xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 60eddb209b5ad13a549ca74a41b7cb38a31da5ef)
1 /*-
2  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/sysctl.h>
38 
39 #include <vm/vm.h>
40 #include <vm/pmap.h>
41 
42 #include <machine/cpufunc.h>
43 #include <machine/psl.h>
44 #include <machine/md_var.h>
45 #include <machine/specialreg.h>
46 #include <machine/smp.h>
47 #include <machine/vmm.h>
48 #include <machine/vmm_dev.h>
49 #include <machine/vmm_instruction_emul.h>
50 
51 #include "vmm_lapic.h"
52 #include "vmm_stat.h"
53 #include "vmm_ktr.h"
54 #include "vmm_ioport.h"
55 #include "vatpic.h"
56 #include "vlapic.h"
57 #include "vlapic_priv.h"
58 
59 #include "x86.h"
60 #include "vmcb.h"
61 #include "svm.h"
62 #include "svm_softc.h"
63 #include "svm_msr.h"
64 #include "npt.h"
65 
66 SYSCTL_DECL(_hw_vmm);
67 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
68 
69 /*
70  * SVM CPUID function 0x8000_000A, edx bit decoding.
71  */
72 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
73 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
74 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
75 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
76 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
77 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
78 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
79 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
80 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
81 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
82 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
83 
84 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
85 				VMCB_CACHE_IOPM		|	\
86 				VMCB_CACHE_I		|	\
87 				VMCB_CACHE_TPR		|	\
88 				VMCB_CACHE_CR2		|	\
89 				VMCB_CACHE_CR		|	\
90 				VMCB_CACHE_DT		|	\
91 				VMCB_CACHE_SEG		|	\
92 				VMCB_CACHE_NP)
93 
94 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
95 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
96     0, NULL);
97 
98 static MALLOC_DEFINE(M_SVM, "svm", "svm");
99 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
100 
101 /* Per-CPU context area. */
102 extern struct pcpu __pcpu[];
103 
104 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
105 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
106     "SVM features advertised by CPUID.8000000AH:EDX");
107 
108 static int disable_npf_assist;
109 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
110     &disable_npf_assist, 0, NULL);
111 
112 /* Maximum ASIDs supported by the processor */
113 static uint32_t nasid;
114 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
115     "Number of ASIDs supported by this processor");
116 
117 /* Current ASID generation for each host cpu */
118 static struct asid asid[MAXCPU];
119 
120 /*
121  * SVM host state saved area of size 4KB for each core.
122  */
123 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124 
125 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
126 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
127 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
128 
129 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
130 
131 static __inline int
132 flush_by_asid(void)
133 {
134 
135 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
136 }
137 
138 static __inline int
139 decode_assist(void)
140 {
141 
142 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
143 }
144 
145 static void
146 svm_disable(void *arg __unused)
147 {
148 	uint64_t efer;
149 
150 	efer = rdmsr(MSR_EFER);
151 	efer &= ~EFER_SVM;
152 	wrmsr(MSR_EFER, efer);
153 }
154 
155 /*
156  * Disable SVM on all CPUs.
157  */
158 static int
159 svm_cleanup(void)
160 {
161 
162 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
163 	return (0);
164 }
165 
166 /*
167  * Verify that all the features required by bhyve are available.
168  */
169 static int
170 check_svm_features(void)
171 {
172 	u_int regs[4];
173 
174 	/* CPUID Fn8000_000A is for SVM */
175 	do_cpuid(0x8000000A, regs);
176 	svm_feature &= regs[3];
177 
178 	/*
179 	 * The number of ASIDs can be configured to be less than what is
180 	 * supported by the hardware but not more.
181 	 */
182 	if (nasid == 0 || nasid > regs[1])
183 		nasid = regs[1];
184 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
185 
186 	/* bhyve requires the Nested Paging feature */
187 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
188 		printf("SVM: Nested Paging feature not available.\n");
189 		return (ENXIO);
190 	}
191 
192 	/* bhyve requires the NRIP Save feature */
193 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
194 		printf("SVM: NRIP Save feature not available.\n");
195 		return (ENXIO);
196 	}
197 
198 	return (0);
199 }
200 
201 static void
202 svm_enable(void *arg __unused)
203 {
204 	uint64_t efer;
205 
206 	efer = rdmsr(MSR_EFER);
207 	efer |= EFER_SVM;
208 	wrmsr(MSR_EFER, efer);
209 
210 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
211 }
212 
213 /*
214  * Return 1 if SVM is enabled on this processor and 0 otherwise.
215  */
216 static int
217 svm_available(void)
218 {
219 	uint64_t msr;
220 
221 	/* Section 15.4 Enabling SVM from APM2. */
222 	if ((amd_feature2 & AMDID2_SVM) == 0) {
223 		printf("SVM: not available.\n");
224 		return (0);
225 	}
226 
227 	msr = rdmsr(MSR_VM_CR);
228 	if ((msr & VM_CR_SVMDIS) != 0) {
229 		printf("SVM: disabled by BIOS.\n");
230 		return (0);
231 	}
232 
233 	return (1);
234 }
235 
236 static int
237 svm_init(int ipinum)
238 {
239 	int error, cpu;
240 
241 	if (!svm_available())
242 		return (ENXIO);
243 
244 	error = check_svm_features();
245 	if (error)
246 		return (error);
247 
248 	vmcb_clean &= VMCB_CACHE_DEFAULT;
249 
250 	for (cpu = 0; cpu < MAXCPU; cpu++) {
251 		/*
252 		 * Initialize the host ASIDs to their "highest" valid values.
253 		 *
254 		 * The next ASID allocation will rollover both 'gen' and 'num'
255 		 * and start off the sequence at {1,1}.
256 		 */
257 		asid[cpu].gen = ~0UL;
258 		asid[cpu].num = nasid - 1;
259 	}
260 
261 	svm_msr_init();
262 	svm_npt_init(ipinum);
263 
264 	/* Enable SVM on all CPUs */
265 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
266 
267 	return (0);
268 }
269 
270 static void
271 svm_restore(void)
272 {
273 
274 	svm_enable(NULL);
275 }
276 
277 /* Pentium compatible MSRs */
278 #define MSR_PENTIUM_START 	0
279 #define MSR_PENTIUM_END 	0x1FFF
280 /* AMD 6th generation and Intel compatible MSRs */
281 #define MSR_AMD6TH_START 	0xC0000000UL
282 #define MSR_AMD6TH_END 		0xC0001FFFUL
283 /* AMD 7th and 8th generation compatible MSRs */
284 #define MSR_AMD7TH_START 	0xC0010000UL
285 #define MSR_AMD7TH_END 		0xC0011FFFUL
286 
287 /*
288  * Get the index and bit position for a MSR in permission bitmap.
289  * Two bits are used for each MSR: lower bit for read and higher bit for write.
