xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 6b17d944a1d448dbb797c5fa5b0778242ba02e52)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/reg.h>
40 #include <sys/smr.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <machine/smp.h>
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include <dev/vmm/vmm_ktr.h>
58 
59 #include "vmm_lapic.h"
60 #include "vmm_stat.h"
61 #include "vmm_ioport.h"
62 #include "vatpic.h"
63 #include "vlapic.h"
64 #include "vlapic_priv.h"
65 
66 #include "x86.h"
67 #include "vmcb.h"
68 #include "svm.h"
69 #include "svm_softc.h"
70 #include "svm_msr.h"
71 #include "npt.h"
72 
73 SYSCTL_DECL(_hw_vmm);
74 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75     NULL);
76 
77 /*
78  * SVM CPUID function 0x8000_000A, edx bit decoding.
79  */
80 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
81 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
82 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
83 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
84 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
85 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
86 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
87 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
88 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
89 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
90 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
91 
92 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
93 				VMCB_CACHE_IOPM		|	\
94 				VMCB_CACHE_I		|	\
95 				VMCB_CACHE_TPR		|	\
96 				VMCB_CACHE_CR2		|	\
97 				VMCB_CACHE_CR		|	\
98 				VMCB_CACHE_DR		|	\
99 				VMCB_CACHE_DT		|	\
100 				VMCB_CACHE_SEG		|	\
101 				VMCB_CACHE_NP)
102 
103 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
104 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
105     0, NULL);
106 
107 static MALLOC_DEFINE(M_SVM, "svm", "svm");
108 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
109 
110 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
111 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
112     "SVM features advertised by CPUID.8000000AH:EDX");
113 
114 static int disable_npf_assist;
115 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
116     &disable_npf_assist, 0, NULL);
117 
118 /* Maximum ASIDs supported by the processor */
119 static uint32_t nasid;
120 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
121     "Number of ASIDs supported by this processor");
122 
123 /* Current ASID generation for each host cpu */
124 static struct asid asid[MAXCPU];
125 
126 /* SVM host state saved area of size 4KB for each physical core. */
127 static uint8_t *hsave;
128 
129 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
130 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
131 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
132 
133 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
134 static int svm_setreg(void *vcpui, int ident, uint64_t val);
135 static int svm_getreg(void *vcpui, int ident, uint64_t *val);
136 static __inline int
137 flush_by_asid(void)
138 {
139 
140 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
141 }
142 
143 static __inline int
144 decode_assist(void)
145 {
146 
147 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
148 }
149 
150 static void
151 svm_disable(void *arg __unused)
152 {
153 	uint64_t efer;
154 
155 	efer = rdmsr(MSR_EFER);
156 	efer &= ~EFER_SVM;
157 	wrmsr(MSR_EFER, efer);
158 }
159 
160 /*
161  * Disable SVM on all CPUs.
162  */
163 static int
164 svm_modcleanup(void)
165 {
166 
167 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
168 
169 	if (hsave != NULL)
170 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
171 
172 	return (0);
173 }
174 
175 /*
176  * Verify that all the features required by bhyve are available.
177  */
178 static int
179 check_svm_features(void)
180 {
181 	u_int regs[4];
182 
183 	/* CPUID Fn8000_000A is for SVM */
184 	do_cpuid(0x8000000A, regs);
185 	svm_feature &= regs[3];
186 
187 	/*
188 	 * The number of ASIDs can be configured to be less than what is
189 	 * supported by the hardware but not more.
190 	 */
191 	if (nasid == 0 || nasid > regs[1])
192 		nasid = regs[1];
193 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
194 
195 	/* bhyve requires the Nested Paging feature */
196 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
197 		printf("SVM: Nested Paging feature not available.\n");
198 		return (ENXIO);
199 	}
200 
201 	/* bhyve requires the NRIP Save feature */
202 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
203 		printf("SVM: NRIP Save feature not available.\n");
204 		return (ENXIO);
205 	}
206 
207 	return (0);
208 }
209 
210 static void
211 svm_enable(void *arg __unused)
212 {
213 	uint64_t efer;
214 
215 	efer = rdmsr(MSR_EFER);
216 	efer |= EFER_SVM;
217 	wrmsr(MSR_EFER, efer);
218 
219 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
220 }
221 
222 /*
223  * Return 1 if SVM is enabled on this processor and 0 otherwise.
224  */
225 static int
226 svm_available(void)
227 {
228 	uint64_t msr;
229 
230 	/* Section 15.4 Enabling SVM from APM2. */
231 	if ((amd_feature2 & AMDID2_SVM) == 0) {
232 		printf("SVM: not available.\n");
233 		return (0);
234 	}
235 
236 	msr = rdmsr(MSR_VM_CR);
237 	if ((msr & VM_CR_SVMDIS) != 0) {
238 		printf("SVM: disabled by BIOS.\n");
239 		return (0);
240 	}
241 
242 	return (1);
243 }
244 
245 static int
246 svm_modinit(int ipinum)
247 {
248 	int error, cpu;
249 
250 	if (!svm_available())
251 		return (ENXIO);
252 
253 	error = check_svm_features();
254 	if (error)
255 		return (error);
256 
257 	vmcb_clean &= VMCB_CACHE_DEFAULT;
258 
259 	for (cpu = 0; cpu < MAXCPU; cpu++) {
260 		/*
261 		 * Initialize the host ASIDs to their "highest" valid values.
262 		 *
263 		 * The next ASID allocation will rollover both 'gen' and 'num'
264 		 * and start off the sequence at {1,1}.
265 		 */
266 		asid[cpu].gen = ~0UL;
267 		asid[cpu].num = nasid - 1;
268 	}
269 
270 	svm_msr_init();
271 	svm_npt_init(ipinum);
272 
273 	/* Enable SVM on all CPUs */
274 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
275 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
276 
277 	return (0);
278 }
279 
280 static void
281 svm_modsuspend(void)
282 {
283 
284 	return;
285 }
286 
287 static void
288 svm_modresume(void)
289 {
290 
291 	svm_enable(NULL);
292 }
293 
294 #ifdef BHYVE_SNAPSHOT
295 void
296 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
297 {
298 	struct vmcb_ctrl *ctrl;
299 
300 	ctrl = svm_get_vmcb_ctrl(vcpu);
301 	ctrl->tsc_offset = offset;
302 
303 	svm_set_dirty(vcpu, VMCB_CACHE_I);
304 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
305 
306 	vm_set_tsc_offset(vcpu->vcpu, offset);
307 }
308 #endif
309 
310 /* Pentium compatible MSRs */
311 #define MSR_PENTIUM_START 	0
312 #define MSR_PENTIUM_END 	0x1FFF
313 /* AMD 6th generation and Intel compatible MSRs */
314 #define MSR_AMD6TH_START 	0xC0000000UL
315 #define MSR_AMD6TH_END 		0xC0001FFFUL
316 /* AMD 7th and 8th generation compatible MSRs */
317 #define MSR_AMD7TH_START 	0xC0010000UL
318 #define MSR_AMD7TH_END 		0xC0011FFFUL
319 
320 /*
321  * Get the index and bit position for a MSR in permission bitmap.
322  * Two bits are used for each MSR: lower bit for read and higher bit for write.
323  */
324 static int
325 svm_msr_index(uint64_t msr, int *index, int *bit)
326 {
327 	uint32_t base, off;
328 
329 	*index = -1;
330 	*bit = (msr % 4) * 2;
331 	base = 0;
332 
333 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
334 		*index = msr / 4;
335 		return (0);
336 	}
337 
338 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
339 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
340 		off = (msr - MSR_AMD6TH_START);
341 		*index = (off + base) / 4;
342 		return (0);
343 	}
344 
345 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
346 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
347 		off = (msr - MSR_AMD7TH_START);
348 		*index = (off + base) / 4;
349 		return (0);
350 	}
351 
352 	return (EINVAL);
353 }
354 
355 /*
356  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
357  */
358 static void
359 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
360 {
361 	int index, bit, error __diagused;
362 
363 	error = svm_msr_index(msr, &index, &bit);
364 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
365 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
366 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
367 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
368 	    "msr %#lx", __func__, bit, msr));
369 
370 	if (read)
371 		perm_bitmap[index] &= ~(1UL << bit);
372 
373 	if (write)
374 		perm_bitmap[index] &= ~(2UL << bit);
375 }
376 
377 static void
378 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
379 {
380 
381 	svm_msr_perm(perm_bitmap, msr, true, true);
382 }
383 
384 static void
385 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
386 {
387 
388 	svm_msr_perm(perm_bitmap, msr, true, false);
389 }
390 
391 static __inline int
392 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
393 {
394 	struct vmcb_ctrl *ctrl;
395 
396 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
397 
398 	ctrl = svm_get_vmcb_ctrl(vcpu);
399 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
400 }
401 
402 static __inline void
403 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
404 {
405 	struct vmcb_ctrl *ctrl;
406 	uint32_t oldval;
407 
408 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
409 
410 	ctrl = svm_get_vmcb_ctrl(vcpu);
411 	oldval = ctrl->intercept[idx];
412 
413 	if (enabled)
414 		ctrl->intercept[idx] |= bitmask;
415 	else
416 		ctrl->intercept[idx] &= ~bitmask;
417 
418 	if (ctrl->intercept[idx] != oldval) {
419 		svm_set_dirty(vcpu, VMCB_CACHE_I);
420 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
421 		    oldval, ctrl->intercept[idx]);
422 	}
423 }
424 
425 static __inline void
426 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
427 {
428 
429 	svm_set_intercept(vcpu, off, bitmask, 0);
430 }
431 
432 static __inline void
433 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
434 {
435 
436 	svm_set_intercept(vcpu, off, bitmask, 1);
437 }
438 
439 static void
440 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
441     uint64_t msrpm_base_pa, uint64_t np_pml4)
442 {
443 	struct vmcb_ctrl *ctrl;
444 	struct vmcb_state *state;
445 	uint32_t mask;
446 	int n;
447 
448 	ctrl = svm_get_vmcb_ctrl(vcpu);
449 	state = svm_get_vmcb_state(vcpu);
450 
451 	ctrl->iopm_base_pa = iopm_base_pa;
452 	ctrl->msrpm_base_pa = msrpm_base_pa;
453 
454 	/* Enable nested paging */
455 	ctrl->np_enable = 1;
456 	ctrl->n_cr3 = np_pml4;
457 
458 	/*
459 	 * Intercept accesses to the control registers that are not shadowed
460 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
461 	 */
462 	for (n = 0; n < 16; n++) {
463 		mask = (BIT(n) << 16) | BIT(n);
464 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
465 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
466 		else
467 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
468 	}
469 
470 	/*
471 	 * Intercept everything when tracing guest exceptions otherwise
472 	 * just intercept machine check exception.
