xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/reg.h>
40 #include <sys/smr.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 #include <vm/pmap.h>
46 
47 #include <machine/cpufunc.h>
48 #include <machine/psl.h>
49 #include <machine/md_var.h>
50 #include <machine/specialreg.h>
51 #include <machine/smp.h>
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include "vmm_lapic.h"
58 #include "vmm_stat.h"
59 #include "vmm_ktr.h"
60 #include "vmm_ioport.h"
61 #include "vatpic.h"
62 #include "vlapic.h"
63 #include "vlapic_priv.h"
64 
65 #include "x86.h"
66 #include "vmcb.h"
67 #include "svm.h"
68 #include "svm_softc.h"
69 #include "svm_msr.h"
70 #include "npt.h"
71 
72 SYSCTL_DECL(_hw_vmm);
73 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
74     NULL);
75 
76 /*
77  * SVM CPUID function 0x8000_000A, edx bit decoding.
78  */
79 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
80 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
81 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
82 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
83 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
84 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
85 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
86 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
87 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
88 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
89 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
90 
91 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
92 				VMCB_CACHE_IOPM		|	\
93 				VMCB_CACHE_I		|	\
94 				VMCB_CACHE_TPR		|	\
95 				VMCB_CACHE_CR2		|	\
96 				VMCB_CACHE_CR		|	\
97 				VMCB_CACHE_DR		|	\
98 				VMCB_CACHE_DT		|	\
99 				VMCB_CACHE_SEG		|	\
100 				VMCB_CACHE_NP)
101 
102 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
103 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
104     0, NULL);
105 
106 static MALLOC_DEFINE(M_SVM, "svm", "svm");
107 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
108 
109 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
110 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
111     "SVM features advertised by CPUID.8000000AH:EDX");
112 
113 static int disable_npf_assist;
114 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
115     &disable_npf_assist, 0, NULL);
116 
117 /* Maximum ASIDs supported by the processor */
118 static uint32_t nasid;
119 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
120     "Number of ASIDs supported by this processor");
121 
122 /* Current ASID generation for each host cpu */
123 static struct asid asid[MAXCPU];
124 
125 /* SVM host state saved area of size 4KB for each physical core. */
126 static uint8_t *hsave;
127 
128 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
129 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
130 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
131 
132 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
133 static int svm_setreg(void *vcpui, int ident, uint64_t val);
134 static int svm_getreg(void *vcpui, int ident, uint64_t *val);
135 static __inline int
136 flush_by_asid(void)
137 {
138 
139 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
140 }
141 
142 static __inline int
143 decode_assist(void)
144 {
145 
146 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
147 }
148 
149 static void
150 svm_disable(void *arg __unused)
151 {
152 	uint64_t efer;
153 
154 	efer = rdmsr(MSR_EFER);
155 	efer &= ~EFER_SVM;
156 	wrmsr(MSR_EFER, efer);
157 }
158 
159 /*
160  * Disable SVM on all CPUs.
161  */
162 static int
163 svm_modcleanup(void)
164 {
165 
166 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
167 
168 	if (hsave != NULL)
169 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
170 
171 	return (0);
172 }
173 
174 /*
175  * Verify that all the features required by bhyve are available.
176  */
177 static int
178 check_svm_features(void)
179 {
180 	u_int regs[4];
181 
182 	/* CPUID Fn8000_000A is for SVM */
183 	do_cpuid(0x8000000A, regs);
184 	svm_feature &= regs[3];
185 
186 	/*
187 	 * The number of ASIDs can be configured to be less than what is
188 	 * supported by the hardware but not more.
189 	 */
190 	if (nasid == 0 || nasid > regs[1])
191 		nasid = regs[1];
192 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
193 
194 	/* bhyve requires the Nested Paging feature */
195 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
196 		printf("SVM: Nested Paging feature not available.\n");
197 		return (ENXIO);
198 	}
199 
200 	/* bhyve requires the NRIP Save feature */
201 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
202 		printf("SVM: NRIP Save feature not available.\n");
203 		return (ENXIO);
204 	}
205 
206 	return (0);
207 }
208 
209 static void
210 svm_enable(void *arg __unused)
211 {
212 	uint64_t efer;
213 
214 	efer = rdmsr(MSR_EFER);
215 	efer |= EFER_SVM;
216 	wrmsr(MSR_EFER, efer);
217 
218 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
219 }
220 
221 /*
222  * Return 1 if SVM is enabled on this processor and 0 otherwise.
