush.
1860 			 */
1861 			if (!flush_by_asid())
1862 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1863 		}
1864 		vcpustate->asid.gen = asid[thiscpu].gen;
1865 		vcpustate->asid.num = asid[thiscpu].num;
1866 
1867 		ctrl->asid = vcpustate->asid.num;
1868 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1869 		/*
1870 		 * If this cpu supports "flush-by-asid" then the TLB
1871 		 * was not flushed after the generation bump. The TLB
1872 		 * is flushed selectively after every new ASID allocation.
1873 		 */
1874 		if (flush_by_asid())
1875 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1876 	}
1877 	vcpustate->eptgen = eptgen;
1878 
1879 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1880 	KASSERT(ctrl->asid == vcpustate->asid.num,
1881 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1882 }
1883 
1884 static __inline void
1885 disable_gintr(void)
1886 {
1887 
1888 	__asm __volatile("clgi");
1889 }
1890 
1891 static __inline void
1892 enable_gintr(void)
1893 {
1894 
1895         __asm __volatile("stgi");
1896 }
1897 
1898 /*
1899  * Start vcpu with specified RIP.
1900  */
1901 static int
1902 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1903 	void *rend_cookie, void *suspended_cookie)
1904 {
1905 	struct svm_regctx *gctx;
1906 	struct svm_softc *svm_sc;
1907 	struct svm_vcpu *vcpustate;
1908 	struct vmcb_state *state;
1909 	struct vmcb_ctrl *ctrl;
1910 	struct vm_exit *vmexit;
1911 	struct vlapic *vlapic;
1912 	struct vm *vm;
1913 	uint64_t vmcb_pa;
1914 	u_int thiscpu;
1915 	int handled;
1916 
1917 	svm_sc = arg;
1918 	vm = svm_sc->vm;
1919 
1920 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1921 	state = svm_get_vmcb_state(svm_sc, vcpu);
1922 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1923 	vmexit = vm_exitinfo(vm, vcpu);
1924 	vlapic = vm_lapic(vm, vcpu);
1925 
1926 	/*
1927 	 * Stash 'curcpu' on the stack as 'thiscpu'.
1928 	 *
1929 	 * The per-cpu data area is not accessible until MSR_GSBASE is restored
1930 	 * after the #VMEXIT. Since VMRUN is executed inside a critical section
1931 	 * 'curcpu' and 'thiscpu' are guaranteed to identical.
1932 	 */
1933 	thiscpu = curcpu;
1934 
1935 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1936 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1937 
1938 	if (vcpustate->lastcpu != thiscpu) {
1939 		/*
1940 		 * Force new ASID allocation by invalidating the generation.
1941 		 */
1942 		vcpustate->asid.gen = 0;
1943 
1944 		/*
1945 		 * Invalidate the VMCB state cache by marking all fields dirty.
1946 		 */
1947 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1948 
1949 		/*
1950 		 * XXX
1951 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1952 		 * we may return from this function without actually executing
1953 		 * the VMRUN  instruction. This could happen if a rendezvous
1954 		 * or an AST is pending on the first time through the loop.
1955 		 *
1956 		 * This works for now but any new side-effects of vcpu
1957 		 * migration should take this case into account.
1958 		 */
1959 		vcpustate->lastcpu = thiscpu;
1960 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1961 	}
1962 
1963 	svm_msr_guest_enter(svm_sc, vcpu);
1964 
1965 	/* Update Guest RIP */
1966 	state->rip = rip;
1967 
1968 	do {
1969 		/*
1970 		 * Disable global interrupts to guarantee atomicity during
1971 		 * loading of guest state. This includes not only the state
1972 		 * loaded by the "vmrun" instruction but also software state
1973 		 * maintained by the hypervisor: suspended and rendezvous
1974 		 * state, NPT generation number, vlapic interrupts etc.