290  */
291 static int
292 svm_msr_index(uint64_t msr, int *index, int *bit)
293 {
294 	uint32_t base, off;
295 
296 	*index = -1;
297 	*bit = (msr % 4) * 2;
298 	base = 0;
299 
300 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
301 		*index = msr / 4;
302 		return (0);
303 	}
304 
305 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
306 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
307 		off = (msr - MSR_AMD6TH_START);
308 		*index = (off + base) / 4;
309 		return (0);
310 	}
311 
312 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
313 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
314 		off = (msr - MSR_AMD7TH_START);
315 		*index = (off + base) / 4;
316 		return (0);
317 	}
318 
319 	return (EINVAL);
320 }
321 
322 /*
323  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
324  */
325 static void
326 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
327 {
328 	int index, bit, error;
329 
330 	error = svm_msr_index(msr, &index, &bit);
331 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
332 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
333 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
334 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
335 	    "msr %#lx", __func__, bit, msr));
336 
337 	if (read)
338 		perm_bitmap[index] &= ~(1UL << bit);
339 
340 	if (write)
341 		perm_bitmap[index] &= ~(2UL << bit);
342 }
343 
344 static void
345 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
346 {
347 
348 	svm_msr_perm(perm_bitmap, msr, true, true);
349 }
350 
351 static void
352 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
353 {
354 
355 	svm_msr_perm(perm_bitmap, msr, true, false);
356 }
357 
358 static __inline int
359 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
360 {
361 	struct vmcb_ctrl *ctrl;
362 
363 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
364 
365 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
366 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
367 }
368 
369 static __inline void
370 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
371     int enabled)
372 {
373 	struct vmcb_ctrl *ctrl;
374 	uint32_t oldval;
375 
376 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
377 
378 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
379 	oldval = ctrl->intercept[idx];
380 
381 	if (enabled)
382 		ctrl->intercept[idx] |= bitmask;
383 	else
384 		ctrl->intercept[idx] &= ~bitmask;
385 
386 	if (ctrl->intercept[idx] != oldval) {
387 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
388 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
389 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
390 	}
391 }
392 
393 static __inline void
394 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
395 {
396 
397 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
398 }
399 
400 static __inline void
401 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
402 {
403 
404 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
405 }
406 
407 static void
408 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
409     uint64_t msrpm_base_pa, uint64_t np_pml4)
410 {
411 	struct vmcb_ctrl *ctrl;
412 	struct vmcb_state *state;
413 	uint32_t mask;
414 	int n;
415 
416 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
417 	state = svm_get_vmcb_state(sc, vcpu);
418 
419 	ctrl->iopm_base_pa = iopm_base_pa;
420 	ctrl->msrpm_base_pa = msrpm_base_pa;
421 
422 	/* Enable nested paging */
423 	ctrl->np_enable = 1;
424 	ctrl->n_cr3 = np_pml4;
425 
426 	/*
427 	 * Intercept accesses to the control registers that are not shadowed
428 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
429 	 */
430 	for (n = 0; n < 16; n++) {
431 		mask = (BIT(n) << 16) | BIT(n);
432 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
433 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
434 		else
435 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
436 	}
437 
438 
439 	/*
440 	 * Intercept everything when tracing guest exceptions otherwise
441 	 * just intercept machine check exception.
442 	 */
443 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
444 		for (n = 0; n < 32; n++) {
445 			/*
446 			 * Skip unimplemented vectors in the exception bitmap.
447 			 */
448 			if (n == 2 || n == 9) {
449 				continue;
450 			}
451 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
452 		}
453 	} else {
454 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
455 	}
456 
457 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
458 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
462 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
463 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
464 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
465 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
466 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
467 	    VMCB_INTCPT_FERR_FREEZE);
468 
469 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
470 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
471 
472 	/*
473 	 * From section "Canonicalization and Consistency Checks" in APMv2
474 	 * the VMRUN intercept bit must be set to pass the consistency check.
475 	 */
476 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
477 
478 	/*
479 	 * The ASID will be set to a non-zero value just before VMRUN.
480 	 */
481 	ctrl->asid = 0;
482 
483 	/*
484 	 * Section 15.21.1, Interrupt Masking in EFLAGS
485 	 * Section 15.21.2, Virtualizing APIC.TPR
486 	 *
487 	 * This must be set for %rflag and %cr8 isolation of guest and host.
488 	 */
489 	ctrl->v_intr_masking = 1;
490 
491 	/* Enable Last Branch Record aka LBR for debugging */
492 	ctrl->lbr_virt_en = 1;
493 	state->dbgctl = BIT(0);
494 
495 	/* EFER_SVM must always be set when the guest is executing */
496 	state->efer = EFER_SVM;
497 
498 	/* Set up the PAT to power-on state */
499 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
500 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
501 	    PAT_VALUE(2, PAT_UNCACHED)		|
502 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
503 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
504 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
505 	    PAT_VALUE(6, PAT_UNCACHED)		|
506 	    PAT_VALUE(7, PAT_UNCACHEABLE);
507 }
508 
509 /*
510  * Initialize a virtual machine.
511  */
512 static void *
513 svm_vminit(struct vm *vm, pmap_t pmap)
514 {
515 	struct svm_softc *svm_sc;
516 	struct svm_vcpu *vcpu;
517 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
518 	int i;
519 
520 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
521 	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
522 		panic("malloc of svm_softc not aligned on page boundary");
523 
524 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
525 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
526 	if (svm_sc->msr_bitmap == NULL)
527 		panic("contigmalloc of SVM MSR bitmap failed");
528 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
529 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
530 	if (svm_sc->iopm_bitmap == NULL)
531 		panic("contigmalloc of SVM IO bitmap failed");
532 
533 	svm_sc->vm = vm;
534 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
535 
536 	/*
537 	 * Intercept read and write accesses to all MSRs.
538 	 */
539 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
540 
541 	/*
542 	 * Access to the following MSRs is redirected to the VMCB when the
543 	 * guest is executing. Therefore it is safe to allow the guest to
544 	 * read/write these MSRs directly without hypervisor involvement.
545 	 */
546 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
547 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
548 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
549 
550 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
551 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
552 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
553 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
554 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
555 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
556 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
557 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
558 
559 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
560 
561 	/*
562 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
563 	 */
564 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
565 
566 	/* Intercept access to all I/O ports. */
567 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
568 
569 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
570 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
571 	pml4_pa = svm_sc->nptp;
572 	for (i = 0; i < VM_MAXCPU; i++) {
573 		vcpu = svm_get_vcpu(svm_sc, i);
574 		vcpu->nextrip = ~0;
575 		vcpu->lastcpu = NOCPU;
576 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
577 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
578 		svm_msr_guest_init(svm_sc, i);
579 	}
580 	return (svm_sc);
581 }
582 
583 /*
584  * Collateral for a generic SVM VM-exit.
585  */
586 static void
587 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
588 {
589 
590 	vme->exitcode = VM_EXITCODE_SVM;
591 	vme->u.svm.exitcode = code;
592 	vme->u.svm.exitinfo1 = info1;
593 	vme->u.svm.exitinfo2 = info2;
594 }
595 
596 static int
597 svm_cpl(struct vmcb_state *state)
598 {
599 
600 	/*
601 	 * From APMv2:
602 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
603 	 *    from any segment DPL"
604 	 */
605 	return (state->cpl);
606 }
607 
608 static enum vm_cpu_mode
609 svm_vcpu_mode(struct vmcb *vmcb)
610 {
611 	struct vmcb_segment seg;
612 	struct vmcb_state *state;
613 	int error;
614 
615 	state = &vmcb->state;
616 
617 	if (state->efer & EFER_LMA) {
618 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
619 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
620 		    error));
621 
622 		/*
623 		 * Section 4.8.1 for APM2, check if Code Segment has
624 		 * Long attribute set in descriptor.