473 	 */
474 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
475 		for (n = 0; n < 32; n++) {
476 			/*
477 			 * Skip unimplemented vectors in the exception bitmap.
478 			 */
479 			if (n == 2 || n == 9) {
480 				continue;
481 			}
482 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
483 		}
484 	} else {
485 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
486 	}
487 
488 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
489 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
490 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
491 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
492 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
493 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
494 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
495 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
496 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
497 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
498 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
499 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
500 
501 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
502 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
503 
504 	/*
505 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
506 	 * Non-intercepted VMMCALL causes #UD, skip it.
507 	 */
508 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
509 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
510 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
511 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
512 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
513 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
514 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
515 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
516 		    VMCB_INTCPT_WBINVD);
517 	}
518 
519 	/*
520 	 * From section "Canonicalization and Consistency Checks" in APMv2
521 	 * the VMRUN intercept bit must be set to pass the consistency check.
522 	 */
523 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
524 
525 	/*
526 	 * The ASID will be set to a non-zero value just before VMRUN.
527 	 */
528 	ctrl->asid = 0;
529 
530 	/*
531 	 * Section 15.21.1, Interrupt Masking in EFLAGS
532 	 * Section 15.21.2, Virtualizing APIC.TPR
533 	 *
534 	 * This must be set for %rflag and %cr8 isolation of guest and host.
535 	 */
536 	ctrl->v_intr_masking = 1;
537 
538 	/* Enable Last Branch Record aka LBR for debugging */
539 	ctrl->lbr_virt_en = 1;
540 	state->dbgctl = BIT(0);
541 
542 	/* EFER_SVM must always be set when the guest is executing */
543 	state->efer = EFER_SVM;
544 
545 	/* Set up the PAT to power-on state */
546 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
547 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
548 	    PAT_VALUE(2, PAT_UNCACHED)		|
549 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
550 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
551 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
552 	    PAT_VALUE(6, PAT_UNCACHED)		|
553 	    PAT_VALUE(7, PAT_UNCACHEABLE);
554 
555 	/* Set up DR6/7 to power-on state */
556 	state->dr6 = DBREG_DR6_RESERVED1;
557 	state->dr7 = DBREG_DR7_RESERVED1;
558 }
559 
560 /*
561  * Initialize a virtual machine.
562  */
563 static void *
564 svm_init(struct vm *vm, pmap_t pmap)
565 {
566 	struct svm_softc *svm_sc;
567 
568 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
569 
570 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
571 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
572 	if (svm_sc->msr_bitmap == NULL)
573 		panic("contigmalloc of SVM MSR bitmap failed");
574 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
575 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
576 	if (svm_sc->iopm_bitmap == NULL)
577 		panic("contigmalloc of SVM IO bitmap failed");
578 
579 	svm_sc->vm = vm;
580 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
581 
582 	/*
583 	 * Intercept read and write accesses to all MSRs.
584 	 */
585 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
586 
587 	/*
588 	 * Access to the following MSRs is redirected to the VMCB when the
589 	 * guest is executing. Therefore it is safe to allow the guest to
590 	 * read/write these MSRs directly without hypervisor involvement.
591 	 */
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
595 
596 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
597 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
598 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
599 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
600 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
601 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
602 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
603 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
604 
605 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
606 
607 	/*
608 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
609 	 */
610 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
611 
612 	/* Intercept access to all I/O ports. */
613 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
614 
615 	return (svm_sc);
616 }
617 
618 static void *
619 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
620 {
621 	struct svm_softc *sc = vmi;
622 	struct svm_vcpu *vcpu;
623 
624 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
625 	vcpu->sc = sc;
626 	vcpu->vcpu = vcpu1;
627 	vcpu->vcpuid = vcpuid;
628 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
629 	    M_WAITOK | M_ZERO);
630 	vcpu->nextrip = ~0;
631 	vcpu->lastcpu = NOCPU;
632 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
633 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
634 	    sc->nptp);
635 	svm_msr_guest_init(sc, vcpu);
636 	return (vcpu);
637 }
638 
639 /*
640  * Collateral for a generic SVM VM-exit.
641  */
642 static void
643 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
644 {
645 
646 	vme->exitcode = VM_EXITCODE_SVM;
647 	vme->u.svm.exitcode = code;
648 	vme->u.svm.exitinfo1 = info1;
649 	vme->u.svm.exitinfo2 = info2;
650 }
651 
652 static int
653 svm_cpl(struct vmcb_state *state)
654 {
655 
656 	/*
657 	 * From APMv2:
658 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
659 	 *    from any segment DPL"
660 	 */
661 	return (state->cpl);
662 }
663 
664 static enum vm_cpu_mode
665 svm_vcpu_mode(struct vmcb *vmcb)
666 {
667 	struct vmcb_segment seg;
668 	struct vmcb_state *state;
669 	int error __diagused;
670 
671 	state = &vmcb->state;
672 
673 	if (state->efer & EFER_LMA) {
674 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
675 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
676 		    error));
677 
678 		/*
679 		 * Section 4.8.1 for APM2, check if Code Segment has
680 		 * Long attribute set in descriptor.
681 		 */
682 		if (seg.attrib & VMCB_CS_ATTRIB_L)
683 			return (CPU_MODE_64BIT);
684 		else
685 			return (CPU_MODE_COMPATIBILITY);
686 	} else  if (state->cr0 & CR0_PE) {
687 		return (CPU_MODE_PROTECTED);
688 	} else {
689 		return (CPU_MODE_REAL);
690 	}
691 }
692 
693 static enum vm_paging_mode
694 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
695 {
696 
697 	if ((cr0 & CR0_PG) == 0)
698 		return (PAGING_MODE_FLAT);
699 	if ((cr4 & CR4_PAE) == 0)
700 		return (PAGING_MODE_32);
701 	if (efer & EFER_LME)
702 		return (PAGING_MODE_64);
703 	else
704 		return (PAGING_MODE_PAE);
705 }
706 
707 /*
708  * ins/outs utility routines
709  */
710 static uint64_t
711 svm_inout_str_index(struct svm_regctx *regs, int in)
712 {
713 	uint64_t val;
714 
715 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
716 
717 	return (val);
718 }
719 
720 static uint64_t
721 svm_inout_str_count(struct svm_regctx *regs, int rep)
722 {
723 	uint64_t val;
724 
725 	val = rep ? regs->sctx_rcx : 1;
726 
727 	return (val);
728 }
729 
730 static void
731 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
732     struct vm_inout_str *vis)
733 {
734 	int error __diagused, s;
735 
736 	if (in) {
737 		vis->seg_name = VM_REG_GUEST_ES;
738 	} else {
739 		/* The segment field has standard encoding */
740 		s = (info1 >> 10) & 0x7;
741 		vis->seg_name = vm_segment_name(s);
742 	}
743 
744 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
745 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
746 }
747 
748 static int
749 svm_inout_str_addrsize(uint64_t info1)
750 {
751         uint32_t size;
752 
753         size = (info1 >> 7) & 0x7;
754         switch (size) {
755         case 1:
756                 return (2);     /* 16 bit */
757         case 2:
758                 return (4);     /* 32 bit */
759         case 4:
760                 return (8);     /* 64 bit */
761         default:
762                 panic("%s: invalid size encoding %d", __func__, size);
763         }
764 }
765 
766 static void
767 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
768 {
769 	struct vmcb_state *state;
770 
771 	state = &vmcb->state;
772 	paging->cr3 = state->cr3;
773 	paging->cpl = svm_cpl(state);
774 	paging->cpu_mode = svm_vcpu_mode(vmcb);
775 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
776 	    state->efer);
777 }
778 
779 #define	UNHANDLED 0
780 
781 /*
782  * Handle guest I/O intercept.
783  */
784 static int
785 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
786 {
787 	struct vmcb_ctrl *ctrl;
788 	struct vmcb_state *state;
789 	struct svm_regctx *regs;
790 	struct vm_inout_str *vis;
791 	uint64_t info1;
792 	int inout_string;
793 
794 	state = svm_get_vmcb_state(vcpu);
795 	ctrl  = svm_get_vmcb_ctrl(vcpu);
796 	regs  = svm_get_guest_regctx(vcpu);
797 
798 	info1 = ctrl->exitinfo1;
799 	inout_string = info1 & BIT(2) ? 1 : 0;
800 
801 	/*
802 	 * The effective segment number in EXITINFO1[12:10] is populated
803 	 * only if the processor has the DecodeAssist capability.
804 	 *
805 	 * XXX this is not specified explicitly in APMv2 but can be verified
806 	 * empirically.
