xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 914752d0f7f874ab4fc8393aee28c22df87324f2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/reg.h>
40 #include <sys/smr.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <machine/smp.h>
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include <dev/vmm/vmm_ktr.h>
58 
59 #include "vmm_lapic.h"
60 #include "vmm_stat.h"
61 #include "vmm_ioport.h"
62 #include "vatpic.h"
63 #include "vlapic.h"
64 #include "vlapic_priv.h"
65 
66 #include "x86.h"
67 #include "vmcb.h"
68 #include "svm.h"
69 #include "svm_softc.h"
70 #include "svm_msr.h"
71 #include "npt.h"
72 
73 SYSCTL_DECL(_hw_vmm);
74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75     NULL);
76 
77 /*
78  * SVM CPUID function 0x8000_000A, edx bit decoding.
79  */
80 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
81 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
82 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
83 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
84 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
85 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
86 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
87 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
88 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
89 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
90 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
91 
92 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
93 				VMCB_CACHE_IOPM		|	\
94 				VMCB_CACHE_I		|	\
95 				VMCB_CACHE_TPR		|	\
96 				VMCB_CACHE_CR2		|	\
97 				VMCB_CACHE_CR		|	\
98 				VMCB_CACHE_DR		|	\
99 				VMCB_CACHE_DT		|	\
100 				VMCB_CACHE_SEG		|	\
101 				VMCB_CACHE_NP)
102 
103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
105     0, NULL);
106 
107 static MALLOC_DEFINE(M_SVM, "svm", "svm");
108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
109 
110 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
112     "SVM features advertised by CPUID.8000000AH:EDX");
113 
114 static int disable_npf_assist;
115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
116     &disable_npf_assist, 0, NULL);
117 
118 /* Maximum ASIDs supported by the processor */
119 static uint32_t nasid;
120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
121     "Number of ASIDs supported by this processor");
122 
123 /* Current ASID generation for each host cpu */
124 static struct asid asid[MAXCPU];
125 
126 /* SVM host state saved area of size 4KB for each physical core. */
127 static uint8_t *hsave;
128 
129 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
130 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
131 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
132 
133 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
134 static int svm_setreg(void *vcpui, int ident, uint64_t val);
135 static int svm_getreg(void *vcpui, int ident, uint64_t *val);
136 static __inline int
137 flush_by_asid(void)
138 {
139 
140 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
141 }
142 
143 static __inline int
144 decode_assist(void)
145 {
146 
147 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
148 }
149 
150 static void
151 svm_disable(void *arg __unused)
152 {
153 	uint64_t efer;
154 
155 	efer = rdmsr(MSR_EFER);
156 	efer &= ~EFER_SVM;
157 	wrmsr(MSR_EFER, efer);
158 }
159 
160 /*
161  * Disable SVM on all CPUs.
162  */
163 static int
164 svm_modcleanup(void)
165 {
166 
167 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
168 
169 	if (hsave != NULL)
170 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
171 
172 	return (0);
173 }
174 
175 /*
176  * Verify that all the features required by bhyve are available.
177  */
178 static int
179 check_svm_features(void)
180 {
181 	u_int regs[4];
182 
183 	/* CPUID Fn8000_000A is for SVM */
184 	do_cpuid(0x8000000A, regs);
185 	svm_feature &= regs[3];
186 
187 	/*
188 	 * The number of ASIDs can be configured to be less than what is
189 	 * supported by the hardware but not more.
190 	 */
191 	if (nasid == 0 || nasid > regs[1])
192 		nasid = regs[1];
193 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
194 
195 	/* bhyve requires the Nested Paging feature */
196 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
197 		printf("SVM: Nested Paging feature not available.\n");
198 		return (ENXIO);
199 	}
200 
201 	/* bhyve requires the NRIP Save feature */
202 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
203 		printf("SVM: NRIP Save feature not available.\n");
204 		return (ENXIO);
205 	}
206 
207 	return (0);
208 }
209 
210 static void
211 svm_enable(void *arg __unused)
212 {
213 	uint64_t efer;
214 
215 	efer = rdmsr(MSR_EFER);
216 	efer |= EFER_SVM;
217 	wrmsr(MSR_EFER, efer);
218 
219 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
220 }
221 
222 /*
223  * Return 1 if SVM is enabled on this processor and 0 otherwise.
224  */
225 static int
226 svm_available(void)
227 {
228 	uint64_t msr;
229 
230 	/* Section 15.4 Enabling SVM from APM2. */
231 	if ((amd_feature2 & AMDID2_SVM) == 0) {
232 		printf("SVM: not available.\n");
233 		return (0);
234 	}
235 
236 	msr = rdmsr(MSR_VM_CR);
237 	if ((msr & VM_CR_SVMDIS) != 0) {
238 		printf("SVM: disabled by BIOS.\n");
239 		return (0);
240 	}
241 
242 	return (1);
243 }
244 
245 static int
246 svm_modinit(int ipinum)
247 {
248 	int error, cpu;
249 
250 	if (!svm_available())
251 		return (ENXIO);
252 
253 	error = check_svm_features();
254 	if (error)
255 		return (error);
256 
257 	vmcb_clean &= VMCB_CACHE_DEFAULT;
258 
259 	for (cpu = 0; cpu < MAXCPU; cpu++) {
260 		/*
261 		 * Initialize the host ASIDs to their "highest" valid values.
262 		 *
263 		 * The next ASID allocation will rollover both 'gen' and 'num'
264 		 * and start off the sequence at {1,1}.
265 		 */
266 		asid[cpu].gen = ~0UL;
267 		asid[cpu].num = nasid - 1;
268 	}
269 
270 	svm_msr_init();
271 	svm_npt_init(ipinum);
272 
273 	/* Enable SVM on all CPUs */
274 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
275 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
276 
277 	return (0);
278 }
279 
280 static void
281 svm_modresume(void)
282 {
283 
284 	svm_enable(NULL);
285 }
286 
287 #ifdef BHYVE_SNAPSHOT
288 void
289 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
290 {
291 	struct vmcb_ctrl *ctrl;
292 
293 	ctrl = svm_get_vmcb_ctrl(vcpu);
294 	ctrl->tsc_offset = offset;
295 
296 	svm_set_dirty(vcpu, VMCB_CACHE_I);
297 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
298 
299 	vm_set_tsc_offset(vcpu->vcpu, offset);
300 }
301 #endif
302 
303 /* Pentium compatible MSRs */
304 #define MSR_PENTIUM_START 	0
305 #define MSR_PENTIUM_END 	0x1FFF
306 /* AMD 6th generation and Intel compatible MSRs */
307 #define MSR_AMD6TH_START 	0xC0000000UL
308 #define MSR_AMD6TH_END 		0xC0001FFFUL
309 /* AMD 7th and 8th generation compatible MSRs */
310 #define MSR_AMD7TH_START 	0xC0010000UL
311 #define MSR_AMD7TH_END 		0xC0011FFFUL
312 
313 /*
314  * Get the index and bit position for a MSR in permission bitmap.
315  * Two bits are used for each MSR: lower bit for read and higher bit for write.
316  */
317 static int
318 svm_msr_index(uint64_t msr, int *index, int *bit)
319 {
320 	uint32_t base, off;
321 
322 	*index = -1;
323 	*bit = (msr % 4) * 2;
324 	base = 0;
325 
326 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
327 		*index = msr / 4;
328 		return (0);
329 	}
330 
331 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
332 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
333 		off = (msr - MSR_AMD6TH_START);
334 		*index = (off + base) / 4;
335 		return (0);
336 	}
337 
338 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
339 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
340 		off = (msr - MSR_AMD7TH_START);
341 		*index = (off + base) / 4;
342 		return (0);
343 	}
344 
345 	return (EINVAL);
346 }
347 
348 /*
349  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
350  */
351 static void
352 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
353 {
354 	int index, bit, error __diagused;
355 
356 	error = svm_msr_index(msr, &index, &bit);
357 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
358 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
359 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
360 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
361 	    "msr %#lx", __func__, bit, msr));
362 
363 	if (read)
364 		perm_bitmap[index] &= ~(1UL << bit);
365 
366 	if (write)
367 		perm_bitmap[index] &= ~(2UL << bit);
368 }
369 
370 static void
371 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
372 {
373 
374 	svm_msr_perm(perm_bitmap, msr, true, true);
375 }
376 
377 static void
378 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
379 {
380 
381 	svm_msr_perm(perm_bitmap, msr, true, false);
382 }
383 
384 static __inline int
385 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
386 {
387 	struct vmcb_ctrl *ctrl;
388 
389 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
390 
391 	ctrl = svm_get_vmcb_ctrl(vcpu);
392 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
393 }
394 
395 static __inline void
396 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
397 {
398 	struct vmcb_ctrl *ctrl;
399 	uint32_t oldval;
400 
401 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
402 
403 	ctrl = svm_get_vmcb_ctrl(vcpu);
404 	oldval = ctrl->intercept[idx];
405 
406 	if (enabled)
407 		ctrl->intercept[idx] |= bitmask;
408 	else
409 		ctrl->intercept[idx] &= ~bitmask;
410 
411 	if (ctrl->intercept[idx] != oldval) {
412 		svm_set_dirty(vcpu, VMCB_CACHE_I);
413 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
414 		    oldval, ctrl->intercept[idx]);
415 	}
416 }
417 
418 static __inline void
419 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
420 {
421 
422 	svm_set_intercept(vcpu, off, bitmask, 0);
423 }
424 
425 static __inline void
426 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
427 {
428 
429 	svm_set_intercept(vcpu, off, bitmask, 1);
430 }
431 
432 static void
433 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
434     uint64_t msrpm_base_pa, uint64_t np_pml4)
435 {
436 	struct vmcb_ctrl *ctrl;
437 	struct vmcb_state *state;
438 	uint32_t mask;
439 	int n;
440 
441 	ctrl = svm_get_vmcb_ctrl(vcpu);
442 	state = svm_get_vmcb_state(vcpu);
443 
444 	ctrl->iopm_base_pa = iopm_base_pa;
445 	ctrl->msrpm_base_pa = msrpm_base_pa;
446 
447 	/* Enable nested paging */
448 	ctrl->np_enable = 1;
449 	ctrl->n_cr3 = np_pml4;
450 
451 	/*
452 	 * Intercept accesses to the control registers that are not shadowed
453 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
454 	 */
455 	for (n = 0; n < 16; n++) {
456 		mask = (BIT(n) << 16) | BIT(n);
457 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
458 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
459 		else
460 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
461 	}
462 
463 	/*
464 	 * Intercept everything when tracing guest exceptions otherwise
465 	 * just intercept machine check exception.