625 		 */
626 		if (seg.attrib & VMCB_CS_ATTRIB_L)
627 			return (CPU_MODE_64BIT);
628 		else
629 			return (CPU_MODE_COMPATIBILITY);
630 	} else  if (state->cr0 & CR0_PE) {
631 		return (CPU_MODE_PROTECTED);
632 	} else {
633 		return (CPU_MODE_REAL);
634 	}
635 }
636 
637 static enum vm_paging_mode
638 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
639 {
640 
641 	if ((cr0 & CR0_PG) == 0)
642 		return (PAGING_MODE_FLAT);
643 	if ((cr4 & CR4_PAE) == 0)
644 		return (PAGING_MODE_32);
645 	if (efer & EFER_LME)
646 		return (PAGING_MODE_64);
647 	else
648 		return (PAGING_MODE_PAE);
649 }
650 
651 /*
652  * ins/outs utility routines
653  */
654 static uint64_t
655 svm_inout_str_index(struct svm_regctx *regs, int in)
656 {
657 	uint64_t val;
658 
659 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
660 
661 	return (val);
662 }
663 
664 static uint64_t
665 svm_inout_str_count(struct svm_regctx *regs, int rep)
666 {
667 	uint64_t val;
668 
669 	val = rep ? regs->sctx_rcx : 1;
670 
671 	return (val);
672 }
673 
674 static void
675 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
676     int in, struct vm_inout_str *vis)
677 {
678 	int error, s;
679 
680 	if (in) {
681 		vis->seg_name = VM_REG_GUEST_ES;
682 	} else {
683 		/* The segment field has standard encoding */
684 		s = (info1 >> 10) & 0x7;
685 		vis->seg_name = vm_segment_name(s);
686 	}
687 
688 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
689 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
690 }
691 
692 static int
693 svm_inout_str_addrsize(uint64_t info1)
694 {
695         uint32_t size;
696 
697         size = (info1 >> 7) & 0x7;
698         switch (size) {
699         case 1:
700                 return (2);     /* 16 bit */
701         case 2:
702                 return (4);     /* 32 bit */
703         case 4:
704                 return (8);     /* 64 bit */
705         default:
706                 panic("%s: invalid size encoding %d", __func__, size);
707         }
708 }
709 
710 static void
711 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
712 {
713 	struct vmcb_state *state;
714 
715 	state = &vmcb->state;
716 	paging->cr3 = state->cr3;
717 	paging->cpl = svm_cpl(state);
718 	paging->cpu_mode = svm_vcpu_mode(vmcb);
719 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
720 	    state->efer);
721 }
722 
723 #define	UNHANDLED 0
724 
725 /*
726  * Handle guest I/O intercept.
727  */
728 static int
729 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
730 {
731 	struct vmcb_ctrl *ctrl;
732 	struct vmcb_state *state;
733 	struct svm_regctx *regs;
734 	struct vm_inout_str *vis;
735 	uint64_t info1;
736 	int inout_string;
737 
738 	state = svm_get_vmcb_state(svm_sc, vcpu);
739 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
740 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
741 
742 	info1 = ctrl->exitinfo1;
743 	inout_string = info1 & BIT(2) ? 1 : 0;
744 
745 	/*
746 	 * The effective segment number in EXITINFO1[12:10] is populated
747 	 * only if the processor has the DecodeAssist capability.
748 	 *
749 	 * XXX this is not specified explicitly in APMv2 but can be verified
750 	 * empirically.
751 	 */
752 	if (inout_string && !decode_assist())
753 		return (UNHANDLED);
754 
755 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
756 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
757 	vmexit->u.inout.string 	= inout_string;
758 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
759 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
760 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
761 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
762 
763 	if (inout_string) {
764 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
765 		vis = &vmexit->u.inout_str;
766 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
767 		vis->rflags = state->rflags;
768 		vis->cr0 = state->cr0;
769 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
770 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
771 		vis->addrsize = svm_inout_str_addrsize(info1);
772 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
773 		    vmexit->u.inout.in, vis);
774 	}
775 
776 	return (UNHANDLED);
777 }
778 
779 static int
780 npf_fault_type(uint64_t exitinfo1)
781 {
782 
783 	if (exitinfo1 & VMCB_NPF_INFO1_W)
784 		return (VM_PROT_WRITE);
785 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
786 		return (VM_PROT_EXECUTE);
787 	else
788 		return (VM_PROT_READ);
789 }
790 
791 static bool
792 svm_npf_emul_fault(uint64_t exitinfo1)
793 {
794 
795 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
796 		return (false);
797 	}
798 
799 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
800 		return (false);
801 	}
802 
803 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
804 		return (false);
805 	}
806 
807 	return (true);
808 }
809 
810 static void
811 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
812 {
813 	struct vm_guest_paging *paging;
814 	struct vmcb_segment seg;
815 	struct vmcb_ctrl *ctrl;
816 	char *inst_bytes;
817 	int error, inst_len;
818 
819 	ctrl = &vmcb->ctrl;
820 	paging = &vmexit->u.inst_emul.paging;
821 
822 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
823 	vmexit->u.inst_emul.gpa = gpa;
824 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
825 	svm_paging_info(vmcb, paging);
826 
827 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
828 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
829 
830 	switch(paging->cpu_mode) {
831 	case CPU_MODE_REAL:
832 		vmexit->u.inst_emul.cs_base = seg.base;
833 		vmexit->u.inst_emul.cs_d = 0;
834 		break;
835 	case CPU_MODE_PROTECTED:
836 	case CPU_MODE_COMPATIBILITY:
837 		vmexit->u.inst_emul.cs_base = seg.base;
838 
839 		/*
840 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
841 		 */
842 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
843 		    1 : 0;
844 		break;
845 	default:
846 		vmexit->u.inst_emul.cs_base = 0;
847 		vmexit->u.inst_emul.cs_d = 0;
848 		break;
849 	}
850 
851 	/*
852 	 * Copy the instruction bytes into 'vie' if available.
853 	 */
854 	if (decode_assist() && !disable_npf_assist) {
855 		inst_len = ctrl->inst_len;
856 		inst_bytes = ctrl->inst_bytes;
857 	} else {
858 		inst_len = 0;
859 		inst_bytes = NULL;
860 	}
861 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
862 }
863 
864 #ifdef KTR
865 static const char *
866 intrtype_to_str(int intr_type)
867 {
868 	switch (intr_type) {
869 	case VMCB_EVENTINJ_TYPE_INTR:
870 		return ("hwintr");
871 	case VMCB_EVENTINJ_TYPE_NMI:
872 		return ("nmi");
873 	case VMCB_EVENTINJ_TYPE_INTn:
874 		return ("swintr");
875 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
876 		return ("exception");
877 	default:
878 		panic("%s: unknown intr_type %d", __func__, intr_type);
879 	}
880 }
881 #endif
882 
883 /*
884  * Inject an event to vcpu as described in section 15.20, "Event injection".
885  */
886 static void
887 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
888 		 uint32_t error, bool ec_valid)
889 {
890 	struct vmcb_ctrl *ctrl;
891 
892 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
893 
894 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
895 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
896 
897 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
898 	    __func__, vector));
899 
900 	switch (intr_type) {
901 	case VMCB_EVENTINJ_TYPE_INTR:
902 	case VMCB_EVENTINJ_TYPE_NMI:
903 	case VMCB_EVENTINJ_TYPE_INTn:
904 		break;
905 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
906 		if (vector >= 0 && vector <= 31 && vector != 2)
907 			break;
908 		/* FALLTHROUGH */
909 	default:
910 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
911 		    intr_type, vector);
912 	}
913 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
914 	if (ec_valid) {
915 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
916 		ctrl->eventinj |= (uint64_t)error << 32;
917 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
918 		    intrtype_to_str(intr_type), vector, error);
919 	} else {
920 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
921 		    intrtype_to_str(intr_type), vector);
922 	}
923 }
924 
925 static void
926 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
927 {
928 	struct vm *vm;
929 	struct vlapic *vlapic;
930 	struct vmcb_ctrl *ctrl;
931 	int pending;
932 
933 	vm = sc->vm;
934 	vlapic = vm_lapic(vm, vcpu);
935 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
936 
937 	/* Update %cr8 in the emulated vlapic */
938 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
939 
940 	/*
941 	 * If V_IRQ indicates that the interrupt injection attempted on then
942 	 * last VMRUN was successful then update the vlapic accordingly.