807 	 */
808 	if (inout_string && !decode_assist())
809 		return (UNHANDLED);
810 
811 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
812 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
813 	vmexit->u.inout.string 	= inout_string;
814 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
815 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
816 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
817 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
818 
819 	if (inout_string) {
820 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
821 		vis = &vmexit->u.inout_str;
822 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
823 		vis->rflags = state->rflags;
824 		vis->cr0 = state->cr0;
825 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
826 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
827 		vis->addrsize = svm_inout_str_addrsize(info1);
828 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
829 	}
830 
831 	return (UNHANDLED);
832 }
833 
834 static int
835 npf_fault_type(uint64_t exitinfo1)
836 {
837 
838 	if (exitinfo1 & VMCB_NPF_INFO1_W)
839 		return (VM_PROT_WRITE);
840 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
841 		return (VM_PROT_EXECUTE);
842 	else
843 		return (VM_PROT_READ);
844 }
845 
846 static bool
847 svm_npf_emul_fault(uint64_t exitinfo1)
848 {
849 
850 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
851 		return (false);
852 	}
853 
854 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
855 		return (false);
856 	}
857 
858 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
859 		return (false);
860 	}
861 
862 	return (true);
863 }
864 
865 static void
866 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
867 {
868 	struct vm_guest_paging *paging;
869 	struct vmcb_segment seg;
870 	struct vmcb_ctrl *ctrl;
871 	char *inst_bytes;
872 	int error __diagused, inst_len;
873 
874 	ctrl = &vmcb->ctrl;
875 	paging = &vmexit->u.inst_emul.paging;
876 
877 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
878 	vmexit->u.inst_emul.gpa = gpa;
879 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
880 	svm_paging_info(vmcb, paging);
881 
882 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
883 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
884 
885 	switch(paging->cpu_mode) {
886 	case CPU_MODE_REAL:
887 		vmexit->u.inst_emul.cs_base = seg.base;
888 		vmexit->u.inst_emul.cs_d = 0;
889 		break;
890 	case CPU_MODE_PROTECTED:
891 	case CPU_MODE_COMPATIBILITY:
892 		vmexit->u.inst_emul.cs_base = seg.base;
893 
894 		/*
895 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
896 		 */
897 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
898 		    1 : 0;
899 		break;
900 	default:
901 		vmexit->u.inst_emul.cs_base = 0;
902 		vmexit->u.inst_emul.cs_d = 0;
903 		break;
904 	}
905 
906 	/*
907 	 * Copy the instruction bytes into 'vie' if available.
908 	 */
909 	if (decode_assist() && !disable_npf_assist) {
910 		inst_len = ctrl->inst_len;
911 		inst_bytes = ctrl->inst_bytes;
912 	} else {
913 		inst_len = 0;
914 		inst_bytes = NULL;
915 	}
916 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
917 }
918 
919 #ifdef KTR
920 static const char *
921 intrtype_to_str(int intr_type)
922 {
923 	switch (intr_type) {
924 	case VMCB_EVENTINJ_TYPE_INTR:
925 		return ("hwintr");
926 	case VMCB_EVENTINJ_TYPE_NMI:
927 		return ("nmi");
928 	case VMCB_EVENTINJ_TYPE_INTn:
929 		return ("swintr");
930 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
931 		return ("exception");
932 	default:
933 		panic("%s: unknown intr_type %d", __func__, intr_type);
934 	}
935 }
936 #endif
937 
938 /*
939  * Inject an event to vcpu as described in section 15.20, "Event injection".
940  */
941 static void
942 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
943     uint32_t error, bool ec_valid)
944 {
945 	struct vmcb_ctrl *ctrl;
946 
947 	ctrl = svm_get_vmcb_ctrl(vcpu);
948 
949 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
950 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
951 
952 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
953 	    __func__, vector));
954 
955 	switch (intr_type) {
956 	case VMCB_EVENTINJ_TYPE_INTR:
957 	case VMCB_EVENTINJ_TYPE_NMI:
958 	case VMCB_EVENTINJ_TYPE_INTn:
959 		break;
960 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
961 		if (vector >= 0 && vector <= 31 && vector != 2)
962 			break;
963 		/* FALLTHROUGH */
964 	default:
965 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
966 		    intr_type, vector);
967 	}
968 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
969 	if (ec_valid) {
970 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
971 		ctrl->eventinj |= (uint64_t)error << 32;
972 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
973 		    intrtype_to_str(intr_type), vector, error);
974 	} else {
975 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
976 		    intrtype_to_str(intr_type), vector);
977 	}
978 }
979 
980 static void
981 svm_update_virqinfo(struct svm_vcpu *vcpu)
982 {
983 	struct vlapic *vlapic;
984 	struct vmcb_ctrl *ctrl;
985 
986 	vlapic = vm_lapic(vcpu->vcpu);
987 	ctrl = svm_get_vmcb_ctrl(vcpu);
988 
989 	/* Update %cr8 in the emulated vlapic */
990 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
991 
992 	/* Virtual interrupt injection is not used. */
993 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
994 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
995 }
996 
997 static void
998 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
999 {
1000 	struct vmcb_ctrl *ctrl;
1001 	uint64_t intinfo;
1002 
1003 	ctrl = svm_get_vmcb_ctrl(vcpu);
1004 	intinfo = ctrl->exitintinfo;
1005 	if (!VMCB_EXITINTINFO_VALID(intinfo))
1006 		return;
1007 
1008 	/*
1009 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1010 	 *
1011 	 * If a #VMEXIT happened during event delivery then record the event
1012 	 * that was being delivered.
1013 	 */
1014 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1015 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1016 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1017 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1018 }
1019 
1020 #ifdef INVARIANTS
1021 static __inline int
1022 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1023 {
1024 
1025 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1026 }
1027 #endif
1028 
1029 static __inline void
1030 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1031 {
1032 	struct vmcb_ctrl *ctrl;
1033 
1034 	ctrl = svm_get_vmcb_ctrl(vcpu);
1035 
1036 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1037 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1038 		KASSERT(vintr_intercept_enabled(vcpu),
1039 		    ("%s: vintr intercept should be enabled", __func__));
1040 		return;
1041 	}
1042 
1043 	SVM_CTR0(vcpu, "Enable intr window exiting");
1044 	ctrl->v_irq = 1;
1045 	ctrl->v_ign_tpr = 1;
1046 	ctrl->v_intr_vector = 0;
1047 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1048 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1049 }
1050 
1051 static __inline void
1052 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1053 {
1054 	struct vmcb_ctrl *ctrl;
1055 
1056 	ctrl = svm_get_vmcb_ctrl(vcpu);
1057 
1058 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1059 		KASSERT(!vintr_intercept_enabled(vcpu),
1060 		    ("%s: vintr intercept should be disabled", __func__));
1061 		return;
1062 	}
1063 
1064 	SVM_CTR0(vcpu, "Disable intr window exiting");
1065 	ctrl->v_irq = 0;
1066 	ctrl->v_intr_vector = 0;
1067 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1068 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1069 }
1070 
1071 static int
1072 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1073 {
1074 	struct vmcb_ctrl *ctrl;
1075 	int oldval, newval;
1076 
1077 	ctrl = svm_get_vmcb_ctrl(vcpu);
1078 	oldval = ctrl->intr_shadow;
1079 	newval = val ? 1 : 0;
1080 	if (newval != oldval) {
1081 		ctrl->intr_shadow = newval;
1082 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1083 	}
1084 	return (0);
1085 }
1086 
1087 static int
1088 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1089 {
1090 	struct vmcb_ctrl *ctrl;
1091 
1092 	ctrl = svm_get_vmcb_ctrl(vcpu);
1093 	*val = ctrl->intr_shadow;
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1099  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1100  * to track when the vcpu is done handling the NMI.
1101  */
1102 static int
1103 nmi_blocked(struct svm_vcpu *vcpu)
1104 {
1105 	int blocked;
1106 
1107 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1108 	return (blocked);
1109 }
1110 
1111 static void
1112 enable_nmi_blocking(struct svm_vcpu *vcpu)
1113 {
1114 
1115 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1116 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1117 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1118 }
1119 
1120 static void
1121 clear_nmi_blocking(struct svm_vcpu *vcpu)
1122 {
1123 	int error __diagused;
1124 
1125 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1126 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1127 	/*
1128 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1129 	 * the "iret" when it runs next. However, it is possible to inject
1130 	 * another NMI into the vcpu before the "iret" has actually executed.
1131 	 *
1132 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1133 	 * it will trap back into the hypervisor. If an NMI is pending for
1134 	 * the vcpu it will be injected into the guest.
1135 	 *
1136 	 * XXX this needs to be fixed
1137 	 */
1138 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1139 
1140 	/*
1141 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1142 	 * immediate VMRUN.