466 	 */
467 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
468 		for (n = 0; n < 32; n++) {
469 			/*
470 			 * Skip unimplemented vectors in the exception bitmap.
471 			 */
472 			if (n == 2 || n == 9) {
473 				continue;
474 			}
475 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
476 		}
477 	} else {
478 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
479 	}
480 
481 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
482 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
483 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
484 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
485 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
486 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
487 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
488 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
489 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
490 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
491 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
492 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
493 
494 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
495 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
496 
497 	/*
498 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
499 	 * Non-intercepted VMMCALL causes #UD, skip it.
500 	 */
501 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
502 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
503 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
504 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
505 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
506 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
507 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
508 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
509 		    VMCB_INTCPT_WBINVD);
510 	}
511 
512 	/*
513 	 * From section "Canonicalization and Consistency Checks" in APMv2
514 	 * the VMRUN intercept bit must be set to pass the consistency check.
515 	 */
516 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
517 
518 	/*
519 	 * The ASID will be set to a non-zero value just before VMRUN.
520 	 */
521 	ctrl->asid = 0;
522 
523 	/*
524 	 * Section 15.21.1, Interrupt Masking in EFLAGS
525 	 * Section 15.21.2, Virtualizing APIC.TPR
526 	 *
527 	 * This must be set for %rflag and %cr8 isolation of guest and host.
528 	 */
529 	ctrl->v_intr_masking = 1;
530 
531 	/* Enable Last Branch Record aka LBR for debugging */
532 	ctrl->lbr_virt_en = 1;
533 	state->dbgctl = BIT(0);
534 
535 	/* EFER_SVM must always be set when the guest is executing */
536 	state->efer = EFER_SVM;
537 
538 	/* Set up the PAT to power-on state */
539 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
540 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
541 	    PAT_VALUE(2, PAT_UNCACHED)		|
542 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
543 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
544 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
545 	    PAT_VALUE(6, PAT_UNCACHED)		|
546 	    PAT_VALUE(7, PAT_UNCACHEABLE);
547 
548 	/* Set up DR6/7 to power-on state */
549 	state->dr6 = DBREG_DR6_RESERVED1;
550 	state->dr7 = DBREG_DR7_RESERVED1;
551 }
552 
553 /*
554  * Initialize a virtual machine.
555  */
556 static void *
557 svm_init(struct vm *vm, pmap_t pmap)
558 {
559 	struct svm_softc *svm_sc;
560 
561 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
562 
563 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
564 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
565 	if (svm_sc->msr_bitmap == NULL)
566 		panic("contigmalloc of SVM MSR bitmap failed");
567 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
568 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
569 	if (svm_sc->iopm_bitmap == NULL)
570 		panic("contigmalloc of SVM IO bitmap failed");
571 
572 	svm_sc->vm = vm;
573 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
574 
575 	/*
576 	 * Intercept read and write accesses to all MSRs.
577 	 */
578 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
579 
580 	/*
581 	 * Access to the following MSRs is redirected to the VMCB when the
582 	 * guest is executing. Therefore it is safe to allow the guest to
583 	 * read/write these MSRs directly without hypervisor involvement.
584 	 */
585 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
586 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
587 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
588 
589 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
590 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
591 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
595 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
596 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
597 
598 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
599 
600 	/*
601 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
602 	 */
603 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
604 
605 	/* Intercept access to all I/O ports. */
606 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
607 
608 	return (svm_sc);
609 }
610 
611 static void *
612 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
613 {
614 	struct svm_softc *sc = vmi;
615 	struct svm_vcpu *vcpu;
616 
617 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
618 	vcpu->sc = sc;
619 	vcpu->vcpu = vcpu1;
620 	vcpu->vcpuid = vcpuid;
621 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
622 	    M_WAITOK | M_ZERO);
623 	vcpu->nextrip = ~0;
624 	vcpu->lastcpu = NOCPU;
625 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
626 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
627 	    sc->nptp);
628 	svm_msr_guest_init(sc, vcpu);
629 	return (vcpu);
630 }
631 
632 /*
633  * Collateral for a generic SVM VM-exit.
634  */
635 static void
636 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
637 {
638 
639 	vme->exitcode = VM_EXITCODE_SVM;
640 	vme->u.svm.exitcode = code;
641 	vme->u.svm.exitinfo1 = info1;
642 	vme->u.svm.exitinfo2 = info2;
643 }
644 
645 static int
646 svm_cpl(struct vmcb_state *state)
647 {
648 
649 	/*
650 	 * From APMv2:
651 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
652 	 *    from any segment DPL"
653 	 */
654 	return (state->cpl);
655 }
656 
657 static enum vm_cpu_mode
658 svm_vcpu_mode(struct vmcb *vmcb)
659 {
660 	struct vmcb_segment seg;
661 	struct vmcb_state *state;
662 	int error __diagused;
663 
664 	state = &vmcb->state;
665 
666 	if (state->efer & EFER_LMA) {
667 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
668 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
669 		    error));
670 
671 		/*
672 		 * Section 4.8.1 for APM2, check if Code Segment has
673 		 * Long attribute set in descriptor.
674 		 */
675 		if (seg.attrib & VMCB_CS_ATTRIB_L)
676 			return (CPU_MODE_64BIT);
677 		else
678 			return (CPU_MODE_COMPATIBILITY);
679 	} else  if (state->cr0 & CR0_PE) {
680 		return (CPU_MODE_PROTECTED);
681 	} else {
682 		return (CPU_MODE_REAL);
683 	}
684 }
685 
686 static enum vm_paging_mode
687 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
688 {
689 
690 	if ((cr0 & CR0_PG) == 0)
691 		return (PAGING_MODE_FLAT);
692 	if ((cr4 & CR4_PAE) == 0)
693 		return (PAGING_MODE_32);
694 	if (efer & EFER_LME)
695 		return (PAGING_MODE_64);
696 	else
697 		return (PAGING_MODE_PAE);
698 }
699 
700 /*
701  * ins/outs utility routines
702  */
703 static uint64_t
704 svm_inout_str_index(struct svm_regctx *regs, int in)
705 {
706 	uint64_t val;
707 
708 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
709 
710 	return (val);
711 }
712 
713 static uint64_t
714 svm_inout_str_count(struct svm_regctx *regs, int rep)
715 {
716 	uint64_t val;
717 
718 	val = rep ? regs->sctx_rcx : 1;
719 
720 	return (val);
721 }
722 
723 static void
724 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
725     struct vm_inout_str *vis)
726 {
727 	int error __diagused, s;
728 
729 	if (in) {
730 		vis->seg_name = VM_REG_GUEST_ES;
731 	} else {
732 		/* The segment field has standard encoding */
733 		s = (info1 >> 10) & 0x7;
734 		vis->seg_name = vm_segment_name(s);
735 	}
736 
737 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
738 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
739 }
740 
741 static int
742 svm_inout_str_addrsize(uint64_t info1)
743 {
744         uint32_t size;
745 
746         size = (info1 >> 7) & 0x7;
747         switch (size) {
748         case 1:
749                 return (2);     /* 16 bit */
750         case 2:
751                 return (4);     /* 32 bit */
752         case 4:
753                 return (8);     /* 64 bit */
754         default:
755                 panic("%s: invalid size encoding %d", __func__, size);
756         }
757 }
758 
759 static void
760 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
761 {
762 	struct vmcb_state *state;
763 
764 	state = &vmcb->state;
765 	paging->cr3 = state->cr3;
766 	paging->cpl = svm_cpl(state);
767 	paging->cpu_mode = svm_vcpu_mode(vmcb);
768 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
769 	    state->efer);
770 }
771 
772 #define	UNHANDLED 0
773 
774 /*
775  * Handle guest I/O intercept.
776  */
777 static int
778 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
779 {
780 	struct vmcb_ctrl *ctrl;
781 	struct vmcb_state *state;
782 	struct svm_regctx *regs;
783 	struct vm_inout_str *vis;
784 	uint64_t info1;
785 	int inout_string;
786 
787 	state = svm_get_vmcb_state(vcpu);
788 	ctrl  = svm_get_vmcb_ctrl(vcpu);
789 	regs  = svm_get_guest_regctx(vcpu);
790 
791 	info1 = ctrl->exitinfo1;
792 	inout_string = info1 & BIT(2) ? 1 : 0;
793 
794 	/*
795 	 * The effective segment number in EXITINFO1[12:10] is populated
796 	 * only if the processor has the DecodeAssist capability.
797 	 *
798 	 * XXX this is not specified explicitly in APMv2 but can be verified
799 	 * empirically.