943 	 */
944 	if (ctrl->v_intr_vector != 0) {
945 		pending = ctrl->v_irq;
946 		KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
947 		    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
948 		KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
949 		VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
950 		    pending ? "pending" : "accepted");
951 		if (!pending)
952 			vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
953 	}
954 }
955 
956 static void
957 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
958 {
959 	struct vmcb_ctrl *ctrl;
960 	uint64_t intinfo;
961 
962 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
963 	intinfo = ctrl->exitintinfo;
964 	if (!VMCB_EXITINTINFO_VALID(intinfo))
965 		return;
966 
967 	/*
968 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
969 	 *
970 	 * If a #VMEXIT happened during event delivery then record the event
971 	 * that was being delivered.
972 	 */
973 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
974 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
975 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
976 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
977 }
978 
979 static __inline int
980 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
981 {
982 
983 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
984 	    VMCB_INTCPT_VINTR));
985 }
986 
987 static __inline void
988 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
989 {
990 	struct vmcb_ctrl *ctrl;
991 
992 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
993 
994 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
995 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
996 		KASSERT(vintr_intercept_enabled(sc, vcpu),
997 		    ("%s: vintr intercept should be enabled", __func__));
998 		return;
999 	}
1000 
1001 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
1002 	ctrl->v_irq = 1;
1003 	ctrl->v_ign_tpr = 1;
1004 	ctrl->v_intr_vector = 0;
1005 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1006 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1007 }
1008 
1009 static __inline void
1010 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1011 {
1012 	struct vmcb_ctrl *ctrl;
1013 
1014 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1015 
1016 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1017 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1018 		    ("%s: vintr intercept should be disabled", __func__));
1019 		return;
1020 	}
1021 
1022 #ifdef KTR
1023 	if (ctrl->v_intr_vector == 0)
1024 		VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1025 	else
1026 		VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
1027 #endif
1028 	ctrl->v_irq = 0;
1029 	ctrl->v_intr_vector = 0;
1030 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1031 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1032 }
1033 
1034 static int
1035 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1036 {
1037 	struct vmcb_ctrl *ctrl;
1038 	int oldval, newval;
1039 
1040 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1041 	oldval = ctrl->intr_shadow;
1042 	newval = val ? 1 : 0;
1043 	if (newval != oldval) {
1044 		ctrl->intr_shadow = newval;
1045 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1046 	}
1047 	return (0);
1048 }
1049 
1050 static int
1051 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1052 {
1053 	struct vmcb_ctrl *ctrl;
1054 
1055 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1056 	*val = ctrl->intr_shadow;
1057 	return (0);
1058 }
1059 
1060 /*
1061  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1062  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1063  * to track when the vcpu is done handling the NMI.
1064  */
1065 static int
1066 nmi_blocked(struct svm_softc *sc, int vcpu)
1067 {
1068 	int blocked;
1069 
1070 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1071 	    VMCB_INTCPT_IRET);
1072 	return (blocked);
1073 }
1074 
1075 static void
1076 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1077 {
1078 
1079 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1080 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1081 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1082 }
1083 
1084 static void
1085 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1086 {
1087 	int error;
1088 
1089 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1090 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1091 	/*
1092 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1093 	 * the "iret" when it runs next. However, it is possible to inject
1094 	 * another NMI into the vcpu before the "iret" has actually executed.
1095 	 *
1096 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1097 	 * it will trap back into the hypervisor. If an NMI is pending for
1098 	 * the vcpu it will be injected into the guest.
1099 	 *
1100 	 * XXX this needs to be fixed
1101 	 */
1102 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1103 
1104 	/*
1105 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1106 	 * immediate VMRUN.
1107 	 */
1108 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1109 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1110 }
1111 
1112 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1113 
1114 static int
1115 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1116 {
1117 	struct vm_exit *vme;
1118 	struct vmcb_state *state;
1119 	uint64_t changed, lma, oldval;
1120 	int error;
1121 
1122 	state = svm_get_vmcb_state(sc, vcpu);
1123 
1124 	oldval = state->efer;
1125 	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1126 
1127 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1128 	changed = oldval ^ newval;
1129 
1130 	if (newval & EFER_MBZ_BITS)
1131 		goto gpf;
1132 
1133 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1134 	if (changed & EFER_LME) {
1135 		if (state->cr0 & CR0_PG)
1136 			goto gpf;
1137 	}
1138 
1139 	/* EFER.LMA = EFER.LME & CR0.PG */
1140 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1141 		lma = EFER_LMA;
1142 	else
1143 		lma = 0;
1144 
1145 	if ((newval & EFER_LMA) != lma)
1146 		goto gpf;
1147 
1148 	if (newval & EFER_NXE) {
1149 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1150 			goto gpf;
1151 	}
1152 
1153 	/*
1154 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1155 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1156 	 */
1157 	if (newval & EFER_LMSLE) {
1158 		vme = vm_exitinfo(sc->vm, vcpu);
1159 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1160 		*retu = true;
1161 		return (0);
1162 	}
1163 
1164 	if (newval & EFER_FFXSR) {
1165 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1166 			goto gpf;
1167 	}
1168 
1169 	if (newval & EFER_TCE) {
1170 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1171 			goto gpf;
1172 	}
1173 
1174 	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1175 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1176 	return (0);
1177 gpf:
1178 	vm_inject_gp(sc->vm, vcpu);
1179 	return (0);
1180 }
1181 
1182 static int
1183 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1184     bool *retu)
1185 {
1186 	int error;
1187 
1188 	if (lapic_msr(num))
1189 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1190 	else if (num == MSR_EFER)
1191 		error = svm_write_efer(sc, vcpu, val, retu);
1192 	else
1193 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1194 
1195 	return (error);
1196 }
1197 
1198 static int
1199 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1200 {
1201 	struct vmcb_state *state;
1202 	struct svm_regctx *ctx;
1203 	uint64_t result;
1204 	int error;
1205 
1206 	if (lapic_msr(num))
1207 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1208 	else
1209 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1210 
1211 	if (error == 0) {
1212 		state = svm_get_vmcb_state(sc, vcpu);
1213 		ctx = svm_get_guest_regctx(sc, vcpu);
1214 		state->rax = result & 0xffffffff;
1215 		ctx->sctx_rdx = result >> 32;
1216 	}
1217 
1218 	return (error);
1219 }
1220 
1221 #ifdef KTR
1222 static const char *
1223 exit_reason_to_str(uint64_t reason)
1224 {
1225 	static char reasonbuf[32];
1226 
1227 	switch (reason) {
1228 	case VMCB_EXIT_INVALID:
1229 		return ("invalvmcb");
1230 	case VMCB_EXIT_SHUTDOWN:
1231 		return ("shutdown");
1232 	case VMCB_EXIT_NPF:
1233 		return ("nptfault");
1234 	case VMCB_EXIT_PAUSE:
1235 		return ("pause");
1236 	case VMCB_EXIT_HLT:
1237 		return ("hlt");
1238 	case VMCB_EXIT_CPUID:
1239 		return ("cpuid");
1240 	case VMCB_EXIT_IO:
1241 		return ("inout");
1242 	case VMCB_EXIT_MC:
1243 		return ("mchk");
1244 	case VMCB_EXIT_INTR:
1245 		return ("extintr");
1246 	case VMCB_EXIT_NMI:
1247 		return ("nmi");
1248 	case VMCB_EXIT_VINTR:
1249 		return ("vintr");
1250 	case VMCB_EXIT_MSR:
1251 		return ("msr");
1252 	case VMCB_EXIT_IRET:
1253 		return ("iret");
1254 	case VMCB_EXIT_MONITOR:
1255 		return ("monitor");
1256 	case VMCB_EXIT_MWAIT:
1257 		return ("mwait");
1258 	default:
1259 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1260 		return (reasonbuf);
1261 	}
1262 }
1263 #endif	/* KTR */
1264 
1265 /*
1266  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1267  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1268  * and exceptions caused by INT3, INTO and BOUND instructions.
1269  *
1270  * Return 1 if the nRIP is valid and 0 otherwise.