223  */
224 static int
225 svm_available(void)
226 {
227 	uint64_t msr;
228 
229 	/* Section 15.4 Enabling SVM from APM2. */
230 	if ((amd_feature2 & AMDID2_SVM) == 0) {
231 		printf("SVM: not available.\n");
232 		return (0);
233 	}
234 
235 	msr = rdmsr(MSR_VM_CR);
236 	if ((msr & VM_CR_SVMDIS) != 0) {
237 		printf("SVM: disabled by BIOS.\n");
238 		return (0);
239 	}
240 
241 	return (1);
242 }
243 
244 static int
245 svm_modinit(int ipinum)
246 {
247 	int error, cpu;
248 
249 	if (!svm_available())
250 		return (ENXIO);
251 
252 	error = check_svm_features();
253 	if (error)
254 		return (error);
255 
256 	vmcb_clean &= VMCB_CACHE_DEFAULT;
257 
258 	for (cpu = 0; cpu < MAXCPU; cpu++) {
259 		/*
260 		 * Initialize the host ASIDs to their "highest" valid values.
261 		 *
262 		 * The next ASID allocation will rollover both 'gen' and 'num'
263 		 * and start off the sequence at {1,1}.
264 		 */
265 		asid[cpu].gen = ~0UL;
266 		asid[cpu].num = nasid - 1;
267 	}
268 
269 	svm_msr_init();
270 	svm_npt_init(ipinum);
271 
272 	/* Enable SVM on all CPUs */
273 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
274 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
275 
276 	return (0);
277 }
278 
279 static void
280 svm_modresume(void)
281 {
282 
283 	svm_enable(NULL);
284 }
285 
286 #ifdef BHYVE_SNAPSHOT
287 void
288 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
289 {
290 	struct vmcb_ctrl *ctrl;
291 
292 	ctrl = svm_get_vmcb_ctrl(vcpu);
293 	ctrl->tsc_offset = offset;
294 
295 	svm_set_dirty(vcpu, VMCB_CACHE_I);
296 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
297 
298 	vm_set_tsc_offset(vcpu->vcpu, offset);
299 }
300 #endif
301 
302 /* Pentium compatible MSRs */
303 #define MSR_PENTIUM_START 	0
304 #define MSR_PENTIUM_END 	0x1FFF
305 /* AMD 6th generation and Intel compatible MSRs */
306 #define MSR_AMD6TH_START 	0xC0000000UL
307 #define MSR_AMD6TH_END 		0xC0001FFFUL
308 /* AMD 7th and 8th generation compatible MSRs */
309 #define MSR_AMD7TH_START 	0xC0010000UL
310 #define MSR_AMD7TH_END 		0xC0011FFFUL
311 
312 /*
313  * Get the index and bit position for a MSR in permission bitmap.
314  * Two bits are used for each MSR: lower bit for read and higher bit for write.
315  */
316 static int
317 svm_msr_index(uint64_t msr, int *index, int *bit)
318 {
319 	uint32_t base, off;
320 
321 	*index = -1;
322 	*bit = (msr % 4) * 2;
323 	base = 0;
324 
325 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
326 		*index = msr / 4;
327 		return (0);
328 	}
329 
330 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
331 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
332 		off = (msr - MSR_AMD6TH_START);
333 		*index = (off + base) / 4;
334 		return (0);
335 	}
336 
337 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
338 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
339 		off = (msr - MSR_AMD7TH_START);
340 		*index = (off + base) / 4;
341 		return (0);
342 	}
343 
344 	return (EINVAL);
345 }
346 
347 /*
348  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
349  */
350 static void
351 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
352 {
353 	int index, bit, error __diagused;
354 
355 	error = svm_msr_index(msr, &index, &bit);
356 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
357 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
358 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
359 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
360 	    "msr %#lx", __func__, bit, msr));
361 
362 	if (read)
363 		perm_bitmap[index] &= ~(1UL << bit);
364 
365 	if (write)
366 		perm_bitmap[index] &= ~(2UL << bit);
367 }
368 
369 static void
370 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
371 {
372 
373 	svm_msr_perm(perm_bitmap, msr, true, true);
374 }
375 
376 static void
377 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
378 {
379 
380 	svm_msr_perm(perm_bitmap, msr, true, false);
381 }
382 
383 static __inline int
384 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
385 {
386 	struct vmcb_ctrl *ctrl;
387 
388 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
389 
390 	ctrl = svm_get_vmcb_ctrl(vcpu);
391 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
392 }
393 
394 static __inline void
395 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
396 {
397 	struct vmcb_ctrl *ctrl;
398 	uint32_t oldval;
399 
400 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
401 
402 	ctrl = svm_get_vmcb_ctrl(vcpu);
403 	oldval = ctrl->intercept[idx];
404 
405 	if (enabled)
406 		ctrl->intercept[idx] |= bitmask;
407 	else
408 		ctrl->intercept[idx] &= ~bitmask;
409 
410 	if (ctrl->intercept[idx] != oldval) {
411 		svm_set_dirty(vcpu, VMCB_CACHE_I);