800 	 */
801 	if (inout_string && !decode_assist())
802 		return (UNHANDLED);
803 
804 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
805 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
806 	vmexit->u.inout.string 	= inout_string;
807 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
808 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
809 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
810 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
811 
812 	if (inout_string) {
813 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
814 		vis = &vmexit->u.inout_str;
815 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
816 		vis->rflags = state->rflags;
817 		vis->cr0 = state->cr0;
818 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
819 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
820 		vis->addrsize = svm_inout_str_addrsize(info1);
821 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
822 	}
823 
824 	return (UNHANDLED);
825 }
826 
827 static int
828 npf_fault_type(uint64_t exitinfo1)
829 {
830 
831 	if (exitinfo1 & VMCB_NPF_INFO1_W)
832 		return (VM_PROT_WRITE);
833 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
834 		return (VM_PROT_EXECUTE);
835 	else
836 		return (VM_PROT_READ);
837 }
838 
839 static bool
840 svm_npf_emul_fault(uint64_t exitinfo1)
841 {
842 
843 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
844 		return (false);
845 	}
846 
847 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
848 		return (false);
849 	}
850 
851 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
852 		return (false);
853 	}
854 
855 	return (true);
856 }
857 
858 static void
859 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
860 {
861 	struct vm_guest_paging *paging;
862 	struct vmcb_segment seg;
863 	struct vmcb_ctrl *ctrl;
864 	char *inst_bytes;
865 	int error __diagused, inst_len;
866 
867 	ctrl = &vmcb->ctrl;
868 	paging = &vmexit->u.inst_emul.paging;
869 
870 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
871 	vmexit->u.inst_emul.gpa = gpa;
872 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
873 	svm_paging_info(vmcb, paging);
874 
875 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
876 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
877 
878 	switch(paging->cpu_mode) {
879 	case CPU_MODE_REAL:
880 		vmexit->u.inst_emul.cs_base = seg.base;
881 		vmexit->u.inst_emul.cs_d = 0;
882 		break;
883 	case CPU_MODE_PROTECTED:
884 	case CPU_MODE_COMPATIBILITY:
885 		vmexit->u.inst_emul.cs_base = seg.base;
886 
887 		/*
888 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
889 		 */
890 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
891 		    1 : 0;
892 		break;
893 	default:
894 		vmexit->u.inst_emul.cs_base = 0;
895 		vmexit->u.inst_emul.cs_d = 0;
896 		break;
897 	}
898 
899 	/*
900 	 * Copy the instruction bytes into 'vie' if available.
901 	 */
902 	if (decode_assist() && !disable_npf_assist) {
903 		inst_len = ctrl->inst_len;
904 		inst_bytes = ctrl->inst_bytes;
905 	} else {
906 		inst_len = 0;
907 		inst_bytes = NULL;
908 	}
909 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
910 }
911 
912 #ifdef KTR
913 static const char *
914 intrtype_to_str(int intr_type)
915 {
916 	switch (intr_type) {
917 	case VMCB_EVENTINJ_TYPE_INTR:
918 		return ("hwintr");
919 	case VMCB_EVENTINJ_TYPE_NMI:
920 		return ("nmi");
921 	case VMCB_EVENTINJ_TYPE_INTn:
922 		return ("swintr");
923 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
924 		return ("exception");
925 	default:
926 		panic("%s: unknown intr_type %d", __func__, intr_type);
927 	}
928 }
929 #endif
930 
931 /*
932  * Inject an event to vcpu as described in section 15.20, "Event injection".
933  */
934 static void
935 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
936     uint32_t error, bool ec_valid)
937 {
938 	struct vmcb_ctrl *ctrl;
939 
940 	ctrl = svm_get_vmcb_ctrl(vcpu);
941 
942 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
943 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
944 
945 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
946 	    __func__, vector));
947 
948 	switch (intr_type) {
949 	case VMCB_EVENTINJ_TYPE_INTR:
950 	case VMCB_EVENTINJ_TYPE_NMI:
951 	case VMCB_EVENTINJ_TYPE_INTn:
952 		break;
953 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
954 		if (vector >= 0 && vector <= 31 && vector != 2)
955 			break;
956 		/* FALLTHROUGH */
957 	default:
958 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
959 		    intr_type, vector);
960 	}
961 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
962 	if (ec_valid) {
963 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
964 		ctrl->eventinj |= (uint64_t)error << 32;
965 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
966 		    intrtype_to_str(intr_type), vector, error);
967 	} else {
968 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
969 		    intrtype_to_str(intr_type), vector);
970 	}
971 }
972 
973 static void
974 svm_update_virqinfo(struct svm_vcpu *vcpu)
975 {
976 	struct vlapic *vlapic;
977 	struct vmcb_ctrl *ctrl;
978 
979 	vlapic = vm_lapic(vcpu->vcpu);
980 	ctrl = svm_get_vmcb_ctrl(vcpu);
981 
982 	/* Update %cr8 in the emulated vlapic */
983 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
984 
985 	/* Virtual interrupt injection is not used. */
986 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
987 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
988 }
989 
990 static void
991 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
992 {
993 	struct vmcb_ctrl *ctrl;
994 	uint64_t intinfo;
995 
996 	ctrl = svm_get_vmcb_ctrl(vcpu);
997 	intinfo = ctrl->exitintinfo;
998 	if (!VMCB_EXITINTINFO_VALID(intinfo))
999 		return;
1000 
1001 	/*
1002 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1003 	 *
1004 	 * If a #VMEXIT happened during event delivery then record the event
1005 	 * that was being delivered.
1006 	 */
1007 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1008 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1009 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1010 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1011 }
1012 
1013 #ifdef INVARIANTS
1014 static __inline int
1015 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1016 {
1017 
1018 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1019 }
1020 #endif
1021 
1022 static __inline void
1023 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1024 {
1025 	struct vmcb_ctrl *ctrl;
1026 
1027 	ctrl = svm_get_vmcb_ctrl(vcpu);
1028 
1029 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1030 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1031 		KASSERT(vintr_intercept_enabled(vcpu),
1032 		    ("%s: vintr intercept should be enabled", __func__));
1033 		return;
1034 	}
1035 
1036 	SVM_CTR0(vcpu, "Enable intr window exiting");
1037 	ctrl->v_irq = 1;
1038 	ctrl->v_ign_tpr = 1;
1039 	ctrl->v_intr_vector = 0;
1040 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1041 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1042 }
1043 
1044 static __inline void
1045 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1046 {
1047 	struct vmcb_ctrl *ctrl;
1048 
1049 	ctrl = svm_get_vmcb_ctrl(vcpu);
1050 
1051 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1052 		KASSERT(!vintr_intercept_enabled(vcpu),
1053 		    ("%s: vintr intercept should be disabled", __func__));
1054 		return;
1055 	}
1056 
1057 	SVM_CTR0(vcpu, "Disable intr window exiting");
1058 	ctrl->v_irq = 0;
1059 	ctrl->v_intr_vector = 0;
1060 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1061 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1062 }
1063 
1064 static int
1065 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1066 {
1067 	struct vmcb_ctrl *ctrl;
1068 	int oldval, newval;
1069 
1070 	ctrl = svm_get_vmcb_ctrl(vcpu);
1071 	oldval = ctrl->intr_shadow;
1072 	newval = val ? 1 : 0;
1073 	if (newval != oldval) {
1074 		ctrl->intr_shadow = newval;
1075 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1076 	}
1077 	return (0);
1078 }
1079 
1080 static int
1081 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1082 {
1083 	struct vmcb_ctrl *ctrl;
1084 
1085 	ctrl = svm_get_vmcb_ctrl(vcpu);
1086 	*val = ctrl->intr_shadow;
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1092  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1093  * to track when the vcpu is done handling the NMI.
1094  */
1095 static int
1096 nmi_blocked(struct svm_vcpu *vcpu)
1097 {
1098 	int blocked;
1099 
1100 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1101 	return (blocked);
1102 }
1103 
1104 static void
1105 enable_nmi_blocking(struct svm_vcpu *vcpu)
1106 {
1107 
1108 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1109 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1110 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1111 }
1112 
1113 static void
1114 clear_nmi_blocking(struct svm_vcpu *vcpu)
1115 {
1116 	int error __diagused;
1117 
1118 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1119 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1120 	/*
1121 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1122 	 * the "iret" when it runs next. However, it is possible to inject
1123 	 * another NMI into the vcpu before the "iret" has actually executed.
1124 	 *
1125 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1126 	 * it will trap back into the hypervisor. If an NMI is pending for
1127 	 * the vcpu it will be injected into the guest.
1128 	 *
1129 	 * XXX this needs to be fixed
1130 	 */
1131 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1132 
1133 	/*
1134 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1135 	 * immediate VMRUN.