1143 	 */
1144 	error = svm_modify_intr_shadow(vcpu, 1);
1145 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1146 }
1147 
1148 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1149 
1150 static int
1151 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1152     bool *retu)
1153 {
1154 	struct vm_exit *vme;
1155 	struct vmcb_state *state;
1156 	uint64_t changed, lma, oldval;
1157 	int error __diagused;
1158 
1159 	state = svm_get_vmcb_state(vcpu);
1160 
1161 	oldval = state->efer;
1162 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1163 
1164 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1165 	changed = oldval ^ newval;
1166 
1167 	if (newval & EFER_MBZ_BITS)
1168 		goto gpf;
1169 
1170 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1171 	if (changed & EFER_LME) {
1172 		if (state->cr0 & CR0_PG)
1173 			goto gpf;
1174 	}
1175 
1176 	/* EFER.LMA = EFER.LME & CR0.PG */
1177 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1178 		lma = EFER_LMA;
1179 	else
1180 		lma = 0;
1181 
1182 	if ((newval & EFER_LMA) != lma)
1183 		goto gpf;
1184 
1185 	if (newval & EFER_NXE) {
1186 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1187 			goto gpf;
1188 	}
1189 
1190 	/*
1191 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1192 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1193 	 */
1194 	if (newval & EFER_LMSLE) {
1195 		vme = vm_exitinfo(vcpu->vcpu);
1196 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1197 		*retu = true;
1198 		return (0);
1199 	}
1200 
1201 	if (newval & EFER_FFXSR) {
1202 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1203 			goto gpf;
1204 	}
1205 
1206 	if (newval & EFER_TCE) {
1207 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1208 			goto gpf;
1209 	}
1210 
1211 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1212 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1213 	return (0);
1214 gpf:
1215 	vm_inject_gp(vcpu->vcpu);
1216 	return (0);
1217 }
1218 
1219 static int
1220 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1221     uint64_t val, bool *retu)
1222 {
1223 	int error;
1224 
1225 	if (lapic_msr(num))
1226 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1227 	else if (num == MSR_EFER)
1228 		error = svm_write_efer(sc, vcpu, val, retu);
1229 	else
1230 		error = svm_wrmsr(vcpu, num, val, retu);
1231 
1232 	return (error);
1233 }
1234 
1235 static int
1236 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1237 {
1238 	struct vmcb_state *state;
1239 	struct svm_regctx *ctx;
1240 	uint64_t result;
1241 	int error;
1242 
1243 	if (lapic_msr(num))
1244 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1245 	else
1246 		error = svm_rdmsr(vcpu, num, &result, retu);
1247 
1248 	if (error == 0) {
1249 		state = svm_get_vmcb_state(vcpu);
1250 		ctx = svm_get_guest_regctx(vcpu);
1251 		state->rax = result & 0xffffffff;
1252 		ctx->sctx_rdx = result >> 32;
1253 	}
1254 
1255 	return (error);
1256 }
1257 
1258 #ifdef KTR
1259 static const char *
1260 exit_reason_to_str(uint64_t reason)
1261 {
1262 	int i;
1263 	static char reasonbuf[32];
1264 	static const struct {
1265 		int reason;
1266 		const char *str;
1267 	} reasons[] = {
1268 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1269 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1270 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1271 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1272 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1273 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1274 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1275 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1276 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1277 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1278 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1279 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1280 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1281 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1282 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1283 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1284 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1285 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1286 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1287 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1288 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1289 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1290 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1291 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1292 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1293 		{ .reason = VMCB_EXIT_POPF,	.str = "popf" },
1294 		{ .reason = VMCB_EXIT_PUSHF,	.str = "pushf" },
1295 	};
1296 
1297 	for (i = 0; i < nitems(reasons); i++) {
1298 		if (reasons[i].reason == reason)
1299 			return (reasons[i].str);
1300 	}
1301 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1302 	return (reasonbuf);
1303 }
1304 #endif	/* KTR */
1305 
1306 /*
1307  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1308  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1309  * and exceptions caused by INT3, INTO and BOUND instructions.
1310  *
1311  * Return 1 if the nRIP is valid and 0 otherwise.
1312  */
1313 static int
1314 nrip_valid(uint64_t exitcode)
1315 {
1316 	switch (exitcode) {
1317 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1318 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1319 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1320 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1321 	case 0x43:		/* INT3 */
1322 	case 0x44:		/* INTO */
1323 	case 0x45:		/* BOUND */
1324 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1325 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1326 		return (1);
1327 	default:
1328 		return (0);
1329 	}
1330 }
1331 
1332 static int
1333 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1334     struct vm_exit *vmexit)
1335 {
1336 	struct vmcb *vmcb;
1337 	struct vmcb_state *state;
1338 	struct vmcb_ctrl *ctrl;
1339 	struct svm_regctx *ctx;
1340 	uint64_t code, info1, info2, val;
1341 	uint32_t eax, ecx, edx;
1342 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1343 	bool retu;
1344 
1345 	ctx = svm_get_guest_regctx(vcpu);
1346 	vmcb = svm_get_vmcb(vcpu);
1347 	state = &vmcb->state;
1348 	ctrl = &vmcb->ctrl;
1349 
1350 	handled = 0;
1351 	code = ctrl->exitcode;
1352 	info1 = ctrl->exitinfo1;
1353 	info2 = ctrl->exitinfo2;
1354 
1355 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1356 	vmexit->rip = state->rip;
1357 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1358 
1359 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1360 
1361 	/*
1362 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1363 	 * in an inconsistent state and can trigger assertions that would
1364 	 * never happen otherwise.
1365 	 */
1366 	if (code == VMCB_EXIT_INVALID) {
1367 		vm_exit_svm(vmexit, code, info1, info2);
1368 		return (0);
1369 	}
1370 
1371 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1372 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1373 
1374 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1375 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1376 	    vmexit->inst_length, code, info1, info2));
1377 
1378 	svm_update_virqinfo(vcpu);
1379 	svm_save_intinfo(svm_sc, vcpu);
1380 
1381 	switch (code) {
1382 	case VMCB_EXIT_IRET:
1383 		/*
1384 		 * Restart execution at "iret" but with the intercept cleared.
1385 		 */
1386 		vmexit->inst_length = 0;
1387 		clear_nmi_blocking(vcpu);
1388 		handled = 1;
1389 		break;
1390 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1391 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1392 		handled = 1;
1393 		break;
1394 	case VMCB_EXIT_INTR:	/* external interrupt */
1395 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1396 		handled = 1;
1397 		break;
1398 	case VMCB_EXIT_NMI:	/* external NMI */
1399 		handled = 1;
1400 		break;
1401 	case 0x40 ... 0x5F:
1402 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1403 		reflect = 1;
1404 		idtvec = code - 0x40;
1405 		switch (idtvec) {
1406 		case IDT_MC:
1407 			/*
1408 			 * Call the machine check handler by hand. Also don't
1409 			 * reflect the machine check back into the guest.
1410 			 */
1411 			reflect = 0;
1412 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1413 			__asm __volatile("int $18");
1414 			break;
1415 		case IDT_PF:
1416 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1417 			KASSERT(error == 0, ("%s: error %d updating cr2",
1418 			    __func__, error));
1419 			/* fallthru */
1420 		case IDT_NP:
1421 		case IDT_SS:
1422 		case IDT_GP:
1423 		case IDT_AC:
1424 		case IDT_TS:
1425 			errcode_valid = 1;
1426 			break;
1427 
1428 		case IDT_DF:
1429 			errcode_valid = 1;
1430 			info1 = 0;
1431 			break;
1432 		case IDT_DB: {
1433 			/*
1434 			 * Check if we are being stepped (RFLAGS.TF)
1435 			 * and bounce vmexit to userland.
1436 			 */
1437 			bool stepped = 0;
1438 			uint64_t dr6 = 0;
1439 
1440 			svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1441 			stepped = !!(dr6 & DBREG_DR6_BS);
1442 			if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1443 				vmexit->exitcode = VM_EXITCODE_DB;
1444 				vmexit->u.dbg.trace_trap = 1;
1445 				vmexit->u.dbg.pushf_intercept = 0;
1446 
1447 				if (vcpu->dbg.popf_sstep) {
1448 					/*
1449 					 * DB# exit was caused by stepping over
1450 					 * popf.
1451 					 */
1452 					uint64_t rflags;
1453 
1454 					vcpu->dbg.popf_sstep = 0;
1455 
1456 					/*
1457 					 * Update shadowed TF bit so the next
1458 					 * setcap(..., RFLAGS_SSTEP, 0) restores
1459 					 * the correct value
1460 					 */
1461 					svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1462 					    &rflags);
1463 					vcpu->dbg.rflags_tf = rflags & PSL_T;
1464 				} else if (vcpu->dbg.pushf_sstep) {
1465 					/*
1466 					 * DB# exit was caused by stepping over
1467 					 * pushf.
1468 					 */
1469 					vcpu->dbg.pushf_sstep = 0;
1470 
1471 					/*
1472 					 * Adjusting the pushed rflags after a
1473 					 * restarted pushf instruction must be
1474 					 * handled outside of svm.c due to the
1475 					 * critical_enter() lock being held.
1476 					 */
1477 					vmexit->u.dbg.pushf_intercept = 1;
1478 					vmexit->u.dbg.tf_shadow_val =
1479 					    vcpu->dbg.rflags_tf;
1480 					svm_paging_info(svm_get_vmcb(vcpu),
1481 					    &vmexit->u.dbg.paging);
1482 				}
1483 
1484 				/* Clear DR6 "single-step" bit. */
1485 				dr6 &= ~DBREG_DR6_BS;
1486 				error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1487 				KASSERT(error == 0,
1488 				    ("%s: error %d updating DR6\r\n", __func__,
1489 					error));
1490 
1491 				reflect = 0;
1492 			}
1493 			break;
1494 		}
1495 		case IDT_BP:
1496 			vmexit->exitcode = VM_EXITCODE_BPT;
1497 			vmexit->u.bpt.inst_length = vmexit->inst_length;
1498 			vmexit->inst_length = 0;
1499 
1500 			reflect = 0;
1501 			break;
1502 		case IDT_OF:
1503 		case IDT_BR:
1504 			/*
1505 			 * The 'nrip' field is populated for INT3, INTO and
1506 			 * BOUND exceptions and this also implies that
1507 			 * 'inst_length' is non-zero.
1508 			 *
1509 			 * Reset 'inst_length' to zero so the guest %rip at
1510 			 * event injection is identical to what it was when
1511 			 * the exception originally happened.