1271  */
1272 static int
1273 nrip_valid(uint64_t exitcode)
1274 {
1275 	switch (exitcode) {
1276 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1277 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1278 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1279 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1280 	case 0x43:		/* INT3 */
1281 	case 0x44:		/* INTO */
1282 	case 0x45:		/* BOUND */
1283 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1284 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1285 		return (1);
1286 	default:
1287 		return (0);
1288 	}
1289 }
1290 
1291 static int
1292 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1293 {
1294 	struct vmcb *vmcb;
1295 	struct vmcb_state *state;
1296 	struct vmcb_ctrl *ctrl;
1297 	struct svm_regctx *ctx;
1298 	uint64_t code, info1, info2, val;
1299 	uint32_t eax, ecx, edx;
1300 	int error, errcode_valid, handled, idtvec, reflect;
1301 	bool retu;
1302 
1303 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1304 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1305 	state = &vmcb->state;
1306 	ctrl = &vmcb->ctrl;
1307 
1308 	handled = 0;
1309 	code = ctrl->exitcode;
1310 	info1 = ctrl->exitinfo1;
1311 	info2 = ctrl->exitinfo2;
1312 
1313 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1314 	vmexit->rip = state->rip;
1315 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1316 
1317 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1318 
1319 	/*
1320 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1321 	 * in an inconsistent state and can trigger assertions that would
1322 	 * never happen otherwise.
1323 	 */
1324 	if (code == VMCB_EXIT_INVALID) {
1325 		vm_exit_svm(vmexit, code, info1, info2);
1326 		return (0);
1327 	}
1328 
1329 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1330 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1331 
1332 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1333 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1334 	    vmexit->inst_length, code, info1, info2));
1335 
1336 	svm_update_virqinfo(svm_sc, vcpu);
1337 	svm_save_intinfo(svm_sc, vcpu);
1338 
1339 	switch (code) {
1340 	case VMCB_EXIT_IRET:
1341 		/*
1342 		 * Restart execution at "iret" but with the intercept cleared.
1343 		 */
1344 		vmexit->inst_length = 0;
1345 		clear_nmi_blocking(svm_sc, vcpu);
1346 		handled = 1;
1347 		break;
1348 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1349 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1350 		handled = 1;
1351 		break;
1352 	case VMCB_EXIT_INTR:	/* external interrupt */
1353 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1354 		handled = 1;
1355 		break;
1356 	case VMCB_EXIT_NMI:	/* external NMI */
1357 		handled = 1;
1358 		break;
1359 	case 0x40 ... 0x5F:
1360 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1361 		reflect = 1;
1362 		idtvec = code - 0x40;
1363 		switch (idtvec) {
1364 		case IDT_MC:
1365 			/*
1366 			 * Call the machine check handler by hand. Also don't
1367 			 * reflect the machine check back into the guest.
1368 			 */
1369 			reflect = 0;
1370 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1371 			__asm __volatile("int $18");
1372 			break;
1373 		case IDT_PF:
1374 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1375 			    info2);
1376 			KASSERT(error == 0, ("%s: error %d updating cr2",
1377 			    __func__, error));
1378 			/* fallthru */
1379 		case IDT_NP:
1380 		case IDT_SS:
1381 		case IDT_GP:
1382 		case IDT_AC:
1383 		case IDT_TS:
1384 			errcode_valid = 1;
1385 			break;
1386 
1387 		case IDT_DF:
1388 			errcode_valid = 1;
1389 			info1 = 0;
1390 			break;
1391 
1392 		case IDT_BP:
1393 		case IDT_OF:
1394 		case IDT_BR:
1395 			/*
1396 			 * The 'nrip' field is populated for INT3, INTO and
1397 			 * BOUND exceptions and this also implies that
1398 			 * 'inst_length' is non-zero.
1399 			 *
1400 			 * Reset 'inst_length' to zero so the guest %rip at
1401 			 * event injection is identical to what it was when
1402 			 * the exception originally happened.
1403 			 */
1404 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1405 			    "to zero before injecting exception %d",
1406 			    vmexit->inst_length, idtvec);
1407 			vmexit->inst_length = 0;
1408 			/* fallthru */
1409 		default:
1410 			errcode_valid = 0;
1411 			info1 = 0;
1412 			break;
1413 		}
1414 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1415 		    "when reflecting exception %d into guest",
1416 		    vmexit->inst_length, idtvec));
1417 
1418 		if (reflect) {
1419 			/* Reflect the exception back into the guest */
1420 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1421 			    "%d/%#x into the guest", idtvec, (int)info1);
1422 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1423 			    errcode_valid, info1, 0);
1424 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1425 			    __func__, error));
1426 		}
1427 		handled = 1;
1428 		break;
1429 	case VMCB_EXIT_MSR:	/* MSR access. */
1430 		eax = state->rax;
1431 		ecx = ctx->sctx_rcx;
1432 		edx = ctx->sctx_rdx;
1433 		retu = false;
1434 
1435 		if (info1) {
1436 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1437 			val = (uint64_t)edx << 32 | eax;
1438 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1439 			    ecx, val);
1440 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1441 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1442 				vmexit->u.msr.code = ecx;
1443 				vmexit->u.msr.wval = val;
1444 			} else if (!retu) {
1445 				handled = 1;
1446 			} else {
1447 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1448 				    ("emulate_wrmsr retu with bogus exitcode"));
1449 			}
1450 		} else {
1451 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1452 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1453 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1454 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1455 				vmexit->u.msr.code = ecx;
1456 			} else if (!retu) {
1457 				handled = 1;
1458 			} else {
1459 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1460 				    ("emulate_rdmsr retu with bogus exitcode"));
1461 			}
1462 		}
1463 		break;
1464 	case VMCB_EXIT_IO:
1465 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1466 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1467 		break;
1468 	case VMCB_EXIT_CPUID:
1469 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1470 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1471 		    (uint32_t *)&state->rax,
1472 		    (uint32_t *)&ctx->sctx_rbx,
1473 		    (uint32_t *)&ctx->sctx_rcx,
1474 		    (uint32_t *)&ctx->sctx_rdx);
1475 		break;
1476 	case VMCB_EXIT_HLT:
1477 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1478 		vmexit->exitcode = VM_EXITCODE_HLT;
1479 		vmexit->u.hlt.rflags = state->rflags;
1480 		break;
1481 	case VMCB_EXIT_PAUSE:
1482 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1483 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1484 		break;
1485 	case VMCB_EXIT_NPF:
1486 		/* EXITINFO2 contains the faulting guest physical address */
1487 		if (info1 & VMCB_NPF_INFO1_RSV) {
1488 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1489 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1490 			    info1, info2);
1491 		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1492 			vmexit->exitcode = VM_EXITCODE_PAGING;
1493 			vmexit->u.paging.gpa = info2;
1494 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1495 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1496 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1497 			    "on gpa %#lx/%#lx at rip %#lx",
1498 			    info2, info1, state->rip);
1499 		} else if (svm_npf_emul_fault(info1)) {
1500 			svm_handle_inst_emul(vmcb, info2, vmexit);
1501 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1502 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1503 			    "for gpa %#lx/%#lx at rip %#lx",
1504 			    info2, info1, state->rip);
1505 		}
1506 		break;
1507 	case VMCB_EXIT_MONITOR:
1508 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1509 		break;
1510 	case VMCB_EXIT_MWAIT:
1511 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1512 		break;
1513 	default:
1514 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1515 		break;
1516 	}
1517 
1518 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1519 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1520 	    vmexit->rip, vmexit->inst_length);
1521 
1522 	if (handled) {
1523 		vmexit->rip += vmexit->inst_length;
1524 		vmexit->inst_length = 0;
1525 		state->rip = vmexit->rip;
1526 	} else {
1527 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1528 			/*
1529 			 * If this VM exit was not claimed by anybody then
1530 			 * treat it as a generic SVM exit.