1136 	 */
1137 	error = svm_modify_intr_shadow(vcpu, 1);
1138 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1139 }
1140 
1141 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1142 
1143 static int
1144 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1145     bool *retu)
1146 {
1147 	struct vm_exit *vme;
1148 	struct vmcb_state *state;
1149 	uint64_t changed, lma, oldval;
1150 	int error __diagused;
1151 
1152 	state = svm_get_vmcb_state(vcpu);
1153 
1154 	oldval = state->efer;
1155 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1156 
1157 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1158 	changed = oldval ^ newval;
1159 
1160 	if (newval & EFER_MBZ_BITS)
1161 		goto gpf;
1162 
1163 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1164 	if (changed & EFER_LME) {
1165 		if (state->cr0 & CR0_PG)
1166 			goto gpf;
1167 	}
1168 
1169 	/* EFER.LMA = EFER.LME & CR0.PG */
1170 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1171 		lma = EFER_LMA;
1172 	else
1173 		lma = 0;
1174 
1175 	if ((newval & EFER_LMA) != lma)
1176 		goto gpf;
1177 
1178 	if (newval & EFER_NXE) {
1179 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1180 			goto gpf;
1181 	}
1182 
1183 	/*
1184 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1185 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1186 	 */
1187 	if (newval & EFER_LMSLE) {
1188 		vme = vm_exitinfo(vcpu->vcpu);
1189 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1190 		*retu = true;
1191 		return (0);
1192 	}
1193 
1194 	if (newval & EFER_FFXSR) {
1195 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1196 			goto gpf;
1197 	}
1198 
1199 	if (newval & EFER_TCE) {
1200 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1201 			goto gpf;
1202 	}
1203 
1204 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1205 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1206 	return (0);
1207 gpf:
1208 	vm_inject_gp(vcpu->vcpu);
1209 	return (0);
1210 }
1211 
1212 static int
1213 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1214     uint64_t val, bool *retu)
1215 {
1216 	int error;
1217 
1218 	if (lapic_msr(num))
1219 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1220 	else if (num == MSR_EFER)
1221 		error = svm_write_efer(sc, vcpu, val, retu);
1222 	else
1223 		error = svm_wrmsr(vcpu, num, val, retu);
1224 
1225 	return (error);
1226 }
1227 
1228 static int
1229 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1230 {
1231 	struct vmcb_state *state;
1232 	struct svm_regctx *ctx;
1233 	uint64_t result;
1234 	int error;
1235 
1236 	if (lapic_msr(num))
1237 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1238 	else
1239 		error = svm_rdmsr(vcpu, num, &result, retu);
1240 
1241 	if (error == 0) {
1242 		state = svm_get_vmcb_state(vcpu);
1243 		ctx = svm_get_guest_regctx(vcpu);
1244 		state->rax = result & 0xffffffff;
1245 		ctx->sctx_rdx = result >> 32;
1246 	}
1247 
1248 	return (error);
1249 }
1250 
1251 #ifdef KTR
1252 static const char *
1253 exit_reason_to_str(uint64_t reason)
1254 {
1255 	int i;
1256 	static char reasonbuf[32];
1257 	static const struct {
1258 		int reason;
1259 		const char *str;
1260 	} reasons[] = {
1261 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1262 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1263 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1264 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1265 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1266 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1267 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1268 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1269 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1270 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1271 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1272 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1273 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1274 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1275 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1276 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1277 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1278 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1279 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1280 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1281 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1282 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1283 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1284 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1285 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1286 		{ .reason = VMCB_EXIT_POPF,	.str = "popf" },
1287 		{ .reason = VMCB_EXIT_PUSHF,	.str = "pushf" },
1288 	};
1289 
1290 	for (i = 0; i < nitems(reasons); i++) {
1291 		if (reasons[i].reason == reason)
1292 			return (reasons[i].str);
1293 	}
1294 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1295 	return (reasonbuf);
1296 }
1297 #endif	/* KTR */
1298 
1299 /*
1300  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1301  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1302  * and exceptions caused by INT3, INTO and BOUND instructions.
1303  *
1304  * Return 1 if the nRIP is valid and 0 otherwise.
1305  */
1306 static int
1307 nrip_valid(uint64_t exitcode)
1308 {
1309 	switch (exitcode) {
1310 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1311 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1312 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1313 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1314 	case 0x43:		/* INT3 */
1315 	case 0x44:		/* INTO */
1316 	case 0x45:		/* BOUND */
1317 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1318 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1319 		return (1);
1320 	default:
1321 		return (0);
1322 	}
1323 }
1324 
1325 static int
1326 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1327     struct vm_exit *vmexit)
1328 {
1329 	struct vmcb *vmcb;
1330 	struct vmcb_state *state;
1331 	struct vmcb_ctrl *ctrl;
1332 	struct svm_regctx *ctx;
1333 	uint64_t code, info1, info2, val;
1334 	uint32_t eax, ecx, edx;
1335 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1336 	bool retu;
1337 
1338 	ctx = svm_get_guest_regctx(vcpu);
1339 	vmcb = svm_get_vmcb(vcpu);
1340 	state = &vmcb->state;
1341 	ctrl = &vmcb->ctrl;
1342 
1343 	handled = 0;
1344 	code = ctrl->exitcode;
1345 	info1 = ctrl->exitinfo1;
1346 	info2 = ctrl->exitinfo2;
1347 
1348 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1349 	vmexit->rip = state->rip;
1350 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1351 
1352 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1353 
1354 	/*
1355 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1356 	 * in an inconsistent state and can trigger assertions that would
1357 	 * never happen otherwise.
1358 	 */
1359 	if (code == VMCB_EXIT_INVALID) {
1360 		vm_exit_svm(vmexit, code, info1, info2);
1361 		return (0);
1362 	}
1363 
1364 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1365 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1366 
1367 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1368 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1369 	    vmexit->inst_length, code, info1, info2));
1370 
1371 	svm_update_virqinfo(vcpu);
1372 	svm_save_intinfo(svm_sc, vcpu);
1373 
1374 	switch (code) {
1375 	case VMCB_EXIT_IRET:
1376 		/*
1377 		 * Restart execution at "iret" but with the intercept cleared.
1378 		 */
1379 		vmexit->inst_length = 0;
1380 		clear_nmi_blocking(vcpu);
1381 		handled = 1;
1382 		break;
1383 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1384 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1385 		handled = 1;
1386 		break;
1387 	case VMCB_EXIT_INTR:	/* external interrupt */
1388 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1389 		handled = 1;
1390 		break;
1391 	case VMCB_EXIT_NMI:	/* external NMI */
1392 		handled = 1;
1393 		break;
1394 	case 0x40 ... 0x5F:
1395 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1396 		reflect = 1;
1397 		idtvec = code - 0x40;
1398 		switch (idtvec) {
1399 		case IDT_MC:
1400 			/*
1401 			 * Call the machine check handler by hand. Also don't
1402 			 * reflect the machine check back into the guest.
1403 			 */
1404 			reflect = 0;
1405 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1406 			__asm __volatile("int $18");
1407 			break;
1408 		case IDT_PF:
1409 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1410 			KASSERT(error == 0, ("%s: error %d updating cr2",
1411 			    __func__, error));
1412 			/* fallthru */
1413 		case IDT_NP:
1414 		case IDT_SS:
1415 		case IDT_GP:
1416 		case IDT_AC:
1417 		case IDT_TS:
1418 			errcode_valid = 1;
1419 			break;
1420 
1421 		case IDT_DF:
1422 			errcode_valid = 1;
1423 			info1 = 0;
1424 			break;
1425 		case IDT_DB: {
1426 			/*
1427 			 * Check if we are being stepped (RFLAGS.TF)
1428 			 * and bounce vmexit to userland.
1429 			 */
1430 			bool stepped = 0;
1431 			uint64_t dr6 = 0;
1432 
1433 			svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1434 			stepped = !!(dr6 & DBREG_DR6_BS);
1435 			if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1436 				vmexit->exitcode = VM_EXITCODE_DB;
1437 				vmexit->u.dbg.trace_trap = 1;
1438 				vmexit->u.dbg.pushf_intercept = 0;
1439 
1440 				if (vcpu->dbg.popf_sstep) {
1441 					/*
1442 					 * DB# exit was caused by stepping over
1443 					 * popf.
1444 					 */
1445 					uint64_t rflags;
1446 
1447 					vcpu->dbg.popf_sstep = 0;
1448 
1449 					/*
1450 					 * Update shadowed TF bit so the next
1451 					 * setcap(..., RFLAGS_SSTEP, 0) restores
1452 					 * the correct value
1453 					 */
1454 					svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1455 					    &rflags);
1456 					vcpu->dbg.rflags_tf = rflags & PSL_T;
1457 				} else if (vcpu->dbg.pushf_sstep) {
1458 					/*
1459 					 * DB# exit was caused by stepping over
1460 					 * pushf.
1461 					 */
1462 					vcpu->dbg.pushf_sstep = 0;
1463 
1464 					/*
1465 					 * Adjusting the pushed rflags after a
1466 					 * restarted pushf instruction must be
1467 					 * handled outside of svm.c due to the
1468 					 * critical_enter() lock being held.
1469 					 */
1470 					vmexit->u.dbg.pushf_intercept = 1;
1471 					vmexit->u.dbg.tf_shadow_val =
1472 					    vcpu->dbg.rflags_tf;
1473 					svm_paging_info(svm_get_vmcb(vcpu),
1474 					    &vmexit->u.dbg.paging);
1475 				}
1476 
1477 				/* Clear DR6 "single-step" bit. */
1478 				dr6 &= ~DBREG_DR6_BS;
1479 				error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1480 				KASSERT(error == 0,
1481 				    ("%s: error %d updating DR6\r\n", __func__,
1482 					error));
1483 
1484 				reflect = 0;
1485 			}
1486 			break;
1487 		}
1488 		case IDT_BP:
1489 			vmexit->exitcode = VM_EXITCODE_BPT;
1490 			vmexit->u.bpt.inst_length = vmexit->inst_length;
1491 			vmexit->inst_length = 0;
1492 
1493 			reflect = 0;
1494 			break;
1495 		case IDT_OF:
1496 		case IDT_BR:
1497 			/*
1498 			 * The 'nrip' field is populated for INT3, INTO and
1499 			 * BOUND exceptions and this also implies that
1500 			 * 'inst_length' is non-zero.
1501 			 *
1502 			 * Reset 'inst_length' to zero so the guest %rip at
1503 			 * event injection is identical to what it was when
1504 			 * the exception originally happened.