412 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
413 		    oldval, ctrl->intercept[idx]);
414 	}
415 }
416 
417 static __inline void
418 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
419 {
420 
421 	svm_set_intercept(vcpu, off, bitmask, 0);
422 }
423 
424 static __inline void
425 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
426 {
427 
428 	svm_set_intercept(vcpu, off, bitmask, 1);
429 }
430 
431 static void
432 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
433     uint64_t msrpm_base_pa, uint64_t np_pml4)
434 {
435 	struct vmcb_ctrl *ctrl;
436 	struct vmcb_state *state;
437 	uint32_t mask;
438 	int n;
439 
440 	ctrl = svm_get_vmcb_ctrl(vcpu);
441 	state = svm_get_vmcb_state(vcpu);
442 
443 	ctrl->iopm_base_pa = iopm_base_pa;
444 	ctrl->msrpm_base_pa = msrpm_base_pa;
445 
446 	/* Enable nested paging */
447 	ctrl->np_enable = 1;
448 	ctrl->n_cr3 = np_pml4;
449 
450 	/*
451 	 * Intercept accesses to the control registers that are not shadowed
452 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
453 	 */
454 	for (n = 0; n < 16; n++) {
455 		mask = (BIT(n) << 16) | BIT(n);
456 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
457 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
458 		else
459 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
460 	}
461 
462 	/*
463 	 * Intercept everything when tracing guest exceptions otherwise
464 	 * just intercept machine check exception.
465 	 */
466 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
467 		for (n = 0; n < 32; n++) {
468 			/*
469 			 * Skip unimplemented vectors in the exception bitmap.
470 			 */
471 			if (n == 2 || n == 9) {
472 				continue;
473 			}
474 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
475 		}
476 	} else {
477 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
478 	}
479 
480 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
481 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
482 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
483 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
484 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
485 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
486 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
487 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
488 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
489 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
490 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
491 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
492 
493 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
494 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
495 
496 	/*
497 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
498 	 * Non-intercepted VMMCALL causes #UD, skip it.
499 	 */
500 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
501 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
502 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
503 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
504 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
505 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
506 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
507 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
508 		    VMCB_INTCPT_WBINVD);
509 	}
510 
511 	/*
512 	 * From section "Canonicalization and Consistency Checks" in APMv2
513 	 * the VMRUN intercept bit must be set to pass the consistency check.
514 	 */
515 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
516 
517 	/*
518 	 * The ASID will be set to a non-zero value just before VMRUN.
519 	 */
520 	ctrl->asid = 0;
521 
522 	/*
523 	 * Section 15.21.1, Interrupt Masking in EFLAGS
524 	 * Section 15.21.2, Virtualizing APIC.TPR
525 	 *
526 	 * This must be set for %rflag and %cr8 isolation of guest and host.
527 	 */
528 	ctrl->v_intr_masking = 1;
529 
530 	/* Enable Last Branch Record aka LBR for debugging */
531 	ctrl->lbr_virt_en = 1;
532 	state->dbgctl = BIT(0);
533 
534 	/* EFER_SVM must always be set when the guest is executing */
535 	state->efer = EFER_SVM;
536 
537 	/* Set up the PAT to power-on state */
538 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
539 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
540 	    PAT_VALUE(2, PAT_UNCACHED)		|
541 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
542 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
543 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
544 	    PAT_VALUE(6, PAT_UNCACHED)		|
545 	    PAT_VALUE(7, PAT_UNCACHEABLE);
546 
547 	/* Set up DR6/7 to power-on state */
548 	state->dr6 = DBREG_DR6_RESERVED1;
549 	state->dr7 = DBREG_DR7_RESERVED1;
550 }
551 
552 /*
553  * Initialize a virtual machine.