1531 			 */
1532 			vm_exit_svm(vmexit, code, info1, info2);
1533 		} else {
1534 			/*
1535 			 * The exitcode and collateral have been populated.
1536 			 * The VM exit will be processed further in userland.
1537 			 */
1538 		}
1539 	}
1540 	return (handled);
1541 }
1542 
1543 static void
1544 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1545 {
1546 	uint64_t intinfo;
1547 
1548 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1549 		return;
1550 
1551 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1552 	    "valid: %#lx", __func__, intinfo));
1553 
1554 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1555 		VMCB_EXITINTINFO_VECTOR(intinfo),
1556 		VMCB_EXITINTINFO_EC(intinfo),
1557 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1558 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1559 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1560 }
1561 
1562 /*
1563  * Inject event to virtual cpu.
1564  */
1565 static void
1566 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1567 {
1568 	struct vmcb_ctrl *ctrl;
1569 	struct vmcb_state *state;
1570 	struct svm_vcpu *vcpustate;
1571 	uint8_t v_tpr;
1572 	int vector, need_intr_window, pending_apic_vector;
1573 
1574 	state = svm_get_vmcb_state(sc, vcpu);
1575 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1576 	vcpustate = svm_get_vcpu(sc, vcpu);
1577 
1578 	need_intr_window = 0;
1579 	pending_apic_vector = 0;
1580 
1581 	if (vcpustate->nextrip != state->rip) {
1582 		ctrl->intr_shadow = 0;
1583 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1584 		    "cleared due to rip change: %#lx/%#lx",
1585 		    vcpustate->nextrip, state->rip);
1586 	}
1587 
1588 	/*
1589 	 * Inject pending events or exceptions for this vcpu.
1590 	 *
1591 	 * An event might be pending because the previous #VMEXIT happened
1592 	 * during event delivery (i.e. ctrl->exitintinfo).
1593 	 *
1594 	 * An event might also be pending because an exception was injected
1595 	 * by the hypervisor (e.g. #PF during instruction emulation).
1596 	 */
1597 	svm_inj_intinfo(sc, vcpu);
1598 
1599 	/* NMI event has priority over interrupts. */
1600 	if (vm_nmi_pending(sc->vm, vcpu)) {
1601 		if (nmi_blocked(sc, vcpu)) {
1602 			/*
1603 			 * Can't inject another NMI if the guest has not
1604 			 * yet executed an "iret" after the last NMI.
1605 			 */
1606 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1607 			    "to NMI-blocking");
1608 		} else if (ctrl->intr_shadow) {
1609 			/*
1610 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1611 			 */
1612 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1613 			    "interrupt shadow");
1614 			need_intr_window = 1;
1615 			goto done;
1616 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1617 			/*
1618 			 * If there is already an exception/interrupt pending
1619 			 * then defer the NMI until after that.
1620 			 */
1621 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1622 			    "eventinj %#lx", ctrl->eventinj);
1623 
1624 			/*
1625 			 * Use self-IPI to trigger a VM-exit as soon as
1626 			 * possible after the event injection is completed.
1627 			 *
1628 			 * This works only if the external interrupt exiting
1629 			 * is at a lower priority than the event injection.
1630 			 *
1631 			 * Although not explicitly specified in APMv2 the
1632 			 * relative priorities were verified empirically.
1633 			 */
1634 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1635 		} else {
1636 			vm_nmi_clear(sc->vm, vcpu);
1637 
1638 			/* Inject NMI, vector number is not used */
1639 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1640 			    IDT_NMI, 0, false);
1641 
1642 			/* virtual NMI blocking is now in effect */
1643 			enable_nmi_blocking(sc, vcpu);
1644 
1645 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1646 		}
1647 	}
1648 
1649 	if (!vm_extint_pending(sc->vm, vcpu)) {
1650 		/*
1651 		 * APIC interrupts are delivered using the V_IRQ offload.
1652 		 *
1653 		 * The primary benefit is that the hypervisor doesn't need to
1654 		 * deal with the various conditions that inhibit interrupts.
1655 		 * It also means that TPR changes via CR8 will be handled
1656 		 * without any hypervisor involvement.
1657 		 *
1658 		 * Note that the APIC vector must remain pending in the vIRR
1659 		 * until it is confirmed that it was delivered to the guest.
1660 		 * This can be confirmed based on the value of V_IRQ at the
1661 		 * next #VMEXIT (1 = pending, 0 = delivered).
1662 		 *
1663 		 * Also note that it is possible that another higher priority
1664 		 * vector can become pending before this vector is delivered
1665 		 * to the guest. This is alright because vcpu_notify_event()
1666 		 * will send an IPI and force the vcpu to trap back into the
1667 		 * hypervisor. The higher priority vector will be injected on
1668 		 * the next VMRUN.
1669 		 */
1670 		if (vlapic_pending_intr(vlapic, &vector)) {
1671 			KASSERT(vector >= 16 && vector <= 255,
1672 			    ("invalid vector %d from local APIC", vector));
1673 			pending_apic_vector = vector;
1674 		}
1675 		goto done;
1676 	}
1677 
1678 	/* Ask the legacy pic for a vector to inject */
1679 	vatpic_pending_intr(sc->vm, &vector);
1680 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
1681 	    vector));
1682 
1683 	/*
1684 	 * If the guest has disabled interrupts or is in an interrupt shadow
1685 	 * then we cannot inject the pending interrupt.
1686 	 */
1687 	if ((state->rflags & PSL_I) == 0) {
1688 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1689 		    "rflags %#lx", vector, state->rflags);
1690 		need_intr_window = 1;
1691 		goto done;
1692 	}
1693 
1694 	if (ctrl->intr_shadow) {
1695 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1696 		    "interrupt shadow", vector);
1697 		need_intr_window = 1;
1698 		goto done;
1699 	}
1700 
1701 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1702 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1703 		    "eventinj %#lx", vector, ctrl->eventinj);
1704 		need_intr_window = 1;
1705 		goto done;
1706 	}
1707 
1708 	/*
1709 	 * Legacy PIC interrupts are delivered via the event injection
1710 	 * mechanism.
1711 	 */
1712 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1713 
1714 	vm_extint_clear(sc->vm, vcpu);
1715 	vatpic_intr_accepted(sc->vm, vector);
1716 
1717 	/*
1718 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1719 	 * interrupt. This is done because the PIC might have another vector
1720 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1721 	 * that was preempted by the ExtInt then it allows us to inject the
1722 	 * APIC vector as soon as possible.
1723 	 */
1724 	need_intr_window = 1;
1725 done:
1726 	/*
1727 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1728 	 * the processor reflects this write to V_TPR without hypervisor
1729 	 * intervention.
1730 	 *
1731 	 * The guest can also modify the TPR by writing to it via the memory
1732 	 * mapped APIC page. In this case, the write will be emulated by the
1733 	 * hypervisor. For this reason V_TPR must be updated before every
1734 	 * VMRUN.
1735 	 */
1736 	v_tpr = vlapic_get_cr8(vlapic);
1737 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1738 	if (ctrl->v_tpr != v_tpr) {
1739 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1740 		    ctrl->v_tpr, v_tpr);
1741 		ctrl->v_tpr = v_tpr;
1742 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1743 	}
1744 
1745 	if (pending_apic_vector) {
1746 		/*
1747 		 * If an APIC vector is being injected then interrupt window
1748 		 * exiting is not possible on this VMRUN.