1505 			 */
1506 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1507 			    "to zero before injecting exception %d",
1508 			    vmexit->inst_length, idtvec);
1509 			vmexit->inst_length = 0;
1510 			/* fallthru */
1511 		default:
1512 			errcode_valid = 0;
1513 			info1 = 0;
1514 			break;
1515 		}
1516 
1517 		if (reflect) {
1518 			KASSERT(vmexit->inst_length == 0,
1519 			    ("invalid inst_length (%d) "
1520 			     "when reflecting exception %d into guest",
1521 				vmexit->inst_length, idtvec));
1522 			/* Reflect the exception back into the guest */
1523 			SVM_CTR2(vcpu, "Reflecting exception "
1524 			    "%d/%#x into the guest", idtvec, (int)info1);
1525 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1526 			    errcode_valid, info1, 0);
1527 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1528 			    __func__, error));
1529 			handled = 1;
1530 		}
1531 		break;
1532 	case VMCB_EXIT_MSR:	/* MSR access. */
1533 		eax = state->rax;
1534 		ecx = ctx->sctx_rcx;
1535 		edx = ctx->sctx_rdx;
1536 		retu = false;
1537 
1538 		if (info1) {
1539 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1540 			val = (uint64_t)edx << 32 | eax;
1541 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1542 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1543 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1544 				vmexit->u.msr.code = ecx;
1545 				vmexit->u.msr.wval = val;
1546 			} else if (!retu) {
1547 				handled = 1;
1548 			} else {
1549 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1550 				    ("emulate_wrmsr retu with bogus exitcode"));
1551 			}
1552 		} else {
1553 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1554 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1555 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1556 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1557 				vmexit->u.msr.code = ecx;
1558 			} else if (!retu) {
1559 				handled = 1;
1560 			} else {
1561 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1562 				    ("emulate_rdmsr retu with bogus exitcode"));
1563 			}
1564 		}
1565 		break;
1566 	case VMCB_EXIT_IO:
1567 		handled = svm_handle_io(vcpu, vmexit);
1568 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1569 		break;
1570 	case VMCB_EXIT_CPUID:
1571 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1572 		handled = x86_emulate_cpuid(vcpu->vcpu,
1573 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1574 		    &ctx->sctx_rdx);
1575 		break;
1576 	case VMCB_EXIT_HLT:
1577 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1578 		vmexit->exitcode = VM_EXITCODE_HLT;
1579 		vmexit->u.hlt.rflags = state->rflags;
1580 		break;
1581 	case VMCB_EXIT_PAUSE:
1582 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1583 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1584 		break;
1585 	case VMCB_EXIT_NPF:
1586 		/* EXITINFO2 contains the faulting guest physical address */
1587 		if (info1 & VMCB_NPF_INFO1_RSV) {
1588 			SVM_CTR2(vcpu, "nested page fault with "
1589 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1590 			    info1, info2);
1591 		} else if (vm_mem_allocated(vcpu->vcpu, info2)) {
1592 			vmexit->exitcode = VM_EXITCODE_PAGING;
1593 			vmexit->u.paging.gpa = info2;
1594 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1595 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1596 			SVM_CTR3(vcpu, "nested page fault "
1597 			    "on gpa %#lx/%#lx at rip %#lx",
1598 			    info2, info1, state->rip);
1599 		} else if (svm_npf_emul_fault(info1)) {
1600 			svm_handle_inst_emul(vmcb, info2, vmexit);
1601 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1602 			SVM_CTR3(vcpu, "inst_emul fault "
1603 			    "for gpa %#lx/%#lx at rip %#lx",
1604 			    info2, info1, state->rip);
1605 		}
1606 		break;
1607 	case VMCB_EXIT_MONITOR:
1608 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1609 		break;
1610 	case VMCB_EXIT_MWAIT:
1611 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1612 		break;
1613 	case VMCB_EXIT_PUSHF: {
1614 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1615 			uint64_t rflags;
1616 
1617 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1618 			/* Restart this instruction. */
1619 			vmexit->inst_length = 0;
1620 			/* Disable PUSHF intercepts - avoid a loop. */
1621 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1622 			    VMCB_INTCPT_PUSHF, 0);
1623 			/* Trace restarted instruction. */
1624 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1625 			/* Let the IDT_DB handler know that pushf was stepped.
1626 			 */
1627 			vcpu->dbg.pushf_sstep = 1;
1628 			handled = 1;
1629 		}
1630 		break;
1631 	}
1632 	case VMCB_EXIT_POPF: {
1633 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1634 			uint64_t rflags;
1635 
1636 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1637 			/* Restart this instruction */
1638 			vmexit->inst_length = 0;
1639 			/* Disable POPF intercepts - avoid a loop*/
1640 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1641 			    VMCB_INTCPT_POPF, 0);
1642 			/* Trace restarted instruction */
1643 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1644 			vcpu->dbg.popf_sstep = 1;
1645 			handled = 1;
1646 		}
1647 		break;
1648 	}
1649 	case VMCB_EXIT_SHUTDOWN:
1650 	case VMCB_EXIT_VMRUN:
1651 	case VMCB_EXIT_VMMCALL:
1652 	case VMCB_EXIT_VMLOAD:
1653 	case VMCB_EXIT_VMSAVE:
1654 	case VMCB_EXIT_STGI:
1655 	case VMCB_EXIT_CLGI:
1656 	case VMCB_EXIT_SKINIT:
1657 	case VMCB_EXIT_ICEBP:
1658 	case VMCB_EXIT_INVLPGA:
1659 		vm_inject_ud(vcpu->vcpu);
1660 		handled = 1;
1661 		break;
1662 	case VMCB_EXIT_INVD:
1663 	case VMCB_EXIT_WBINVD:
1664 		/* ignore exit */
1665 		handled = 1;
1666 		break;
1667 	default:
1668 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1669 		break;
1670 	}
1671 
1672 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1673 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1674 	    vmexit->rip, vmexit->inst_length);
1675 
1676 	if (handled) {
1677 		vmexit->rip += vmexit->inst_length;
1678 		vmexit->inst_length = 0;
1679 		state->rip = vmexit->rip;
1680 	} else {
1681 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1682 			/*
1683 			 * If this VM exit was not claimed by anybody then
1684 			 * treat it as a generic SVM exit.
1685 			 */
1686 			vm_exit_svm(vmexit, code, info1, info2);
1687 		} else {
1688 			/*
1689 			 * The exitcode and collateral have been populated.
1690 			 * The VM exit will be processed further in userland.
1691 			 */
1692 		}
1693 	}
1694 	return (handled);
1695 }
1696 
1697 static void
1698 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1699 {
1700 	uint64_t intinfo;
1701 
1702 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1703 		return;
1704 
1705 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1706 	    "valid: %#lx", __func__, intinfo));
1707 
1708 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1709 		VMCB_EXITINTINFO_VECTOR(intinfo),
1710 		VMCB_EXITINTINFO_EC(intinfo),
1711 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1712 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1713 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1714 }
1715 
1716 /*
1717  * Inject event to virtual cpu.
1718  */
1719 static void
1720 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1721     struct vlapic *vlapic)
1722 {
1723 	struct vmcb_ctrl *ctrl;
1724 	struct vmcb_state *state;
1725 	uint8_t v_tpr;
1726 	int vector, need_intr_window;
1727 	int extint_pending;
1728 
1729 	if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1730 		return;
1731 	}
1732 
1733 	state = svm_get_vmcb_state(vcpu);
1734 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1735 
1736 	need_intr_window = 0;
1737 
1738 	if (vcpu->nextrip != state->rip) {
1739 		ctrl->intr_shadow = 0;
1740 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1741 		    "cleared due to rip change: %#lx/%#lx",
1742 		    vcpu->nextrip, state->rip);
1743 	}
1744 
1745 	/*
1746 	 * Inject pending events or exceptions for this vcpu.
1747 	 *
1748 	 * An event might be pending because the previous #VMEXIT happened
1749 	 * during event delivery (i.e. ctrl->exitintinfo).
1750 	 *
1751 	 * An event might also be pending because an exception was injected
1752 	 * by the hypervisor (e.g. #PF during instruction emulation).
1753 	 */
1754 	svm_inj_intinfo(sc, vcpu);
1755 
1756 	/* NMI event has priority over interrupts. */
1757 	if (vm_nmi_pending(vcpu->vcpu)) {
1758 		if (nmi_blocked(vcpu)) {
1759 			/*
1760 			 * Can't inject another NMI if the guest has not
1761 			 * yet executed an "iret" after the last NMI.
1762 			 */
1763 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1764 			    "to NMI-blocking");
1765 		} else if (ctrl->intr_shadow) {
1766 			/*
1767 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1768 			 */
1769 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1770 			    "interrupt shadow");
1771 			need_intr_window = 1;
1772 			goto done;
1773 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1774 			/*
1775 			 * If there is already an exception/interrupt pending
1776 			 * then defer the NMI until after that.
1777 			 */
1778 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1779 			    "eventinj %#lx", ctrl->eventinj);
1780 
1781 			/*
1782 			 * Use self-IPI to trigger a VM-exit as soon as
1783 			 * possible after the event injection is completed.
1784 			 *
1785 			 * This works only if the external interrupt exiting
1786 			 * is at a lower priority than the event injection.
1787 			 *
1788 			 * Although not explicitly specified in APMv2 the
1789 			 * relative priorities were verified empirically.
1790 			 */
1791 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1792 		} else {
1793 			vm_nmi_clear(vcpu->vcpu);
1794 
1795 			/* Inject NMI, vector number is not used */
1796 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1797 			    IDT_NMI, 0, false);
1798 
1799 			/* virtual NMI blocking is now in effect */
1800 			enable_nmi_blocking(vcpu);
1801 
1802 			SVM_CTR0(vcpu, "Injecting vNMI");
1803 		}
1804 	}
1805 
1806 	extint_pending = vm_extint_pending(vcpu->vcpu);
1807 	if (!extint_pending) {
1808 		if (!vlapic_pending_intr(vlapic, &vector))
1809 			goto done;
1810 		KASSERT(vector >= 16 && vector <= 255,
1811 		    ("invalid vector %d from local APIC", vector));
1812 	} else {
1813 		/* Ask the legacy pic for a vector to inject */
1814 		vatpic_pending_intr(sc->vm, &vector);
1815 		KASSERT(vector >= 0 && vector <= 255,
1816 		    ("invalid vector %d from INTR", vector));
1817 	}
1818 
1819 	/*
1820 	 * If the guest has disabled interrupts or is in an interrupt shadow
1821 	 * then we cannot inject the pending interrupt.
1822 	 */
1823 	if ((state->rflags & PSL_I) == 0) {
1824 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1825 		    "rflags %#lx", vector, state->rflags);
1826 		need_intr_window = 1;
1827 		goto done;
1828 	}
1829 
1830 	if (ctrl->intr_shadow) {
1831 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1832 		    "interrupt shadow", vector);
1833 		need_intr_window = 1;
1834 		goto done;
1835 	}
1836 
1837 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1838 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1839 		    "eventinj %#lx", vector, ctrl->eventinj);
1840 		need_intr_window = 1;
1841 		goto done;
1842 	}
1843 
1844 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1845 
1846 	if (!extint_pending) {
1847 		vlapic_intr_accepted(vlapic, vector);
1848 	} else {
1849 		vm_extint_clear(vcpu->vcpu);
1850 		vatpic_intr_accepted(sc->vm, vector);
1851 	}
1852 
1853 	/*
1854 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1855 	 * interrupt. This is done because the PIC might have another vector
1856 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1857 	 * that was preempted by the ExtInt then it allows us to inject the
1858 	 * APIC vector as soon as possible.