1512 			 */
1513 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1514 			    "to zero before injecting exception %d",
1515 			    vmexit->inst_length, idtvec);
1516 			vmexit->inst_length = 0;
1517 			/* fallthru */
1518 		default:
1519 			errcode_valid = 0;
1520 			info1 = 0;
1521 			break;
1522 		}
1523 
1524 		if (reflect) {
1525 			KASSERT(vmexit->inst_length == 0,
1526 			    ("invalid inst_length (%d) "
1527 			     "when reflecting exception %d into guest",
1528 				vmexit->inst_length, idtvec));
1529 			/* Reflect the exception back into the guest */
1530 			SVM_CTR2(vcpu, "Reflecting exception "
1531 			    "%d/%#x into the guest", idtvec, (int)info1);
1532 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1533 			    errcode_valid, info1, 0);
1534 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1535 			    __func__, error));
1536 			handled = 1;
1537 		}
1538 		break;
1539 	case VMCB_EXIT_MSR:	/* MSR access. */
1540 		eax = state->rax;
1541 		ecx = ctx->sctx_rcx;
1542 		edx = ctx->sctx_rdx;
1543 		retu = false;
1544 
1545 		if (info1) {
1546 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1547 			val = (uint64_t)edx << 32 | eax;
1548 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1549 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1550 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1551 				vmexit->u.msr.code = ecx;
1552 				vmexit->u.msr.wval = val;
1553 			} else if (!retu) {
1554 				handled = 1;
1555 			} else {
1556 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1557 				    ("emulate_wrmsr retu with bogus exitcode"));
1558 			}
1559 		} else {
1560 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1561 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1562 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1563 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1564 				vmexit->u.msr.code = ecx;
1565 			} else if (!retu) {
1566 				handled = 1;
1567 			} else {
1568 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1569 				    ("emulate_rdmsr retu with bogus exitcode"));
1570 			}
1571 		}
1572 		break;
1573 	case VMCB_EXIT_IO:
1574 		handled = svm_handle_io(vcpu, vmexit);
1575 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1576 		break;
1577 	case VMCB_EXIT_CPUID:
1578 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1579 		handled = x86_emulate_cpuid(vcpu->vcpu,
1580 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1581 		    &ctx->sctx_rdx);
1582 		break;
1583 	case VMCB_EXIT_HLT:
1584 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1585 		vmexit->exitcode = VM_EXITCODE_HLT;
1586 		vmexit->u.hlt.rflags = state->rflags;
1587 		break;
1588 	case VMCB_EXIT_PAUSE:
1589 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1590 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1591 		break;
1592 	case VMCB_EXIT_NPF:
1593 		/* EXITINFO2 contains the faulting guest physical address */
1594 		if (info1 & VMCB_NPF_INFO1_RSV) {
1595 			SVM_CTR2(vcpu, "nested page fault with "
1596 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1597 			    info1, info2);
1598 		} else if (vm_mem_allocated(vcpu->vcpu, info2)) {
1599 			vmexit->exitcode = VM_EXITCODE_PAGING;
1600 			vmexit->u.paging.gpa = info2;
1601 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1602 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1603 			SVM_CTR3(vcpu, "nested page fault "
1604 			    "on gpa %#lx/%#lx at rip %#lx",
1605 			    info2, info1, state->rip);
1606 		} else if (svm_npf_emul_fault(info1)) {
1607 			svm_handle_inst_emul(vmcb, info2, vmexit);
1608 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1609 			SVM_CTR3(vcpu, "inst_emul fault "
1610 			    "for gpa %#lx/%#lx at rip %#lx",
1611 			    info2, info1, state->rip);
1612 		}
1613 		break;
1614 	case VMCB_EXIT_MONITOR:
1615 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1616 		break;
1617 	case VMCB_EXIT_MWAIT:
1618 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1619 		break;
1620 	case VMCB_EXIT_PUSHF: {
1621 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1622 			uint64_t rflags;
1623 
1624 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1625 			/* Restart this instruction. */
1626 			vmexit->inst_length = 0;
1627 			/* Disable PUSHF intercepts - avoid a loop. */
1628 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1629 			    VMCB_INTCPT_PUSHF, 0);
1630 			/* Trace restarted instruction. */
1631 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1632 			/* Let the IDT_DB handler know that pushf was stepped.
1633 			 */
1634 			vcpu->dbg.pushf_sstep = 1;
1635 			handled = 1;
1636 		}
1637 		break;
1638 	}
1639 	case VMCB_EXIT_POPF: {
1640 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1641 			uint64_t rflags;
1642 
1643 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1644 			/* Restart this instruction */
1645 			vmexit->inst_length = 0;
1646 			/* Disable POPF intercepts - avoid a loop*/
1647 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1648 			    VMCB_INTCPT_POPF, 0);
1649 			/* Trace restarted instruction */
1650 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1651 			vcpu->dbg.popf_sstep = 1;
1652 			handled = 1;
1653 		}
1654 		break;
1655 	}
1656 	case VMCB_EXIT_SHUTDOWN:
1657 	case VMCB_EXIT_VMRUN:
1658 	case VMCB_EXIT_VMMCALL:
1659 	case VMCB_EXIT_VMLOAD:
1660 	case VMCB_EXIT_VMSAVE:
1661 	case VMCB_EXIT_STGI:
1662 	case VMCB_EXIT_CLGI:
1663 	case VMCB_EXIT_SKINIT:
1664 	case VMCB_EXIT_ICEBP:
1665 	case VMCB_EXIT_INVLPGA:
1666 		vm_inject_ud(vcpu->vcpu);
1667 		handled = 1;
1668 		break;
1669 	case VMCB_EXIT_INVD:
1670 	case VMCB_EXIT_WBINVD:
1671 		/* ignore exit */
1672 		handled = 1;
1673 		break;
1674 	default:
1675 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1676 		break;
1677 	}
1678 
1679 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1680 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1681 	    vmexit->rip, vmexit->inst_length);
1682 
1683 	if (handled) {
1684 		vmexit->rip += vmexit->inst_length;
1685 		vmexit->inst_length = 0;
1686 		state->rip = vmexit->rip;
1687 	} else {
1688 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1689 			/*
1690 			 * If this VM exit was not claimed by anybody then
1691 			 * treat it as a generic SVM exit.
1692 			 */
1693 			vm_exit_svm(vmexit, code, info1, info2);
1694 		} else {
1695 			/*
1696 			 * The exitcode and collateral have been populated.
1697 			 * The VM exit will be processed further in userland.
1698 			 */
1699 		}
1700 	}
1701 	return (handled);
1702 }
1703 
1704 static void
1705 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1706 {
1707 	uint64_t intinfo;
1708 
1709 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1710 		return;
1711 
1712 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1713 	    "valid: %#lx", __func__, intinfo));
1714 
1715 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1716 		VMCB_EXITINTINFO_VECTOR(intinfo),
1717 		VMCB_EXITINTINFO_EC(intinfo),
1718 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1719 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1720 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1721 }
1722 
1723 /*
1724  * Inject event to virtual cpu.
1725  */
1726 static void
1727 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1728     struct vlapic *vlapic)
1729 {
1730 	struct vmcb_ctrl *ctrl;
1731 	struct vmcb_state *state;
1732 	uint8_t v_tpr;
1733 	int vector, need_intr_window;
1734 	int extint_pending;
1735 
1736 	if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1737 		return;
1738 	}
1739 
1740 	state = svm_get_vmcb_state(vcpu);
1741 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1742 
1743 	need_intr_window = 0;
1744 
1745 	if (vcpu->nextrip != state->rip) {
1746 		ctrl->intr_shadow = 0;
1747 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1748 		    "cleared due to rip change: %#lx/%#lx",
1749 		    vcpu->nextrip, state->rip);
1750 	}
1751 
1752 	/*
1753 	 * Inject pending events or exceptions for this vcpu.
1754 	 *
1755 	 * An event might be pending because the previous #VMEXIT happened
1756 	 * during event delivery (i.e. ctrl->exitintinfo).
1757 	 *
1758 	 * An event might also be pending because an exception was injected
1759 	 * by the hypervisor (e.g. #PF during instruction emulation).
1760 	 */
1761 	svm_inj_intinfo(sc, vcpu);
1762 
1763 	/* NMI event has priority over interrupts. */
1764 	if (vm_nmi_pending(vcpu->vcpu)) {
1765 		if (nmi_blocked(vcpu)) {
1766 			/*
1767 			 * Can't inject another NMI if the guest has not
1768 			 * yet executed an "iret" after the last NMI.
1769 			 */
1770 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1771 			    "to NMI-blocking");
1772 		} else if (ctrl->intr_shadow) {
1773 			/*
1774 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1775 			 */
1776 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1777 			    "interrupt shadow");
1778 			need_intr_window = 1;
1779 			goto done;
1780 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1781 			/*
1782 			 * If there is already an exception/interrupt pending
1783 			 * then defer the NMI until after that.
1784 			 */
1785 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1786 			    "eventinj %#lx", ctrl->eventinj);
1787 
1788 			/*
1789 			 * Use self-IPI to trigger a VM-exit as soon as
1790 			 * possible after the event injection is completed.
1791 			 *
1792 			 * This works only if the external interrupt exiting
1793 			 * is at a lower priority than the event injection.
1794 			 *
1795 			 * Although not explicitly specified in APMv2 the
1796 			 * relative priorities were verified empirically.
1797 			 */
1798 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1799 		} else {
1800 			vm_nmi_clear(vcpu->vcpu);
1801 
1802 			/* Inject NMI, vector number is not used */
1803 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1804 			    IDT_NMI, 0, false);
1805 
1806 			/* virtual NMI blocking is now in effect */
1807 			enable_nmi_blocking(vcpu);
1808 
1809 			SVM_CTR0(vcpu, "Injecting vNMI");
1810 		}
1811 	}
1812 
1813 	extint_pending = vm_extint_pending(vcpu->vcpu);
1814 	if (!extint_pending) {
1815 		if (!vlapic_pending_intr(vlapic, &vector))
1816 			goto done;
1817 		KASSERT(vector >= 16 && vector <= 255,
1818 		    ("invalid vector %d from local APIC", vector));
1819 	} else {
1820 		/* Ask the legacy pic for a vector to inject */
1821 		vatpic_pending_intr(sc->vm, &vector);
1822 		KASSERT(vector >= 0 && vector <= 255,
1823 		    ("invalid vector %d from INTR", vector));
1824 	}
1825 
1826 	/*
1827 	 * If the guest has disabled interrupts or is in an interrupt shadow
1828 	 * then we cannot inject the pending interrupt.
1829 	 */
1830 	if ((state->rflags & PSL_I) == 0) {
1831 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1832 		    "rflags %#lx", vector, state->rflags);
1833 		need_intr_window = 1;
1834 		goto done;
1835 	}
1836 
1837 	if (ctrl->intr_shadow) {
1838 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1839 		    "interrupt shadow", vector);
1840 		need_intr_window = 1;
1841 		goto done;
1842 	}
1843 
1844 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1845 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1846 		    "eventinj %#lx", vector, ctrl->eventinj);
1847 		need_intr_window = 1;
1848 		goto done;
1849 	}
1850 
1851 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1852 
1853 	if (!extint_pending) {
1854 		vlapic_intr_accepted(vlapic, vector);
1855 	} else {
1856 		vm_extint_clear(vcpu->vcpu);
1857 		vatpic_intr_accepted(sc->vm, vector);
1858 	}
1859 
1860 	/*
1861 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1862 	 * interrupt. This is done because the PIC might have another vector
1863 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1864 	 * that was preempted by the ExtInt then it allows us to inject the
1865 	 * APIC vector as soon as possible.