1975 		 */
1976 		disable_gintr();
1977 
1978 		if (vcpu_suspended(suspended_cookie)) {
1979 			enable_gintr();
1980 			vm_exit_suspended(vm, vcpu, state->rip);
1981 			break;
1982 		}
1983 
1984 		if (vcpu_rendezvous_pending(rend_cookie)) {
1985 			enable_gintr();
1986 			vm_exit_rendezvous(vm, vcpu, state->rip);
1987 			break;
1988 		}
1989 
1990 		/* We are asked to give the cpu by scheduler. */
1991 		if (vcpu_should_yield(vm, vcpu)) {
1992 			enable_gintr();
1993 			vm_exit_astpending(vm, vcpu, state->rip);
1994 			break;
1995 		}
1996 
1997 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
1998 
1999 		/* Activate the nested pmap on 'thiscpu' */
2000 		CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
2001 
2002 		/*
2003 		 * Check the pmap generation and the ASID generation to
2004 		 * ensure that the vcpu does not use stale TLB mappings.
2005 		 */
2006 		check_asid(svm_sc, vcpu, pmap, thiscpu);
2007 
2008 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2009 		vcpustate->dirty = 0;
2010 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2011 
2012 		/* Launch Virtual Machine. */
2013 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2014 		svm_launch(vmcb_pa, gctx);
2015 
2016 		CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
2017 
2018 		/*
2019 		 * Restore MSR_GSBASE to point to the pcpu data area.
2020 		 *
2021 		 * Note that accesses done via PCPU_GET/PCPU_SET will work
2022 		 * only after MSR_GSBASE is restored.
2023 		 *
2024 		 * Also note that we don't bother restoring MSR_KGSBASE
2025 		 * since it is not used in the kernel and will be restored
2026 		 * when the VMRUN ioctl returns to userspace.
2027 		 */
2028 		wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
2029 		KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
2030 		    thiscpu, curcpu));
2031 
2032 		/*
2033 		 * The host GDTR and IDTR is saved by VMRUN and restored
2034 		 * automatically on #VMEXIT. However, the host TSS needs
2035 		 * to be restored explicitly.
2036 		 */
2037 		restore_host_tss();
2038 
2039 		/* #VMEXIT disables interrupts so re-enable them here. */
2040 		enable_gintr();
2041 
2042 		/* Update 'nextrip' */
2043 		vcpustate->nextrip = state->rip;
2044 
2045 		/* Handle #VMEXIT and if required return to user space. */
2046 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2047 	} while (handled);
2048 
2049 	svm_msr_guest_exit(svm_sc, vcpu);
2050 
2051 	return (0);
2052 }
2053 
2054 static void
2055 svm_vmcleanup(void *arg)
2056 {
2057 	struct svm_softc *sc = arg;
2058 
2059 	free(sc, M_SVM);
2060 }
2061 
2062 static register_t *
2063 swctx_regptr(struct svm_regctx *regctx, int reg)
2064 {
2065 
2066 	switch (reg) {
2067 	case VM_REG_GUEST_RBX:
2068 		return (&regctx->sctx_rbx);
2069 	case VM_REG_GUEST_RCX:
2070 		return (&regctx->sctx_rcx);
2071 	case VM_REG_GUEST_RDX:
2072 		return (&regctx->sctx_rdx);
2073 	case VM_REG_GUEST_RDI:
2074 		return (&regctx->sctx_rdi);
2075 	case VM_REG_GUEST_RSI:
2076 		return (&regctx->sctx_rsi);
2077 	case VM_REG_GUEST_RBP:
2078 		return (&regctx->sctx_rbp);
2079 	case VM_REG_GUEST_R8:
2080 		return (&regctx->sctx_r8);
2081 	case VM_REG_GUEST_R9:
2082 		return (&regctx->sctx_r9);
2083 	case VM_REG_GUEST_R10:
2084 		return (&regctx->sctx_r10);
2085 	case VM_REG_GUEST_R11:
2086 		return (&regctx->sctx_r11);
2087 	case VM_REG_GUEST_R12:
2088 		return (&regctx->sctx_r12);
2089 	case VM_REG_GUEST_R13:
2090 		return (&regctx->sctx_r13);
2091 	case VM_REG_GUEST_R14:
2092 		return (&regctx->sctx_r14);
2093 	case VM_REG_GUEST_R15:
2094 		return (&regctx->sctx_r15);
2095 	default:
2096 		return (NULL);
2097 	}
2098 }
2099 
2100 static int
2101 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2102 {
2103 	struct svm_softc *svm_sc;
2104 	register_t *reg;
2105 
2106 	svm_sc = arg;
2107 
2108 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2109 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2110 	}
2111 
2112 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2113 		return (0);
2114 	}
2115 
2116 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2117 
2118 	if (reg != NULL) {
2119 		*val = *reg;
2120 		return (0);
2121 	}
2122 
2123 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2124 	return (EINVAL);
2125 }
2126 
2127 static int
2128 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2129 {
2130 	struct svm_softc *svm_sc;
2131 	register_t *reg;
2132 
2133 	svm_sc = arg;
2134 
2135 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2136 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2137 	}
2138 
2139 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2140 		return (0);
2141 	}
2142 
2143 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2144 
2145 	if (reg != NULL) {
2146 		*reg = val;
2147 		return (0);
2148 	}
2149 
2150 	/*
2151 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2152 	 * vcpu's ASID. This needs to be treated differently depending on
2153 	 * whether 'running' is true/false.