554  */
555 static void *
556 svm_init(struct vm *vm, pmap_t pmap)
557 {
558 	struct svm_softc *svm_sc;
559 
560 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
561 
562 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
563 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
564 	if (svm_sc->msr_bitmap == NULL)
565 		panic("contigmalloc of SVM MSR bitmap failed");
566 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
567 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
568 	if (svm_sc->iopm_bitmap == NULL)
569 		panic("contigmalloc of SVM IO bitmap failed");
570 
571 	svm_sc->vm = vm;
572 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
573 
574 	/*
575 	 * Intercept read and write accesses to all MSRs.
576 	 */
577 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
578 
579 	/*
580 	 * Access to the following MSRs is redirected to the VMCB when the
581 	 * guest is executing. Therefore it is safe to allow the guest to
582 	 * read/write these MSRs directly without hypervisor involvement.
583 	 */
584 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
585 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
586 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
587 
588 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
589 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
590 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
591 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
595 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
596 
597 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
598 
599 	/*
600 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
601 	 */
602 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
603 
604 	/* Intercept access to all I/O ports. */
605 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
606 
607 	return (svm_sc);
608 }
609 
610 static void *
611 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
612 {
613 	struct svm_softc *sc = vmi;
614 	struct svm_vcpu *vcpu;
615 
616 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
617 	vcpu->sc = sc;
618 	vcpu->vcpu = vcpu1;
619 	vcpu->vcpuid = vcpuid;
620 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
621 	    M_WAITOK | M_ZERO);
622 	vcpu->nextrip = ~0;
623 	vcpu->lastcpu = NOCPU;
624 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
625 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
626 	    sc->nptp);
627 	svm_msr_guest_init(sc, vcpu);
628 	return (vcpu);
629 }
630 
631 /*
632  * Collateral for a generic SVM VM-exit.
633  */
634 static void
635 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
636 {
637 
638 	vme->exitcode = VM_EXITCODE_SVM;
639 	vme->u.svm.exitcode = code;
640 	vme->u.svm.exitinfo1 = info1;
641 	vme->u.svm.exitinfo2 = info2;
642 }
643 
644 static int
645 svm_cpl(struct vmcb_state *state)
646 {
647 
648 	/*
649 	 * From APMv2:
650 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
651 	 *    from any segment DPL"
652 	 */
653 	return (state->cpl);
654 }
655 
656 static enum vm_cpu_mode
657 svm_vcpu_mode(struct vmcb *vmcb)
658 {
659 	struct vmcb_segment seg;
660 	struct vmcb_state *state;
661 	int error __diagused;
662 
663 	state = &vmcb->state;
664 
665 	if (state->efer & EFER_LMA) {
666 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
667 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
668 		    error));
669 
670 		/*
671 		 * Section 4.8.1 for APM2, check if Code Segment has
672 		 * Long attribute set in descriptor.