1749 		 */
1750 		KASSERT(!need_intr_window, ("intr_window exiting impossible"));
1751 		VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
1752 		    pending_apic_vector);
1753 
1754 		ctrl->v_irq = 1;
1755 		ctrl->v_ign_tpr = 0;
1756 		ctrl->v_intr_vector = pending_apic_vector;
1757 		ctrl->v_intr_prio = pending_apic_vector >> 4;
1758 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1759 	} else if (need_intr_window) {
1760 		/*
1761 		 * We use V_IRQ in conjunction with the VINTR intercept to
1762 		 * trap into the hypervisor as soon as a virtual interrupt
1763 		 * can be delivered.
1764 		 *
1765 		 * Since injected events are not subject to intercept checks
1766 		 * we need to ensure that the V_IRQ is not actually going to
1767 		 * be delivered on VM entry. The KASSERT below enforces this.
1768 		 */
1769 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1770 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1771 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1772 		    "intr_shadow (%u), rflags (%#lx)",
1773 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1774 		enable_intr_window_exiting(sc, vcpu);
1775 	} else {
1776 		disable_intr_window_exiting(sc, vcpu);
1777 	}
1778 }
1779 
1780 static __inline void
1781 restore_host_tss(void)
1782 {
1783 	struct system_segment_descriptor *tss_sd;
1784 
1785 	/*
1786 	 * The TSS descriptor was in use prior to launching the guest so it
1787 	 * has been marked busy.
1788 	 *
1789 	 * 'ltr' requires the descriptor to be marked available so change the
1790 	 * type to "64-bit available TSS".
1791 	 */
1792 	tss_sd = PCPU_GET(tss);
1793 	tss_sd->sd_type = SDT_SYSTSS;
1794 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1795 }
1796 
1797 static void
1798 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1799 {
1800 	struct svm_vcpu *vcpustate;
1801 	struct vmcb_ctrl *ctrl;
1802 	long eptgen;
1803 	bool alloc_asid;
1804 
1805 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1806 	    "active on cpu %u", __func__, thiscpu));
1807 
1808 	vcpustate = svm_get_vcpu(sc, vcpuid);
1809 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1810 
1811 	/*
1812 	 * The TLB entries associated with the vcpu's ASID are not valid
1813 	 * if either of the following conditions is true:
1814 	 *
1815 	 * 1. The vcpu's ASID generation is different than the host cpu's
1816 	 *    ASID generation. This happens when the vcpu migrates to a new
1817 	 *    host cpu. It can also happen when the number of vcpus executing
1818 	 *    on a host cpu is greater than the number of ASIDs available.
1819 	 *
1820 	 * 2. The pmap generation number is different than the value cached in
1821 	 *    the 'vcpustate'. This happens when the host invalidates pages
1822 	 *    belonging to the guest.
1823 	 *
1824 	 *	asidgen		eptgen	      Action
1825 	 *	mismatch	mismatch
1826 	 *	   0		   0		(a)
1827 	 *	   0		   1		(b1) or (b2)
1828 	 *	   1		   0		(c)
1829 	 *	   1		   1		(d)
1830 	 *
1831 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1832 	 *     no further action is needed.
1833 	 *
1834 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1835 	 *      retained and the TLB entries associated with this ASID
1836 	 *      are flushed by VMRUN.
1837 	 *
1838 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1839 	 *      allocated.
1840 	 *
1841 	 * (c) A new ASID is allocated.
1842 	 *
1843 	 * (d) A new ASID is allocated.
1844 	 */
1845 
1846 	alloc_asid = false;
1847 	eptgen = pmap->pm_eptgen;
1848 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1849 
1850 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1851 		alloc_asid = true;	/* (c) and (d) */
1852 	} else if (vcpustate->eptgen != eptgen) {
1853 		if (flush_by_asid())
1854 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1855 		else
1856 			alloc_asid = true;			/* (b2) */
1857 	} else {
1858 		/*
1859 		 * This is the common case (a).
1860 		 */
1861 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1862 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1863 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1864 	}
1865 
1866 	if (alloc_asid) {
1867 		if (++asid[thiscpu].num >= nasid) {
1868 			asid[thiscpu].num = 1;
1869 			if (++asid[thiscpu].gen == 0)
1870 				asid[thiscpu].gen = 1;
1871 			/*
1872 			 * If this cpu does not support "flush-by-asid"
1873 			 * then flush the entire TLB on a generation
1874 			 * bump. Subsequent ASID allocation in this
1875 			 * generation can be done without a TLB flush.
1876 			 */
1877 			if (!flush_by_asid())
1878 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1879 		}
1880 		vcpustate->asid.gen = asid[thiscpu].gen;
1881 		vcpustate->asid.num = asid[thiscpu].num;
1882 
1883 		ctrl->asid = vcpustate->asid.num;
1884 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1885 		/*
1886 		 * If this cpu supports "flush-by-asid" then the TLB
1887 		 * was not flushed after the generation bump. The TLB
1888 		 * is flushed selectively after every new ASID allocation.
1889 		 */
1890 		if (flush_by_asid())
1891 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1892 	}
1893 	vcpustate->eptgen = eptgen;
1894 
1895 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1896 	KASSERT(ctrl->asid == vcpustate->asid.num,
1897 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1898 }
1899 
1900 static __inline void
1901 disable_gintr(void)
1902 {
1903 
1904 	__asm __volatile("clgi");
1905 }
1906 
1907 static __inline void
1908 enable_gintr(void)
1909 {
1910 
1911         __asm __volatile("stgi");
1912 }
1913 
1914 /*
1915  * Start vcpu with specified RIP.
1916  */
1917 static int
1918 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1919 	struct vm_eventinfo *evinfo)
1920 {
1921 	struct svm_regctx *gctx;
1922 	struct svm_softc *svm_sc;
1923 	struct svm_vcpu *vcpustate;
1924 	struct vmcb_state *state;
1925 	struct vmcb_ctrl *ctrl;
1926 	struct vm_exit *vmexit;
1927 	struct vlapic *vlapic;
1928 	struct vm *vm;
1929 	uint64_t vmcb_pa;
1930 	int handled;
1931 
1932 	svm_sc = arg;
1933 	vm = svm_sc->vm;
1934 
1935 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1936 	state = svm_get_vmcb_state(svm_sc, vcpu);
1937 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1938 	vmexit = vm_exitinfo(vm, vcpu);
1939 	vlapic = vm_lapic(vm, vcpu);
1940 
1941 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1942 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1943 
1944 	if (vcpustate->lastcpu != curcpu) {
1945 		/*
1946 		 * Force new ASID allocation by invalidating the generation.
1947 		 */
1948 		vcpustate->asid.gen = 0;
1949 
1950 		/*
1951 		 * Invalidate the VMCB state cache by marking all fields dirty.
1952 		 */
1953 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1954 
1955 		/*
1956 		 * XXX
1957 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1958 		 * we may return from this function without actually executing
1959 		 * the VMRUN  instruction. This could happen if a rendezvous
1960 		 * or an AST is pending on the first time through the loop.
1961 		 *
1962 		 * This works for now but any new side-effects of vcpu
1963 		 * migration should take this case into account.
1964 		 */
1965 		vcpustate->lastcpu = curcpu;
1966 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1967 	}
1968 
1969 	svm_msr_guest_enter(svm_sc, vcpu);
1970 
1971 	/* Update Guest RIP */
1972 	state->rip = rip;
1973 
1974 	do {
1975 		/*
1976 		 * Disable global interrupts to guarantee atomicity during
1977 		 * loading of guest state. This includes not only the state
1978 		 * loaded by the "vmrun" instruction but also software state
1979 		 * maintained by the hypervisor: suspended and rendezvous
1980 		 * state, NPT generation number, vlapic interrupts etc.