1866 	 */
1867 	need_intr_window = 1;
1868 done:
1869 	/*
1870 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1871 	 * the processor reflects this write to V_TPR without hypervisor
1872 	 * intervention.
1873 	 *
1874 	 * The guest can also modify the TPR by writing to it via the memory
1875 	 * mapped APIC page. In this case, the write will be emulated by the
1876 	 * hypervisor. For this reason V_TPR must be updated before every
1877 	 * VMRUN.
1878 	 */
1879 	v_tpr = vlapic_get_cr8(vlapic);
1880 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1881 	if (ctrl->v_tpr != v_tpr) {
1882 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1883 		    ctrl->v_tpr, v_tpr);
1884 		ctrl->v_tpr = v_tpr;
1885 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1886 	}
1887 
1888 	if (need_intr_window) {
1889 		/*
1890 		 * We use V_IRQ in conjunction with the VINTR intercept to
1891 		 * trap into the hypervisor as soon as a virtual interrupt
1892 		 * can be delivered.
1893 		 *
1894 		 * Since injected events are not subject to intercept checks
1895 		 * we need to ensure that the V_IRQ is not actually going to
1896 		 * be delivered on VM entry. The KASSERT below enforces this.
1897 		 */
1898 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1899 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1900 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1901 		    "intr_shadow (%u), rflags (%#lx)",
1902 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1903 		enable_intr_window_exiting(vcpu);
1904 	} else {
1905 		disable_intr_window_exiting(vcpu);
1906 	}
1907 }
1908 
1909 static __inline void
1910 restore_host_tss(void)
1911 {
1912 	struct system_segment_descriptor *tss_sd;
1913 
1914 	/*
1915 	 * The TSS descriptor was in use prior to launching the guest so it
1916 	 * has been marked busy.
1917 	 *
1918 	 * 'ltr' requires the descriptor to be marked available so change the
1919 	 * type to "64-bit available TSS".
1920 	 */
1921 	tss_sd = PCPU_GET(tss);
1922 	tss_sd->sd_type = SDT_SYSTSS;
1923 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1924 }
1925 
1926 static void
1927 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1928 {
1929 	struct vmcb_ctrl *ctrl;
1930 	long eptgen;
1931 	int cpu;
1932 	bool alloc_asid;
1933 
1934 	cpu = curcpu;
1935 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1936 	smr_enter(pmap->pm_eptsmr);
1937 
1938 	ctrl = svm_get_vmcb_ctrl(vcpu);
1939 
1940 	/*
1941 	 * The TLB entries associated with the vcpu's ASID are not valid
1942 	 * if either of the following conditions is true:
1943 	 *
1944 	 * 1. The vcpu's ASID generation is different than the host cpu's
1945 	 *    ASID generation. This happens when the vcpu migrates to a new
1946 	 *    host cpu. It can also happen when the number of vcpus executing
1947 	 *    on a host cpu is greater than the number of ASIDs available.
1948 	 *
1949 	 * 2. The pmap generation number is different than the value cached in
1950 	 *    the 'vcpustate'. This happens when the host invalidates pages
1951 	 *    belonging to the guest.
1952 	 *
1953 	 *	asidgen		eptgen	      Action
1954 	 *	mismatch	mismatch
1955 	 *	   0		   0		(a)
1956 	 *	   0		   1		(b1) or (b2)
1957 	 *	   1		   0		(c)
1958 	 *	   1		   1		(d)
1959 	 *
1960 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1961 	 *     no further action is needed.
1962 	 *
1963 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1964 	 *      retained and the TLB entries associated with this ASID
1965 	 *      are flushed by VMRUN.
1966 	 *
1967 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1968 	 *      allocated.
1969 	 *
1970 	 * (c) A new ASID is allocated.
1971 	 *
1972 	 * (d) A new ASID is allocated.
1973 	 */
1974 
1975 	alloc_asid = false;
1976 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1977 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1978 
1979 	if (vcpu->asid.gen != asid[cpu].gen) {
1980 		alloc_asid = true;	/* (c) and (d) */
1981 	} else if (vcpu->eptgen != eptgen) {
1982 		if (flush_by_asid())
1983 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1984 		else
1985 			alloc_asid = true;			/* (b2) */
1986 	} else {
1987 		/*
1988 		 * This is the common case (a).
1989 		 */
1990 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1991 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1992 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1993 	}
1994 
1995 	if (alloc_asid) {
1996 		if (++asid[cpu].num >= nasid) {
1997 			asid[cpu].num = 1;
1998 			if (++asid[cpu].gen == 0)
1999 				asid[cpu].gen = 1;
2000 			/*
2001 			 * If this cpu does not support "flush-by-asid"
2002 			 * then flush the entire TLB on a generation
2003 			 * bump. Subsequent ASID allocation in this
2004 			 * generation can be done without a TLB flush.
2005 			 */
2006 			if (!flush_by_asid())
2007 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2008 		}
2009 		vcpu->asid.gen = asid[cpu].gen;
2010 		vcpu->asid.num = asid[cpu].num;
2011 
2012 		ctrl->asid = vcpu->asid.num;
2013 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2014 		/*
2015 		 * If this cpu supports "flush-by-asid" then the TLB
2016 		 * was not flushed after the generation bump. The TLB
2017 		 * is flushed selectively after every new ASID allocation.
2018 		 */
2019 		if (flush_by_asid())
2020 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2021 	}
2022 	vcpu->eptgen = eptgen;
2023 
2024 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2025 	KASSERT(ctrl->asid == vcpu->asid.num,
2026 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2027 }
2028 
2029 static void
2030 svm_pmap_deactivate(pmap_t pmap)
2031 {
2032 	smr_exit(pmap->pm_eptsmr);
2033 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2034 }
2035 
2036 static __inline void
2037 disable_gintr(void)
2038 {
2039 
2040 	__asm __volatile("clgi");
2041 }
2042 
2043 static __inline void
2044 enable_gintr(void)
2045 {
2046 
2047         __asm __volatile("stgi");
2048 }
2049 
2050 static __inline void
2051 svm_dr_enter_guest(struct svm_regctx *gctx)
2052 {
2053 
2054 	/* Save host control debug registers. */
2055 	gctx->host_dr7 = rdr7();
2056 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2057 
2058 	/*
2059 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2060 	 * exceptions in the host based on the guest DRx values.  The
2061 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
2062 	 * VMCB.
2063 	 */
2064 	load_dr7(0);
2065 	wrmsr(MSR_DEBUGCTLMSR, 0);
2066 
2067 	/* Save host debug registers. */
2068 	gctx->host_dr0 = rdr0();
2069 	gctx->host_dr1 = rdr1();
2070 	gctx->host_dr2 = rdr2();
2071 	gctx->host_dr3 = rdr3();
2072 	gctx->host_dr6 = rdr6();
2073 
2074 	/* Restore guest debug registers. */
2075 	load_dr0(gctx->sctx_dr0);
2076 	load_dr1(gctx->sctx_dr1);
2077 	load_dr2(gctx->sctx_dr2);
2078 	load_dr3(gctx->sctx_dr3);
2079 }
2080 
2081 static __inline void
2082 svm_dr_leave_guest(struct svm_regctx *gctx)
2083 {
2084 
2085 	/* Save guest debug registers. */
2086 	gctx->sctx_dr0 = rdr0();
2087 	gctx->sctx_dr1 = rdr1();
2088 	gctx->sctx_dr2 = rdr2();
2089 	gctx->sctx_dr3 = rdr3();
2090 
2091 	/*
2092 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
2093 	 * last.
2094 	 */
2095 	load_dr0(gctx->host_dr0);
2096 	load_dr1(gctx->host_dr1);
2097 	load_dr2(gctx->host_dr2);
2098 	load_dr3(gctx->host_dr3);
2099 	load_dr6(gctx->host_dr6);
2100 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2101 	load_dr7(gctx->host_dr7);
2102 }
2103 
2104 /*
2105  * Start vcpu with specified RIP.
2106  */
2107 static int
2108 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2109 {
2110 	struct svm_regctx *gctx;
2111 	struct svm_softc *svm_sc;
2112 	struct svm_vcpu *vcpu;
2113 	struct vmcb_state *state;
2114 	struct vmcb_ctrl *ctrl;
2115 	struct vm_exit *vmexit;
2116 	struct vlapic *vlapic;
2117 	uint64_t vmcb_pa;
2118 	int handled;
2119 	uint16_t ldt_sel;
2120 
2121 	vcpu = vcpui;
2122 	svm_sc = vcpu->sc;
2123 	state = svm_get_vmcb_state(vcpu);
2124 	ctrl = svm_get_vmcb_ctrl(vcpu);
2125 	vmexit = vm_exitinfo(vcpu->vcpu);
2126 	vlapic = vm_lapic(vcpu->vcpu);
2127 
2128 	gctx = svm_get_guest_regctx(vcpu);
2129 	vmcb_pa = vcpu->vmcb_pa;
2130 
2131 	if (vcpu->lastcpu != curcpu) {
2132 		/*
2133 		 * Force new ASID allocation by invalidating the generation.
2134 		 */
2135 		vcpu->asid.gen = 0;
2136 
2137 		/*
2138 		 * Invalidate the VMCB state cache by marking all fields dirty.
2139 		 */
2140 		svm_set_dirty(vcpu, 0xffffffff);
2141 
2142 		/*
2143 		 * XXX
2144 		 * Setting 'vcpu->lastcpu' here is bit premature because
2145 		 * we may return from this function without actually executing
2146 		 * the VMRUN  instruction. This could happen if a rendezvous
2147 		 * or an AST is pending on the first time through the loop.