1859 	 */
1860 	need_intr_window = 1;
1861 done:
1862 	/*
1863 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1864 	 * the processor reflects this write to V_TPR without hypervisor
1865 	 * intervention.
1866 	 *
1867 	 * The guest can also modify the TPR by writing to it via the memory
1868 	 * mapped APIC page. In this case, the write will be emulated by the
1869 	 * hypervisor. For this reason V_TPR must be updated before every
1870 	 * VMRUN.
1871 	 */
1872 	v_tpr = vlapic_get_cr8(vlapic);
1873 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1874 	if (ctrl->v_tpr != v_tpr) {
1875 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1876 		    ctrl->v_tpr, v_tpr);
1877 		ctrl->v_tpr = v_tpr;
1878 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1879 	}
1880 
1881 	if (need_intr_window) {
1882 		/*
1883 		 * We use V_IRQ in conjunction with the VINTR intercept to
1884 		 * trap into the hypervisor as soon as a virtual interrupt
1885 		 * can be delivered.
1886 		 *
1887 		 * Since injected events are not subject to intercept checks
1888 		 * we need to ensure that the V_IRQ is not actually going to
1889 		 * be delivered on VM entry. The KASSERT below enforces this.
1890 		 */
1891 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1892 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1893 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1894 		    "intr_shadow (%u), rflags (%#lx)",
1895 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1896 		enable_intr_window_exiting(vcpu);
1897 	} else {
1898 		disable_intr_window_exiting(vcpu);
1899 	}
1900 }
1901 
1902 static __inline void
1903 restore_host_tss(void)
1904 {
1905 	struct system_segment_descriptor *tss_sd;
1906 
1907 	/*
1908 	 * The TSS descriptor was in use prior to launching the guest so it
1909 	 * has been marked busy.
1910 	 *
1911 	 * 'ltr' requires the descriptor to be marked available so change the
1912 	 * type to "64-bit available TSS".
1913 	 */
1914 	tss_sd = PCPU_GET(tss);
1915 	tss_sd->sd_type = SDT_SYSTSS;
1916 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1917 }
1918 
1919 static void
1920 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1921 {
1922 	struct vmcb_ctrl *ctrl;
1923 	long eptgen;
1924 	int cpu;
1925 	bool alloc_asid;
1926 
1927 	cpu = curcpu;
1928 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1929 	smr_enter(pmap->pm_eptsmr);
1930 
1931 	ctrl = svm_get_vmcb_ctrl(vcpu);
1932 
1933 	/*
1934 	 * The TLB entries associated with the vcpu's ASID are not valid
1935 	 * if either of the following conditions is true:
1936 	 *
1937 	 * 1. The vcpu's ASID generation is different than the host cpu's
1938 	 *    ASID generation. This happens when the vcpu migrates to a new
1939 	 *    host cpu. It can also happen when the number of vcpus executing
1940 	 *    on a host cpu is greater than the number of ASIDs available.
1941 	 *
1942 	 * 2. The pmap generation number is different than the value cached in
1943 	 *    the 'vcpustate'. This happens when the host invalidates pages
1944 	 *    belonging to the guest.
1945 	 *
1946 	 *	asidgen		eptgen	      Action
1947 	 *	mismatch	mismatch
1948 	 *	   0		   0		(a)
1949 	 *	   0		   1		(b1) or (b2)
1950 	 *	   1		   0		(c)
1951 	 *	   1		   1		(d)
1952 	 *
1953 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1954 	 *     no further action is needed.
1955 	 *
1956 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1957 	 *      retained and the TLB entries associated with this ASID
1958 	 *      are flushed by VMRUN.
1959 	 *
1960 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1961 	 *      allocated.
1962 	 *
1963 	 * (c) A new ASID is allocated.
1964 	 *
1965 	 * (d) A new ASID is allocated.
1966 	 */
1967 
1968 	alloc_asid = false;
1969 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1970 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1971 
1972 	if (vcpu->asid.gen != asid[cpu].gen) {
1973 		alloc_asid = true;	/* (c) and (d) */
1974 	} else if (vcpu->eptgen != eptgen) {
1975 		if (flush_by_asid())
1976 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1977 		else
1978 			alloc_asid = true;			/* (b2) */
1979 	} else {
1980 		/*
1981 		 * This is the common case (a).
1982 		 */
1983 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1984 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1985 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1986 	}
1987 
1988 	if (alloc_asid) {
1989 		if (++asid[cpu].num >= nasid) {
1990 			asid[cpu].num = 1;
1991 			if (++asid[cpu].gen == 0)
1992 				asid[cpu].gen = 1;
1993 			/*
1994 			 * If this cpu does not support "flush-by-asid"
1995 			 * then flush the entire TLB on a generation
1996 			 * bump. Subsequent ASID allocation in this
1997 			 * generation can be done without a TLB flush.
1998 			 */
1999 			if (!flush_by_asid())
2000 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2001 		}
2002 		vcpu->asid.gen = asid[cpu].gen;
2003 		vcpu->asid.num = asid[cpu].num;
2004 
2005 		ctrl->asid = vcpu->asid.num;
2006 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2007 		/*
2008 		 * If this cpu supports "flush-by-asid" then the TLB
2009 		 * was not flushed after the generation bump. The TLB
2010 		 * is flushed selectively after every new ASID allocation.
2011 		 */
2012 		if (flush_by_asid())
2013 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2014 	}
2015 	vcpu->eptgen = eptgen;
2016 
2017 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2018 	KASSERT(ctrl->asid == vcpu->asid.num,
2019 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2020 }
2021 
2022 static void
2023 svm_pmap_deactivate(pmap_t pmap)
2024 {
2025 	smr_exit(pmap->pm_eptsmr);
2026 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2027 }
2028 
2029 static __inline void
2030 disable_gintr(void)
2031 {
2032 
2033 	__asm __volatile("clgi");
2034 }
2035 
2036 static __inline void
2037 enable_gintr(void)
2038 {
2039 
2040         __asm __volatile("stgi");
2041 }
2042 
2043 static __inline void
2044 svm_dr_enter_guest(struct svm_regctx *gctx)
2045 {
2046 
2047 	/* Save host control debug registers. */
2048 	gctx->host_dr7 = rdr7();
2049 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2050 
2051 	/*
2052 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2053 	 * exceptions in the host based on the guest DRx values.  The
2054 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
2055 	 * VMCB.
2056 	 */
2057 	load_dr7(0);
2058 	wrmsr(MSR_DEBUGCTLMSR, 0);
2059 
2060 	/* Save host debug registers. */
2061 	gctx->host_dr0 = rdr0();
2062 	gctx->host_dr1 = rdr1();
2063 	gctx->host_dr2 = rdr2();
2064 	gctx->host_dr3 = rdr3();
2065 	gctx->host_dr6 = rdr6();
2066 
2067 	/* Restore guest debug registers. */
2068 	load_dr0(gctx->sctx_dr0);
2069 	load_dr1(gctx->sctx_dr1);
2070 	load_dr2(gctx->sctx_dr2);
2071 	load_dr3(gctx->sctx_dr3);
2072 }
2073 
2074 static __inline void
2075 svm_dr_leave_guest(struct svm_regctx *gctx)
2076 {
2077 
2078 	/* Save guest debug registers. */
2079 	gctx->sctx_dr0 = rdr0();
2080 	gctx->sctx_dr1 = rdr1();
2081 	gctx->sctx_dr2 = rdr2();
2082 	gctx->sctx_dr3 = rdr3();
2083 
2084 	/*
2085 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
2086 	 * last.
2087 	 */
2088 	load_dr0(gctx->host_dr0);
2089 	load_dr1(gctx->host_dr1);
2090 	load_dr2(gctx->host_dr2);
2091 	load_dr3(gctx->host_dr3);
2092 	load_dr6(gctx->host_dr6);
2093 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2094 	load_dr7(gctx->host_dr7);
2095 }
2096 
2097 /*
2098  * Start vcpu with specified RIP.
2099  */
2100 static int
2101 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2102 {
2103 	struct svm_regctx *gctx;
2104 	struct svm_softc *svm_sc;
2105 	struct svm_vcpu *vcpu;
2106 	struct vmcb_state *state;
2107 	struct vmcb_ctrl *ctrl;
2108 	struct vm_exit *vmexit;
2109 	struct vlapic *vlapic;
2110 	uint64_t vmcb_pa;
2111 	int handled;
2112 	uint16_t ldt_sel;
2113 
2114 	vcpu = vcpui;
2115 	svm_sc = vcpu->sc;
2116 	state = svm_get_vmcb_state(vcpu);
2117 	ctrl = svm_get_vmcb_ctrl(vcpu);
2118 	vmexit = vm_exitinfo(vcpu->vcpu);
2119 	vlapic = vm_lapic(vcpu->vcpu);
2120 
2121 	gctx = svm_get_guest_regctx(vcpu);
2122 	vmcb_pa = vcpu->vmcb_pa;
2123 
2124 	if (vcpu->lastcpu != curcpu) {
2125 		/*
2126 		 * Force new ASID allocation by invalidating the generation.
2127 		 */
2128 		vcpu->asid.gen = 0;
2129 
2130 		/*
2131 		 * Invalidate the VMCB state cache by marking all fields dirty.
2132 		 */
2133 		svm_set_dirty(vcpu, 0xffffffff);
2134 
2135 		/*
2136 		 * XXX
2137 		 * Setting 'vcpu->lastcpu' here is bit premature because
2138 		 * we may return from this function without actually executing
2139 		 * the VMRUN  instruction. This could happen if a rendezvous
2140 		 * or an AST is pending on the first time through the loop.