673 		 */
674 		if (seg.attrib & VMCB_CS_ATTRIB_L)
675 			return (CPU_MODE_64BIT);
676 		else
677 			return (CPU_MODE_COMPATIBILITY);
678 	} else  if (state->cr0 & CR0_PE) {
679 		return (CPU_MODE_PROTECTED);
680 	} else {
681 		return (CPU_MODE_REAL);
682 	}
683 }
684 
685 static enum vm_paging_mode
686 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
687 {
688 
689 	if ((cr0 & CR0_PG) == 0)
690 		return (PAGING_MODE_FLAT);
691 	if ((cr4 & CR4_PAE) == 0)
692 		return (PAGING_MODE_32);
693 	if (efer & EFER_LME)
694 		return (PAGING_MODE_64);
695 	else
696 		return (PAGING_MODE_PAE);
697 }
698 
699 /*
700  * ins/outs utility routines
701  */
702 static uint64_t
703 svm_inout_str_index(struct svm_regctx *regs, int in)
704 {
705 	uint64_t val;
706 
707 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
708 
709 	return (val);
710 }
711 
712 static uint64_t
713 svm_inout_str_count(struct svm_regctx *regs, int rep)
714 {
715 	uint64_t val;
716 
717 	val = rep ? regs->sctx_rcx : 1;
718 
719 	return (val);
720 }
721 
722 static void
723 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
724     struct vm_inout_str *vis)
725 {
726 	int error __diagused, s;
727 
728 	if (in) {
729 		vis->seg_name = VM_REG_GUEST_ES;
730 	} else {
731 		/* The segment field has standard encoding */
732 		s = (info1 >> 10) & 0x7;
733 		vis->seg_name = vm_segment_name(s);
734 	}
735 
736 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
737 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
738 }
739 
740 static int
741 svm_inout_str_addrsize(uint64_t info1)
742 {
743         uint32_t size;
744 
745         size = (info1 >> 7) & 0x7;
746         switch (size) {
747         case 1:
748                 return (2);     /* 16 bit */
749         case 2:
750                 return (4);     /* 32 bit */
751         case 4:
752                 return (8);     /* 64 bit */
753         default:
754                 panic("%s: invalid size encoding %d", __func__, size);
755         }
756 }
757 
758 static void
759 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
760 {
761 	struct vmcb_state *state;
762 
763 	state = &vmcb->state;
764 	paging->cr3 = state->cr3;
765 	paging->cpl = svm_cpl(state);
766 	paging->cpu_mode = svm_vcpu_mode(vmcb);
767 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
768 	    state->efer);
769 }
770 
771 #define	UNHANDLED 0
772 
773 /*
774  * Handle guest I/O intercept.
775  */
776 static int
777 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
778 {
779 	struct vmcb_ctrl *ctrl;
780 	struct vmcb_state *state;
781 	struct svm_regctx *regs;
782 	struct vm_inout_str *vis;
783 	uint64_t info1;
784 	int inout_string;
785 
786 	state = svm_get_vmcb_state(vcpu);
787 	ctrl  = svm_get_vmcb_ctrl(vcpu);
788 	regs  = svm_get_guest_regctx(vcpu);
789 
790 	info1 = ctrl->exitinfo1;
791 	inout_string = info1 & BIT(2) ? 1 : 0;
792 
793 	/*
794 	 * The effective segment number in EXITINFO1[12:10] is populated
795 	 * only if the processor has the DecodeAssist capability.
796 	 *
797 	 * XXX this is not specified explicitly in APMv2 but can be verified
798 	 * empirically.
799 	 */
800 	if (inout_string && !decode_assist())
801 		return (UNHANDLED);
802 
803 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
804 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
805 	vmexit->u.inout.string 	= inout_string;
806 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
807 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
808 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
809 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
810 
811 	if (inout_string) {
812 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
813 		vis = &vmexit->u.inout_str;
814 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
815 		vis->rflags = state->rflags;
816 		vis->cr0 = state->cr0;
817 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
818 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
819 		vis->addrsize = svm_inout_str_addrsize(info1);
820 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
821 	}
822 
823 	return (UNHANDLED);
824 }
825 
826 static int
827 npf_fault_type(uint64_t exitinfo1)
828 {
829 
830 	if (exitinfo1 & VMCB_NPF_INFO1_W)
831 		return (VM_PROT_WRITE);
832 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
833 		return (VM_PROT_EXECUTE);
834 	else
835 		return (VM_PROT_READ);
836 }
837 
838 static bool
839 svm_npf_emul_fault(uint64_t exitinfo1)
840 {
841 
842 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
843 		return (false);
844 	}
845 
846 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
847 		return (false);
848 	}
849 
850 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
851 		return (false);
852 	}
853 
854 	return (true);
855 }
856 
857 static void
858 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
859 {
860 	struct vm_guest_paging *paging;
861 	struct vmcb_segment seg;
862 	struct vmcb_ctrl *ctrl;
863 	char *inst_bytes;
864 	int error __diagused, inst_len;
865 
866 	ctrl = &vmcb->ctrl;
867 	paging = &vmexit->u.inst_emul.paging;
868 
869 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
870 	vmexit->u.inst_emul.gpa = gpa;
871 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
872 	svm_paging_info(vmcb, paging);
873 
874 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
875 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
876 
877 	switch(paging->cpu_mode) {
878 	case CPU_MODE_REAL:
879 		vmexit->u.inst_emul.cs_base = seg.base;
880 		vmexit->u.inst_emul.cs_d = 0;
881 		break;
882 	case CPU_MODE_PROTECTED:
883 	case CPU_MODE_COMPATIBILITY:
884 		vmexit->u.inst_emul.cs_base = seg.base;
885 
886 		/*
887 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
888 		 */
889 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
890 		    1 : 0;
891 		break;
892 	default:
893 		vmexit->u.inst_emul.cs_base = 0;
894 		vmexit->u.inst_emul.cs_d = 0;
895 		break;
896 	}
897 
898 	/*
899 	 * Copy the instruction bytes into 'vie' if available.