2148 		 *
2149 		 * This works for now but any new side-effects of vcpu
2150 		 * migration should take this case into account.
2151 		 */
2152 		vcpu->lastcpu = curcpu;
2153 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2154 	}
2155 
2156 	svm_msr_guest_enter(vcpu);
2157 
2158 	/* Update Guest RIP */
2159 	state->rip = rip;
2160 
2161 	do {
2162 		/*
2163 		 * Disable global interrupts to guarantee atomicity during
2164 		 * loading of guest state. This includes not only the state
2165 		 * loaded by the "vmrun" instruction but also software state
2166 		 * maintained by the hypervisor: suspended and rendezvous
2167 		 * state, NPT generation number, vlapic interrupts etc.
2168 		 */
2169 		disable_gintr();
2170 
2171 		if (vcpu_suspended(evinfo)) {
2172 			enable_gintr();
2173 			vm_exit_suspended(vcpu->vcpu, state->rip);
2174 			break;
2175 		}
2176 
2177 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2178 			enable_gintr();
2179 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2180 			break;
2181 		}
2182 
2183 		if (vcpu_reqidle(evinfo)) {
2184 			enable_gintr();
2185 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2186 			break;
2187 		}
2188 
2189 		/* We are asked to give the cpu by scheduler. */
2190 		if (vcpu_should_yield(vcpu->vcpu)) {
2191 			enable_gintr();
2192 			vm_exit_astpending(vcpu->vcpu, state->rip);
2193 			break;
2194 		}
2195 
2196 		if (vcpu_debugged(vcpu->vcpu)) {
2197 			enable_gintr();
2198 			vm_exit_debug(vcpu->vcpu, state->rip);
2199 			break;
2200 		}
2201 
2202 		/*
2203 		 * #VMEXIT resumes the host with the guest LDTR, so
2204 		 * save the current LDT selector so it can be restored
2205 		 * after an exit.  The userspace hypervisor probably
2206 		 * doesn't use a LDT, but save and restore it to be
2207 		 * safe.
2208 		 */
2209 		ldt_sel = sldt();
2210 
2211 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2212 
2213 		/*
2214 		 * Check the pmap generation and the ASID generation to
2215 		 * ensure that the vcpu does not use stale TLB mappings.
2216 		 */
2217 		svm_pmap_activate(vcpu, pmap);
2218 
2219 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2220 		vcpu->dirty = 0;
2221 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2222 
2223 		/* Launch Virtual Machine. */
2224 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2225 		svm_dr_enter_guest(gctx);
2226 		svm_launch(vmcb_pa, gctx, get_pcpu());
2227 		svm_dr_leave_guest(gctx);
2228 
2229 		svm_pmap_deactivate(pmap);
2230 
2231 		/*
2232 		 * The host GDTR and IDTR is saved by VMRUN and restored
2233 		 * automatically on #VMEXIT. However, the host TSS needs
2234 		 * to be restored explicitly.
2235 		 */
2236 		restore_host_tss();
2237 
2238 		/* Restore host LDTR. */
2239 		lldt(ldt_sel);
2240 
2241 		/* #VMEXIT disables interrupts so re-enable them here. */
2242 		enable_gintr();
2243 
2244 		/* Update 'nextrip' */
2245 		vcpu->nextrip = state->rip;
2246 
2247 		/* Handle #VMEXIT and if required return to user space. */
2248 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2249 	} while (handled);
2250 
2251 	svm_msr_guest_exit(vcpu);
2252 
2253 	return (0);
2254 }
2255 
2256 static void
2257 svm_vcpu_cleanup(void *vcpui)
2258 {
2259 	struct svm_vcpu *vcpu = vcpui;
2260 
2261 	free(vcpu->vmcb, M_SVM);
2262 	free(vcpu, M_SVM);
2263 }
2264 
2265 static void
2266 svm_cleanup(void *vmi)
2267 {
2268 	struct svm_softc *sc = vmi;
2269 
2270 	free(sc->iopm_bitmap, M_SVM);
2271 	free(sc->msr_bitmap, M_SVM);
2272 	free(sc, M_SVM);
2273 }
2274 
2275 static register_t *
2276 swctx_regptr(struct svm_regctx *regctx, int reg)
2277 {
2278 
2279 	switch (reg) {
2280 	case VM_REG_GUEST_RBX:
2281 		return (&regctx->sctx_rbx);
2282 	case VM_REG_GUEST_RCX:
2283 		return (&regctx->sctx_rcx);
2284 	case VM_REG_GUEST_RDX:
2285 		return (&regctx->sctx_rdx);
2286 	case VM_REG_GUEST_RDI:
2287 		return (&regctx->sctx_rdi);
2288 	case VM_REG_GUEST_RSI:
2289 		return (&regctx->sctx_rsi);
2290 	case VM_REG_GUEST_RBP:
2291 		return (&regctx->sctx_rbp);
2292 	case VM_REG_GUEST_R8:
2293 		return (&regctx->sctx_r8);
2294 	case VM_REG_GUEST_R9:
2295 		return (&regctx->sctx_r9);
2296 	case VM_REG_GUEST_R10:
2297 		return (&regctx->sctx_r10);
2298 	case VM_REG_GUEST_R11:
2299 		return (&regctx->sctx_r11);
2300 	case VM_REG_GUEST_R12:
2301 		return (&regctx->sctx_r12);
2302 	case VM_REG_GUEST_R13:
2303 		return (&regctx->sctx_r13);
2304 	case VM_REG_GUEST_R14:
2305 		return (&regctx->sctx_r14);
2306 	case VM_REG_GUEST_R15:
2307 		return (&regctx->sctx_r15);
2308 	case VM_REG_GUEST_DR0:
2309 		return (&regctx->sctx_dr0);
2310 	case VM_REG_GUEST_DR1:
2311 		return (&regctx->sctx_dr1);
2312 	case VM_REG_GUEST_DR2:
2313 		return (&regctx->sctx_dr2);
2314 	case VM_REG_GUEST_DR3:
2315 		return (&regctx->sctx_dr3);
2316 	default:
2317 		return (NULL);
2318 	}
2319 }
2320 
2321 static int
2322 svm_getreg(void *vcpui, int ident, uint64_t *val)
2323 {
2324 	struct svm_vcpu *vcpu;
2325 	register_t *reg;
2326 
2327 	vcpu = vcpui;
2328 
2329 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2330 		return (svm_get_intr_shadow(vcpu, val));
2331 	}
2332 
2333 	if (vmcb_read(vcpu, ident, val) == 0) {
2334 		return (0);
2335 	}
2336 
2337 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2338 
2339 	if (reg != NULL) {
2340 		*val = *reg;
2341 		return (0);
2342 	}
2343 
2344 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2345 	return (EINVAL);
2346 }
2347 
2348 static int
2349 svm_setreg(void *vcpui, int ident, uint64_t val)
2350 {
2351 	struct svm_vcpu *vcpu;
2352 	register_t *reg;
2353 
2354 	vcpu = vcpui;
2355 
2356 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2357 		return (svm_modify_intr_shadow(vcpu, val));
2358 	}
2359 
2360 	/* Do not permit user write access to VMCB fields by offset. */
2361 	if (!VMCB_ACCESS_OK(ident)) {
2362 		if (vmcb_write(vcpu, ident, val) == 0) {
2363 			return (0);
2364 		}
2365 	}
2366 
2367 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2368 
2369 	if (reg != NULL) {
2370 		*reg = val;
2371 		return (0);
2372 	}
2373 
2374 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2375 		/* Ignore. */
2376 		return (0);
2377 	}
2378 
2379 	/*
2380 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2381 	 * vcpu's ASID. This needs to be treated differently depending on
2382 	 * whether 'running' is true/false.