2141 		 *
2142 		 * This works for now but any new side-effects of vcpu
2143 		 * migration should take this case into account.
2144 		 */
2145 		vcpu->lastcpu = curcpu;
2146 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2147 	}
2148 
2149 	svm_msr_guest_enter(vcpu);
2150 
2151 	/* Update Guest RIP */
2152 	state->rip = rip;
2153 
2154 	do {
2155 		/*
2156 		 * Disable global interrupts to guarantee atomicity during
2157 		 * loading of guest state. This includes not only the state
2158 		 * loaded by the "vmrun" instruction but also software state
2159 		 * maintained by the hypervisor: suspended and rendezvous
2160 		 * state, NPT generation number, vlapic interrupts etc.
2161 		 */
2162 		disable_gintr();
2163 
2164 		if (vcpu_suspended(evinfo)) {
2165 			enable_gintr();
2166 			vm_exit_suspended(vcpu->vcpu, state->rip);
2167 			break;
2168 		}
2169 
2170 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2171 			enable_gintr();
2172 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2173 			break;
2174 		}
2175 
2176 		if (vcpu_reqidle(evinfo)) {
2177 			enable_gintr();
2178 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2179 			break;
2180 		}
2181 
2182 		/* We are asked to give the cpu by scheduler. */
2183 		if (vcpu_should_yield(vcpu->vcpu)) {
2184 			enable_gintr();
2185 			vm_exit_astpending(vcpu->vcpu, state->rip);
2186 			break;
2187 		}
2188 
2189 		if (vcpu_debugged(vcpu->vcpu)) {
2190 			enable_gintr();
2191 			vm_exit_debug(vcpu->vcpu, state->rip);
2192 			break;
2193 		}
2194 
2195 		/*
2196 		 * #VMEXIT resumes the host with the guest LDTR, so
2197 		 * save the current LDT selector so it can be restored
2198 		 * after an exit.  The userspace hypervisor probably
2199 		 * doesn't use a LDT, but save and restore it to be
2200 		 * safe.
2201 		 */
2202 		ldt_sel = sldt();
2203 
2204 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2205 
2206 		/*
2207 		 * Check the pmap generation and the ASID generation to
2208 		 * ensure that the vcpu does not use stale TLB mappings.
2209 		 */
2210 		svm_pmap_activate(vcpu, pmap);
2211 
2212 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2213 		vcpu->dirty = 0;
2214 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2215 
2216 		/* Launch Virtual Machine. */
2217 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2218 		svm_dr_enter_guest(gctx);
2219 		svm_launch(vmcb_pa, gctx, get_pcpu());
2220 		svm_dr_leave_guest(gctx);
2221 
2222 		svm_pmap_deactivate(pmap);
2223 
2224 		/*
2225 		 * The host GDTR and IDTR is saved by VMRUN and restored
2226 		 * automatically on #VMEXIT. However, the host TSS needs
2227 		 * to be restored explicitly.
2228 		 */
2229 		restore_host_tss();
2230 
2231 		/* Restore host LDTR. */
2232 		lldt(ldt_sel);
2233 
2234 		/* #VMEXIT disables interrupts so re-enable them here. */
2235 		enable_gintr();
2236 
2237 		/* Update 'nextrip' */
2238 		vcpu->nextrip = state->rip;
2239 
2240 		/* Handle #VMEXIT and if required return to user space. */
2241 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2242 	} while (handled);
2243 
2244 	svm_msr_guest_exit(vcpu);
2245 
2246 	return (0);
2247 }
2248 
2249 static void
2250 svm_vcpu_cleanup(void *vcpui)
2251 {
2252 	struct svm_vcpu *vcpu = vcpui;
2253 
2254 	free(vcpu->vmcb, M_SVM);
2255 	free(vcpu, M_SVM);
2256 }
2257 
2258 static void
2259 svm_cleanup(void *vmi)
2260 {
2261 	struct svm_softc *sc = vmi;
2262 
2263 	free(sc->iopm_bitmap, M_SVM);
2264 	free(sc->msr_bitmap, M_SVM);
2265 	free(sc, M_SVM);
2266 }
2267 
2268 static register_t *
2269 swctx_regptr(struct svm_regctx *regctx, int reg)
2270 {
2271 
2272 	switch (reg) {
2273 	case VM_REG_GUEST_RBX:
2274 		return (&regctx->sctx_rbx);
2275 	case VM_REG_GUEST_RCX:
2276 		return (&regctx->sctx_rcx);
2277 	case VM_REG_GUEST_RDX:
2278 		return (&regctx->sctx_rdx);
2279 	case VM_REG_GUEST_RDI:
2280 		return (&regctx->sctx_rdi);
2281 	case VM_REG_GUEST_RSI:
2282 		return (&regctx->sctx_rsi);
2283 	case VM_REG_GUEST_RBP:
2284 		return (&regctx->sctx_rbp);
2285 	case VM_REG_GUEST_R8:
2286 		return (&regctx->sctx_r8);
2287 	case VM_REG_GUEST_R9:
2288 		return (&regctx->sctx_r9);
2289 	case VM_REG_GUEST_R10:
2290 		return (&regctx->sctx_r10);
2291 	case VM_REG_GUEST_R11:
2292 		return (&regctx->sctx_r11);
2293 	case VM_REG_GUEST_R12:
2294 		return (&regctx->sctx_r12);
2295 	case VM_REG_GUEST_R13:
2296 		return (&regctx->sctx_r13);
2297 	case VM_REG_GUEST_R14:
2298 		return (&regctx->sctx_r14);
2299 	case VM_REG_GUEST_R15:
2300 		return (&regctx->sctx_r15);
2301 	case VM_REG_GUEST_DR0:
2302 		return (&regctx->sctx_dr0);
2303 	case VM_REG_GUEST_DR1:
2304 		return (&regctx->sctx_dr1);
2305 	case VM_REG_GUEST_DR2:
2306 		return (&regctx->sctx_dr2);
2307 	case VM_REG_GUEST_DR3:
2308 		return (&regctx->sctx_dr3);
2309 	default:
2310 		return (NULL);
2311 	}
2312 }
2313 
2314 static int
2315 svm_getreg(void *vcpui, int ident, uint64_t *val)
2316 {
2317 	struct svm_vcpu *vcpu;
2318 	register_t *reg;
2319 
2320 	vcpu = vcpui;
2321 
2322 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2323 		return (svm_get_intr_shadow(vcpu, val));
2324 	}
2325 
2326 	if (vmcb_read(vcpu, ident, val) == 0) {
2327 		return (0);
2328 	}
2329 
2330 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2331 
2332 	if (reg != NULL) {
2333 		*val = *reg;
2334 		return (0);
2335 	}
2336 
2337 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2338 	return (EINVAL);
2339 }
2340 
2341 static int
2342 svm_setreg(void *vcpui, int ident, uint64_t val)
2343 {
2344 	struct svm_vcpu *vcpu;
2345 	register_t *reg;
2346 
2347 	vcpu = vcpui;
2348 
2349 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2350 		return (svm_modify_intr_shadow(vcpu, val));
2351 	}
2352 
2353 	/* Do not permit user write access to VMCB fields by offset. */
2354 	if (!VMCB_ACCESS_OK(ident)) {
2355 		if (vmcb_write(vcpu, ident, val) == 0) {
2356 			return (0);
2357 		}
2358 	}
2359 
2360 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2361 
2362 	if (reg != NULL) {
2363 		*reg = val;
2364 		return (0);
2365 	}
2366 
2367 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2368 		/* Ignore. */
2369 		return (0);
2370 	}
2371 
2372 	/*
2373 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2374 	 * vcpu's ASID. This needs to be treated differently depending on
2375 	 * whether 'running' is true/false.