2154 	 */
2155 
2156 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2157 	return (EINVAL);
2158 }
2159 
2160 static int
2161 svm_setcap(void *arg, int vcpu, int type, int val)
2162 {
2163 	struct svm_softc *sc;
2164 	int error;
2165 
2166 	sc = arg;
2167 	error = 0;
2168 	switch (type) {
2169 	case VM_CAP_HALT_EXIT:
2170 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2171 		    VMCB_INTCPT_HLT, val);
2172 		break;
2173 	case VM_CAP_PAUSE_EXIT:
2174 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2175 		    VMCB_INTCPT_PAUSE, val);
2176 		break;
2177 	case VM_CAP_UNRESTRICTED_GUEST:
2178 		/* Unrestricted guest execution cannot be disabled in SVM */
2179 		if (val == 0)
2180 			error = EINVAL;
2181 		break;
2182 	default:
2183 		error = ENOENT;
2184 		break;
2185 	}
2186 	return (error);
2187 }
2188 
2189 static int
2190 svm_getcap(void *arg, int vcpu, int type, int *retval)
2191 {
2192 	struct svm_softc *sc;
2193 	int error;
2194 
2195 	sc = arg;
2196 	error = 0;
2197 
2198 	switch (type) {
2199 	case VM_CAP_HALT_EXIT:
2200 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2201 		    VMCB_INTCPT_HLT);
2202 		break;
2203 	case VM_CAP_PAUSE_EXIT:
2204 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2205 		    VMCB_INTCPT_PAUSE);
2206 		break;
2207 	case VM_CAP_UNRESTRICTED_GUEST:
2208 		*retval = 1;	/* unrestricted guest is always enabled */
2209 		break;
2210 	default:
2211 		error = ENOENT;
2212 		break;
2213 	}
2214 	return (error);
2215 }
2216 
2217 static struct vlapic *
2218 svm_vlapic_init(void *arg, int vcpuid)
2219 {
2220 	struct svm_softc *svm_sc;
2221 	struct vlapic *vlapic;
2222 
2223 	svm_sc = arg;
2224 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2225 	vlapic->vm = svm_sc->vm;
2226 	vlapic->vcpuid = vcpuid;
2227 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2228 
2229 	vlapic_init(vlapic);
2230 
2231 	return (vlapic);
2232 }
2233 
2234 static void
2235 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2236 {
2237 
2238         vlapic_cleanup(vlapic);
2239         free(vlapic, M_SVM_VLAPIC);
2240 }
2241 
2242 struct vmm_ops vmm_ops_amd = {
2243 	svm_init,
2244 	svm_cleanup,
2245 	svm_restore,
2246 	svm_vminit,
2247 	svm_vmrun,
2248 	svm_vmcleanup,
2249 	svm_getreg,
2250 	svm_setreg,
2251 	vmcb_getdesc,
2252 	vmcb_setdesc,
2253 	svm_getcap,
2254 	svm_setcap,
2255 	svm_npt_alloc,
2256 	svm_npt_free,
2257 	svm_vlapic_init,
2258 	svm_vlapic_cleanup
2259 };
2260