2383 	 */
2384 
2385 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2386 	return (EINVAL);
2387 }
2388 
2389 static int
2390 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2391 {
2392 	return (vmcb_getdesc(vcpui, reg, desc));
2393 }
2394 
2395 static int
2396 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2397 {
2398 	return (vmcb_setdesc(vcpui, reg, desc));
2399 }
2400 
2401 #ifdef BHYVE_SNAPSHOT
2402 static int
2403 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2404 {
2405 	int ret;
2406 	uint64_t val;
2407 
2408 	if (meta->op == VM_SNAPSHOT_SAVE) {
2409 		ret = svm_getreg(vcpui, ident, &val);
2410 		if (ret != 0)
2411 			goto done;
2412 
2413 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2414 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2415 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2416 
2417 		ret = svm_setreg(vcpui, ident, val);
2418 		if (ret != 0)
2419 			goto done;
2420 	} else {
2421 		ret = EINVAL;
2422 		goto done;
2423 	}
2424 
2425 done:
2426 	return (ret);
2427 }
2428 #endif
2429 
2430 static int
2431 svm_setcap(void *vcpui, int type, int val)
2432 {
2433 	struct svm_vcpu *vcpu;
2434 	struct vlapic *vlapic;
2435 	int error;
2436 
2437 	vcpu = vcpui;
2438 	error = 0;
2439 
2440 	switch (type) {
2441 	case VM_CAP_HALT_EXIT:
2442 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2443 		    VMCB_INTCPT_HLT, val);
2444 		break;
2445 	case VM_CAP_PAUSE_EXIT:
2446 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2447 		    VMCB_INTCPT_PAUSE, val);
2448 		break;
2449 	case VM_CAP_UNRESTRICTED_GUEST:
2450 		/* Unrestricted guest execution cannot be disabled in SVM */
2451 		if (val == 0)
2452 			error = EINVAL;
2453 		break;
2454 	case VM_CAP_BPT_EXIT:
2455 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2456 		break;
2457 	case VM_CAP_IPI_EXIT:
2458 		vlapic = vm_lapic(vcpu->vcpu);
2459 		vlapic->ipi_exit = val;
2460 		break;
2461 	case VM_CAP_MASK_HWINTR:
2462 		vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2463 		vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2464 		break;
2465 	case VM_CAP_RFLAGS_TF: {
2466 		uint64_t rflags;
2467 
2468 		/* Fetch RFLAGS. */
2469 		if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2470 			error = (EINVAL);
2471 			break;
2472 		}
2473 		if (val) {
2474 			/* Save current TF bit. */
2475 			vcpu->dbg.rflags_tf = rflags & PSL_T;
2476 			/* Trace next instruction. */
2477 			if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2478 				(rflags | PSL_T))) {
2479 				error = (EINVAL);
2480 				break;
2481 			}
2482 			vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2483 		} else {
2484 			/*
2485 			 * Restore shadowed RFLAGS.TF only if vCPU was
2486 			 * previously stepped
2487 			 */
2488 			if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2489 				rflags &= ~PSL_T;
2490 				rflags |= vcpu->dbg.rflags_tf;
2491 				vcpu->dbg.rflags_tf = 0;
2492 
2493 				if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2494 					rflags)) {
2495 					error = (EINVAL);
2496 					break;
2497 				}
2498 				vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2499 			}
2500 		}
2501 
2502 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2503 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2504 		    val);
2505 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2506 		    val);
2507 		break;
2508 	}
2509 	default:
2510 		error = ENOENT;
2511 		break;
2512 	}
2513 	return (error);
2514 }
2515 
2516 static int
2517 svm_getcap(void *vcpui, int type, int *retval)
2518 {
2519 	struct svm_vcpu *vcpu;
2520 	struct vlapic *vlapic;
2521 	int error;
2522 
2523 	vcpu = vcpui;
2524 	error = 0;
2525 
2526 	switch (type) {
2527 	case VM_CAP_HALT_EXIT:
2528 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2529 		    VMCB_INTCPT_HLT);
2530 		break;
2531 	case VM_CAP_PAUSE_EXIT:
2532 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2533 		    VMCB_INTCPT_PAUSE);
2534 		break;
2535 	case VM_CAP_UNRESTRICTED_GUEST:
2536 		*retval = 1;	/* unrestricted guest is always enabled */
2537 		break;
2538 	case VM_CAP_BPT_EXIT:
2539 		*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2540 		break;
2541 	case VM_CAP_IPI_EXIT:
2542 		vlapic = vm_lapic(vcpu->vcpu);
2543 		*retval = vlapic->ipi_exit;
2544 		break;
2545 	case VM_CAP_RFLAGS_TF:
2546 		*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2547 		break;
2548 	case VM_CAP_MASK_HWINTR:
2549 		*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2550 		break;
2551 	default:
2552 		error = ENOENT;
2553 		break;
2554 	}
2555 	return (error);
2556 }
2557 
2558 static struct vmspace *
2559 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2560 {
2561 	return (svm_npt_alloc(min, max));
2562 }
2563 
2564 static void
2565 svm_vmspace_free(struct vmspace *vmspace)
2566 {
2567 	svm_npt_free(vmspace);
2568 }
2569 
2570 static struct vlapic *
2571 svm_vlapic_init(void *vcpui)
2572 {
2573 	struct svm_vcpu *vcpu;
2574 	struct vlapic *vlapic;
2575 
2576 	vcpu = vcpui;
2577 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2578 	vlapic->vm = vcpu->sc->vm;
2579 	vlapic->vcpu = vcpu->vcpu;
2580 	vlapic->vcpuid = vcpu->vcpuid;
2581 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2582 	    M_WAITOK | M_ZERO);
2583 
2584 	vlapic_init(vlapic);
2585 
2586 	return (vlapic);
2587 }
2588 
2589 static void
2590 svm_vlapic_cleanup(struct vlapic *vlapic)
2591 {
2592 
2593         vlapic_cleanup(vlapic);
2594 	free(vlapic->apic_page, M_SVM_VLAPIC);
2595         free(vlapic, M_SVM_VLAPIC);
2596 }
2597 
2598 #ifdef BHYVE_SNAPSHOT
2599 static int
2600 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2601 {
2602 	struct svm_vcpu *vcpu;
2603 	int err, running, hostcpu;
2604 
2605 	vcpu = vcpui;
2606 	err = 0;
2607 
2608 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2609 	if (running && hostcpu != curcpu) {
2610 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2611 		    vcpu->vcpuid);
2612 		return (EINVAL);
2613 	}
2614 
2615 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2616 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2617 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2618 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2619 
2620 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2621 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2622 
2623 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2624 
2625 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2626 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2627 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2628 
2629 	/* Guest segments */
2630 	/* ES */
2631 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2632 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2633 
2634 	/* CS */
2635 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2636 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2637 
2638 	/* SS */
2639 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2640 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2641 
2642 	/* DS */
2643 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2644 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2645 
2646 	/* FS */
2647 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2648 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2649 
2650 	/* GS */
2651 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2652 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2653 
2654 	/* TR */
2655 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2656 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2657 
2658 	/* LDTR */
2659 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2660 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2661 
2662 	/* EFER */
2663 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2664 
2665 	/* IDTR and GDTR */
2666 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2667 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2668 
2669 	/* Specific AMD registers */
2670 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2671 
2672 	err += vmcb_snapshot_any(vcpu,
2673 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2674 	err += vmcb_snapshot_any(vcpu,
2675 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2676 	err += vmcb_snapshot_any(vcpu,
2677 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2678 	err += vmcb_snapshot_any(vcpu,
2679 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2680 	err += vmcb_snapshot_any(vcpu,
2681 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2682 
2683 	err += vmcb_snapshot_any(vcpu,
2684 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2685 	err += vmcb_snapshot_any(vcpu,
2686 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2687 
2688 	err += vmcb_snapshot_any(vcpu,
2689 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2690 
2691 	err += vmcb_snapshot_any(vcpu,
2692 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2693 
2694 	err += vmcb_snapshot_any(vcpu,
2695 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2696 
2697 	err += vmcb_snapshot_any(vcpu,
2698 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2699 	err += vmcb_snapshot_any(vcpu,
2700 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2701 	err += vmcb_snapshot_any(vcpu,
2702 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2703 	err += vmcb_snapshot_any(vcpu,
2704 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2705 
2706 	err += vmcb_snapshot_any(vcpu,
2707 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2708 
2709 	err += vmcb_snapshot_any(vcpu,
2710 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2711 	err += vmcb_snapshot_any(vcpu,
2712 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2713 	err += vmcb_snapshot_any(vcpu,
2714 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2715 	err += vmcb_snapshot_any(vcpu,
2716 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2717 
2718 	err += vmcb_snapshot_any(vcpu,
2719 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2720 
2721 	err += vmcb_snapshot_any(vcpu,
2722 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2723 	err += vmcb_snapshot_any(vcpu,
2724 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2725 	err += vmcb_snapshot_any(vcpu,
2726 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2727 
2728 	err += vmcb_snapshot_any(vcpu,
2729 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2730 
2731 	err += vmcb_snapshot_any(vcpu,
2732 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2733 
2734 	err += vmcb_snapshot_any(vcpu,
2735 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2736 	err += vmcb_snapshot_any(vcpu,
2737 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2738 	err += vmcb_snapshot_any(vcpu,
2739 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2740 
2741 	err += vmcb_snapshot_any(vcpu,
2742 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2743 
2744 	err += vmcb_snapshot_any(vcpu,
2745 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2746 	err += vmcb_snapshot_any(vcpu,
2747 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2748 	err += vmcb_snapshot_any(vcpu,
2749 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2750 	err += vmcb_snapshot_any(vcpu,
2751 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2752 	err += vmcb_snapshot_any(vcpu,
2753 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2754 	if (err != 0)
2755 		goto done;
2756 
2757 	/* Snapshot swctx for virtual cpu */
2758 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2759 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2760 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2761 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2762 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2763 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2764 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2765 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2766 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2767 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2768 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2769 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2770 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2771 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2772 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2773 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2774 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2775 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2776 
2777 	/* Restore other svm_vcpu struct fields */
2778 
2779 	/* Restore NEXTRIP field */
2780 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2781 
2782 	/* Restore lastcpu field */
2783 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2784 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2785 
2786 	/* Restore EPTGEN field - EPT is Extended Page Table */
2787 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2788 
2789 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2790 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2791 
2792 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2793 
2794 	/* Set all caches dirty */
2795 	if (meta->op == VM_SNAPSHOT_RESTORE)
2796 		svm_set_dirty(vcpu, 0xffffffff);
2797 
2798 done:
2799 	return (err);
2800 }
2801 
2802 static int
2803 svm_restore_tsc(void *vcpui, uint64_t offset)
2804 {
2805 	struct svm_vcpu *vcpu = vcpui;
2806 
2807 	svm_set_tsc_offset(vcpu, offset);
2808 
2809 	return (0);
2810 }
2811 #endif
2812 
2813 const struct vmm_ops vmm_ops_amd = {
2814 	.modinit	= svm_modinit,
2815 	.modcleanup	= svm_modcleanup,
2816 	.modresume	= svm_modresume,
2817 	.init		= svm_init,
2818 	.run		= svm_run,
2819 	.cleanup	= svm_cleanup,
2820 	.vcpu_init	= svm_vcpu_init,
2821 	.vcpu_cleanup	= svm_vcpu_cleanup,
2822 	.getreg		= svm_getreg,
2823 	.setreg		= svm_setreg,
2824 	.getdesc	= svm_getdesc,
2825 	.setdesc	= svm_setdesc,
2826 	.getcap		= svm_getcap,
2827 	.setcap		= svm_setcap,
2828 	.vmspace_alloc	= svm_vmspace_alloc,
2829 	.vmspace_free	= svm_vmspace_free,
2830 	.vlapic_init	= svm_vlapic_init,
2831 	.vlapic_cleanup	= svm_vlapic_cleanup,
2832 #ifdef BHYVE_SNAPSHOT
2833 	.vcpu_snapshot	= svm_vcpu_snapshot,
2834 	.restore_tsc	= svm_restore_tsc,
2835 #endif
2836 };
2837