1981 		 */
1982 		disable_gintr();
1983 
1984 		if (vcpu_suspended(evinfo)) {
1985 			enable_gintr();
1986 			vm_exit_suspended(vm, vcpu, state->rip);
1987 			break;
1988 		}
1989 
1990 		if (vcpu_rendezvous_pending(evinfo)) {
1991 			enable_gintr();
1992 			vm_exit_rendezvous(vm, vcpu, state->rip);
1993 			break;
1994 		}
1995 
1996 		if (vcpu_reqidle(evinfo)) {
1997 			enable_gintr();
1998 			vm_exit_reqidle(vm, vcpu, state->rip);
1999 			break;
2000 		}
2001 
2002 		/* We are asked to give the cpu by scheduler. */
2003 		if (vcpu_should_yield(vm, vcpu)) {
2004 			enable_gintr();
2005 			vm_exit_astpending(vm, vcpu, state->rip);
2006 			break;
2007 		}
2008 
2009 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2010 
2011 		/* Activate the nested pmap on 'curcpu' */
2012 		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
2013 
2014 		/*
2015 		 * Check the pmap generation and the ASID generation to
2016 		 * ensure that the vcpu does not use stale TLB mappings.
2017 		 */
2018 		check_asid(svm_sc, vcpu, pmap, curcpu);
2019 
2020 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2021 		vcpustate->dirty = 0;
2022 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2023 
2024 		/* Launch Virtual Machine. */
2025 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2026 		svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]);
2027 
2028 		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2029 
2030 		/*
2031 		 * The host GDTR and IDTR is saved by VMRUN and restored
2032 		 * automatically on #VMEXIT. However, the host TSS needs
2033 		 * to be restored explicitly.
2034 		 */
2035 		restore_host_tss();
2036 
2037 		/* #VMEXIT disables interrupts so re-enable them here. */
2038 		enable_gintr();
2039 
2040 		/* Update 'nextrip' */
2041 		vcpustate->nextrip = state->rip;
2042 
2043 		/* Handle #VMEXIT and if required return to user space. */
2044 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2045 	} while (handled);
2046 
2047 	svm_msr_guest_exit(svm_sc, vcpu);
2048 
2049 	return (0);
2050 }
2051 
2052 static void
2053 svm_vmcleanup(void *arg)
2054 {
2055 	struct svm_softc *sc = arg;
2056 
2057 	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2058 	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2059 	free(sc, M_SVM);
2060 }
2061 
2062 static register_t *
2063 swctx_regptr(struct svm_regctx *regctx, int reg)
2064 {
2065 
2066 	switch (reg) {
2067 	case VM_REG_GUEST_RBX:
2068 		return (&regctx->sctx_rbx);
2069 	case VM_REG_GUEST_RCX:
2070 		return (&regctx->sctx_rcx);
2071 	case VM_REG_GUEST_RDX:
2072 		return (&regctx->sctx_rdx);
2073 	case VM_REG_GUEST_RDI:
2074 		return (&regctx->sctx_rdi);
2075 	case VM_REG_GUEST_RSI:
2076 		return (&regctx->sctx_rsi);
2077 	case VM_REG_GUEST_RBP:
2078 		return (&regctx->sctx_rbp);
2079 	case VM_REG_GUEST_R8:
2080 		return (&regctx->sctx_r8);
2081 	case VM_REG_GUEST_R9:
2082 		return (&regctx->sctx_r9);
2083 	case VM_REG_GUEST_R10:
2084 		return (&regctx->sctx_r10);
2085 	case VM_REG_GUEST_R11:
2086 		return (&regctx->sctx_r11);
2087 	case VM_REG_GUEST_R12:
2088 		return (&regctx->sctx_r12);
2089 	case VM_REG_GUEST_R13:
2090 		return (&regctx->sctx_r13);
2091 	case VM_REG_GUEST_R14:
2092 		return (&regctx->sctx_r14);
2093 	case VM_REG_GUEST_R15:
2094 		return (&regctx->sctx_r15);
2095 	default:
2096 		return (NULL);
2097 	}
2098 }
2099 
2100 static int
2101 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2102 {
2103 	struct svm_softc *svm_sc;
2104 	register_t *reg;
2105 
2106 	svm_sc = arg;
2107 
2108 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2109 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2110 	}
2111 
2112 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2113 		return (0);
2114 	}
2115 
2116 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2117 
2118 	if (reg != NULL) {
2119 		*val = *reg;
2120 		return (0);
2121 	}
2122 
2123 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2124 	return (EINVAL);
2125 }
2126 
2127 static int
2128 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2129 {
2130 	struct svm_softc *svm_sc;
2131 	register_t *reg;
2132 
2133 	svm_sc = arg;
2134 
2135 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2136 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2137 	}
2138 
2139 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2140 		return (0);
2141 	}
2142 
2143 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2144 
2145 	if (reg != NULL) {
2146 		*reg = val;
2147 		return (0);
2148 	}
2149 
2150 	/*
2151 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2152 	 * vcpu's ASID. This needs to be treated differently depending on
2153 	 * whether 'running' is true/false.
2154 	 */
2155 
2156 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2157 	return (EINVAL);
2158 }
2159 
2160 static int
2161 svm_setcap(void *arg, int vcpu, int type, int val)
2162 {
2163 	struct svm_softc *sc;
2164 	int error;
2165 
2166 	sc = arg;
2167 	error = 0;
2168 	switch (type) {
2169 	case VM_CAP_HALT_EXIT:
2170 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2171 		    VMCB_INTCPT_HLT, val);
2172 		break;
2173 	case VM_CAP_PAUSE_EXIT:
2174 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2175 		    VMCB_INTCPT_PAUSE, val);
2176 		break;
2177 	case VM_CAP_UNRESTRICTED_GUEST:
2178 		/* Unrestricted guest execution cannot be disabled in SVM */
2179 		if (val == 0)
2180 			error = EINVAL;
2181 		break;
2182 	default:
2183 		error = ENOENT;
2184 		break;
2185 	}
2186 	return (error);
2187 }
2188 
2189 static int
2190 svm_getcap(void *arg, int vcpu, int type, int *retval)
2191 {
2192 	struct svm_softc *sc;
2193 	int error;
2194 
2195 	sc = arg;
2196 	error = 0;
2197 
2198 	switch (type) {
2199 	case VM_CAP_HALT_EXIT:
2200 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2201 		    VMCB_INTCPT_HLT);
2202 		break;
2203 	case VM_CAP_PAUSE_EXIT:
2204 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2205 		    VMCB_INTCPT_PAUSE);
2206 		break;
2207 	case VM_CAP_UNRESTRICTED_GUEST:
2208 		*retval = 1;	/* unrestricted guest is always enabled */
2209 		break;
2210 	default:
2211 		error = ENOENT;
2212 		break;
2213 	}
2214 	return (error);
2215 }
2216 
2217 static struct vlapic *
2218 svm_vlapic_init(void *arg, int vcpuid)
2219 {
2220 	struct svm_softc *svm_sc;
2221 	struct vlapic *vlapic;
2222 
2223 	svm_sc = arg;
2224 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2225 	vlapic->vm = svm_sc->vm;
2226 	vlapic->vcpuid = vcpuid;
2227 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2228 
2229 	vlapic_init(vlapic);
2230 
2231 	return (vlapic);
2232 }
2233 
2234 static void
2235 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2236 {
2237 
2238         vlapic_cleanup(vlapic);
2239         free(vlapic, M_SVM_VLAPIC);
2240 }
2241 
2242 struct vmm_ops vmm_ops_amd = {
2243 	svm_init,
2244 	svm_cleanup,
2245 	svm_restore,
2246 	svm_vminit,
2247 	svm_vmrun,
2248 	svm_vmcleanup,
2249 	svm_getreg,
2250 	svm_setreg,
2251 	vmcb_getdesc,
2252 	vmcb_setdesc,
2253 	svm_getcap,
2254 	svm_setcap,
2255 	svm_npt_alloc,
2256 	svm_npt_free,
2257 	svm_vlapic_init,
2258 	svm_vlapic_cleanup
2259 };
2260