2376 	 */
2377 
2378 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2379 	return (EINVAL);
2380 }
2381 
2382 static int
2383 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2384 {
2385 	return (vmcb_getdesc(vcpui, reg, desc));
2386 }
2387 
2388 static int
2389 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2390 {
2391 	return (vmcb_setdesc(vcpui, reg, desc));
2392 }
2393 
2394 #ifdef BHYVE_SNAPSHOT
2395 static int
2396 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2397 {
2398 	int ret;
2399 	uint64_t val;
2400 
2401 	if (meta->op == VM_SNAPSHOT_SAVE) {
2402 		ret = svm_getreg(vcpui, ident, &val);
2403 		if (ret != 0)
2404 			goto done;
2405 
2406 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2407 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2408 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2409 
2410 		ret = svm_setreg(vcpui, ident, val);
2411 		if (ret != 0)
2412 			goto done;
2413 	} else {
2414 		ret = EINVAL;
2415 		goto done;
2416 	}
2417 
2418 done:
2419 	return (ret);
2420 }
2421 #endif
2422 
2423 static int
2424 svm_setcap(void *vcpui, int type, int val)
2425 {
2426 	struct svm_vcpu *vcpu;
2427 	struct vlapic *vlapic;
2428 	int error;
2429 
2430 	vcpu = vcpui;
2431 	error = 0;
2432 
2433 	switch (type) {
2434 	case VM_CAP_HALT_EXIT:
2435 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2436 		    VMCB_INTCPT_HLT, val);
2437 		break;
2438 	case VM_CAP_PAUSE_EXIT:
2439 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2440 		    VMCB_INTCPT_PAUSE, val);
2441 		break;
2442 	case VM_CAP_UNRESTRICTED_GUEST:
2443 		/* Unrestricted guest execution cannot be disabled in SVM */
2444 		if (val == 0)
2445 			error = EINVAL;
2446 		break;
2447 	case VM_CAP_BPT_EXIT:
2448 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2449 		break;
2450 	case VM_CAP_IPI_EXIT:
2451 		vlapic = vm_lapic(vcpu->vcpu);
2452 		vlapic->ipi_exit = val;
2453 		break;
2454 	case VM_CAP_MASK_HWINTR:
2455 		vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2456 		vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2457 		break;
2458 	case VM_CAP_RFLAGS_TF: {
2459 		uint64_t rflags;
2460 
2461 		/* Fetch RFLAGS. */
2462 		if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2463 			error = (EINVAL);
2464 			break;
2465 		}
2466 		if (val) {
2467 			/* Save current TF bit. */
2468 			vcpu->dbg.rflags_tf = rflags & PSL_T;
2469 			/* Trace next instruction. */
2470 			if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2471 				(rflags | PSL_T))) {
2472 				error = (EINVAL);
2473 				break;
2474 			}
2475 			vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2476 		} else {
2477 			/*
2478 			 * Restore shadowed RFLAGS.TF only if vCPU was
2479 			 * previously stepped
2480 			 */
2481 			if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2482 				rflags &= ~PSL_T;
2483 				rflags |= vcpu->dbg.rflags_tf;
2484 				vcpu->dbg.rflags_tf = 0;
2485 
2486 				if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2487 					rflags)) {
2488 					error = (EINVAL);
2489 					break;
2490 				}
2491 				vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2492 			}
2493 		}
2494 
2495 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2496 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2497 		    val);
2498 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2499 		    val);
2500 		break;
2501 	}
2502 	default:
2503 		error = ENOENT;
2504 		break;
2505 	}
2506 	return (error);
2507 }
2508 
2509 static int
2510 svm_getcap(void *vcpui, int type, int *retval)
2511 {
2512 	struct svm_vcpu *vcpu;
2513 	struct vlapic *vlapic;
2514 	int error;
2515 
2516 	vcpu = vcpui;
2517 	error = 0;
2518 
2519 	switch (type) {
2520 	case VM_CAP_HALT_EXIT:
2521 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2522 		    VMCB_INTCPT_HLT);
2523 		break;
2524 	case VM_CAP_PAUSE_EXIT:
2525 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2526 		    VMCB_INTCPT_PAUSE);
2527 		break;
2528 	case VM_CAP_UNRESTRICTED_GUEST:
2529 		*retval = 1;	/* unrestricted guest is always enabled */
2530 		break;
2531 	case VM_CAP_BPT_EXIT:
2532 		*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2533 		break;
2534 	case VM_CAP_IPI_EXIT:
2535 		vlapic = vm_lapic(vcpu->vcpu);
2536 		*retval = vlapic->ipi_exit;
2537 		break;
2538 	case VM_CAP_RFLAGS_TF:
2539 		*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2540 		break;
2541 	case VM_CAP_MASK_HWINTR:
2542 		*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2543 		break;
2544 	default:
2545 		error = ENOENT;
2546 		break;
2547 	}
2548 	return (error);
2549 }
2550 
2551 static struct vmspace *
2552 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2553 {
2554 	return (svm_npt_alloc(min, max));
2555 }
2556 
2557 static void
2558 svm_vmspace_free(struct vmspace *vmspace)
2559 {
2560 	svm_npt_free(vmspace);
2561 }
2562 
2563 static struct vlapic *
2564 svm_vlapic_init(void *vcpui)
2565 {
2566 	struct svm_vcpu *vcpu;
2567 	struct vlapic *vlapic;
2568 
2569 	vcpu = vcpui;
2570 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2571 	vlapic->vm = vcpu->sc->vm;
2572 	vlapic->vcpu = vcpu->vcpu;
2573 	vlapic->vcpuid = vcpu->vcpuid;
2574 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2575 	    M_WAITOK | M_ZERO);
2576 
2577 	vlapic_init(vlapic);
2578 
2579 	return (vlapic);
2580 }
2581 
2582 static void
2583 svm_vlapic_cleanup(struct vlapic *vlapic)
2584 {
2585 
2586         vlapic_cleanup(vlapic);
2587 	free(vlapic->apic_page, M_SVM_VLAPIC);
2588         free(vlapic, M_SVM_VLAPIC);
2589 }
2590 
2591 #ifdef BHYVE_SNAPSHOT
2592 static int
2593 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2594 {
2595 	struct svm_vcpu *vcpu;
2596 	int err, running, hostcpu;
2597 
2598 	vcpu = vcpui;
2599 	err = 0;
2600 
2601 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2602 	if (running && hostcpu != curcpu) {
2603 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2604 		    vcpu->vcpuid);
2605 		return (EINVAL);
2606 	}
2607 
2608 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2609 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2610 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2611 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2612 
2613 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2614 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2615 
2616 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2617 
2618 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2619 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2620 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2621 
2622 	/* Guest segments */
2623 	/* ES */
2624 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2625 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2626 
2627 	/* CS */
2628 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2629 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2630 
2631 	/* SS */
2632 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2633 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2634 
2635 	/* DS */
2636 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2637 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2638 
2639 	/* FS */
2640 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2641 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2642 
2643 	/* GS */
2644 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2645 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2646 
2647 	/* TR */
2648 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2649 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2650 
2651 	/* LDTR */
2652 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2653 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2654 
2655 	/* EFER */
2656 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2657 
2658 	/* IDTR and GDTR */
2659 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2660 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2661 
2662 	/* Specific AMD registers */
2663 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2664 
2665 	err += vmcb_snapshot_any(vcpu,
2666 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2667 	err += vmcb_snapshot_any(vcpu,
2668 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2669 	err += vmcb_snapshot_any(vcpu,
2670 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2671 	err += vmcb_snapshot_any(vcpu,
2672 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2673 	err += vmcb_snapshot_any(vcpu,
2674 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2675 
2676 	err += vmcb_snapshot_any(vcpu,
2677 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2678 	err += vmcb_snapshot_any(vcpu,
2679 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2680 
2681 	err += vmcb_snapshot_any(vcpu,
2682 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2683 
2684 	err += vmcb_snapshot_any(vcpu,
2685 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2686 
2687 	err += vmcb_snapshot_any(vcpu,
2688 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2689 
2690 	err += vmcb_snapshot_any(vcpu,
2691 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2692 	err += vmcb_snapshot_any(vcpu,
2693 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2694 	err += vmcb_snapshot_any(vcpu,
2695 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2696 	err += vmcb_snapshot_any(vcpu,
2697 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2698 
2699 	err += vmcb_snapshot_any(vcpu,
2700 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2701 
2702 	err += vmcb_snapshot_any(vcpu,
2703 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2704 	err += vmcb_snapshot_any(vcpu,
2705 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2706 	err += vmcb_snapshot_any(vcpu,
2707 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2708 	err += vmcb_snapshot_any(vcpu,
2709 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2710 
2711 	err += vmcb_snapshot_any(vcpu,
2712 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2713 
2714 	err += vmcb_snapshot_any(vcpu,
2715 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2716 	err += vmcb_snapshot_any(vcpu,
2717 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2718 	err += vmcb_snapshot_any(vcpu,
2719 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2720 
2721 	err += vmcb_snapshot_any(vcpu,
2722 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2723 
2724 	err += vmcb_snapshot_any(vcpu,
2725 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2726 
2727 	err += vmcb_snapshot_any(vcpu,
2728 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2729 	err += vmcb_snapshot_any(vcpu,
2730 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2731 	err += vmcb_snapshot_any(vcpu,
2732 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2733 
2734 	err += vmcb_snapshot_any(vcpu,
2735 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2736 
2737 	err += vmcb_snapshot_any(vcpu,
2738 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2739 	err += vmcb_snapshot_any(vcpu,
2740 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2741 	err += vmcb_snapshot_any(vcpu,
2742 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2743 	err += vmcb_snapshot_any(vcpu,
2744 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2745 	err += vmcb_snapshot_any(vcpu,
2746 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2747 	if (err != 0)
2748 		goto done;
2749 
2750 	/* Snapshot swctx for virtual cpu */
2751 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2752 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2753 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2754 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2755 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2756 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2757 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2758 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2759 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2760 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2761 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2762 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2763 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2764 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2765 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2766 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2767 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2768 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2769 
2770 	/* Restore other svm_vcpu struct fields */
2771 
2772 	/* Restore NEXTRIP field */
2773 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2774 
2775 	/* Restore lastcpu field */
2776 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2777 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2778 
2779 	/* Restore EPTGEN field - EPT is Extended Page Table */
2780 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2781 
2782 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2783 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2784 
2785 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2786 
2787 	/* Set all caches dirty */
2788 	if (meta->op == VM_SNAPSHOT_RESTORE)
2789 		svm_set_dirty(vcpu, 0xffffffff);
2790 
2791 done:
2792 	return (err);
2793 }
2794 
2795 static int
2796 svm_restore_tsc(void *vcpui, uint64_t offset)
2797 {
2798 	struct svm_vcpu *vcpu = vcpui;
2799 
2800 	svm_set_tsc_offset(vcpu, offset);
2801 
2802 	return (0);
2803 }
2804 #endif
2805 
2806 const struct vmm_ops vmm_ops_amd = {
2807 	.modinit	= svm_modinit,
2808 	.modcleanup	= svm_modcleanup,
2809 	.modresume	= svm_modresume,
2810 	.init		= svm_init,
2811 	.run		= svm_run,
2812 	.cleanup	= svm_cleanup,
2813 	.vcpu_init	= svm_vcpu_init,
2814 	.vcpu_cleanup	= svm_vcpu_cleanup,
2815 	.getreg		= svm_getreg,
2816 	.setreg		= svm_setreg,
2817 	.getdesc	= svm_getdesc,
2818 	.setdesc	= svm_setdesc,
2819 	.getcap		= svm_getcap,
2820 	.setcap		= svm_setcap,
2821 	.vmspace_alloc	= svm_vmspace_alloc,
2822 	.vmspace_free	= svm_vmspace_free,
2823 	.vlapic_init	= svm_vlapic_init,
2824 	.vlapic_cleanup	= svm_vlapic_cleanup,
2825 #ifdef BHYVE_SNAPSHOT
2826 	.vcpu_snapshot	= svm_vcpu_snapshot,
2827 	.restore_tsc	= svm_restore_tsc,
2828 #endif
2829 };
2830