900 	 */
901 	if (decode_assist() && !disable_npf_assist) {
902 		inst_len = ctrl->inst_len;
903 		inst_bytes = ctrl->inst_bytes;
904 	} else {
905 		inst_len = 0;
906 		inst_bytes = NULL;
907 	}
908 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
909 }
910 
911 #ifdef KTR
912 static const char *
913 intrtype_to_str(int intr_type)
914 {
915 	switch (intr_type) {
916 	case VMCB_EVENTINJ_TYPE_INTR:
917 		return ("hwintr");
918 	case VMCB_EVENTINJ_TYPE_NMI:
919 		return ("nmi");
920 	case VMCB_EVENTINJ_TYPE_INTn:
921 		return ("swintr");
922 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
923 		return ("exception");
924 	default:
925 		panic("%s: unknown intr_type %d", __func__, intr_type);
926 	}
927 }
928 #endif
929 
930 /*
931  * Inject an event to vcpu as described in section 15.20, "Event injection".
932  */
933 static void
934 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
935     uint32_t error, bool ec_valid)
936 {
937 	struct vmcb_ctrl *ctrl;
938 
939 	ctrl = svm_get_vmcb_ctrl(vcpu);
940 
941 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
942 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
943 
944 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
945 	    __func__, vector));
946 
947 	switch (intr_type) {
948 	case VMCB_EVENTINJ_TYPE_INTR:
949 	case VMCB_EVENTINJ_TYPE_NMI:
950 	case VMCB_EVENTINJ_TYPE_INTn:
951 		break;
952 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
953 		if (vector >= 0 && vector <= 31 && vector != 2)
954 			break;
955 		/* FALLTHROUGH */
956 	default:
957 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
958 		    intr_type, vector);
959 	}
960 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
961 	if (ec_valid) {
962 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
963 		ctrl->eventinj |= (uint64_t)error << 32;
964 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
965 		    intrtype_to_str(intr_type), vector, error);
966 	} else {
967 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
968 		    intrtype_to_str(intr_type), vector);
969 	}
970 }
971 
972 static void
973 svm_update_virqinfo(struct svm_vcpu *vcpu)
974 {
975 	struct vlapic *vlapic;
976 	struct vmcb_ctrl *ctrl;
977 
978 	vlapic = vm_lapic(vcpu->vcpu);
979 	ctrl = svm_get_vmcb_ctrl(vcpu);
980 
981 	/* Update %cr8 in the emulated vlapic */
982 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
983 
984 	/* Virtual interrupt injection is not used. */
985 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
986 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
987 }
988 
989 static void
990 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
991 {
992 	struct vmcb_ctrl *ctrl;
993 	uint64_t intinfo;
994 
995 	ctrl = svm_get_vmcb_ctrl(vcpu);
996 	intinfo = ctrl->exitintinfo;
997 	if (!VMCB_EXITINTINFO_VALID(intinfo))
998 		return;
999 
1000 	/*
1001 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1002 	 *
1003 	 * If a #VMEXIT happened during event delivery then record the event
1004 	 * that was being delivered.
1005 	 */
1006 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1007 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1008 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1009 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1010 }
1011 
1012 #ifdef INVARIANTS
1013 static __inline int
1014 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1015 {
1016 
1017 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1018 }
1019 #endif
1020 
1021 static __inline void
1022 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1023 {
1024 	struct vmcb_ctrl *ctrl;
1025 
1026 	ctrl = svm_get_vmcb_ctrl(vcpu);
1027 
1028 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1029 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1030 		KASSERT(vintr_intercept_enabled(vcpu),
1031 		    ("%s: vintr intercept should be enabled", __func__));
1032 		return;
1033 	}
1034 
1035 	SVM_CTR0(vcpu, "Enable intr window exiting");
1036 	ctrl->v_irq = 1;
1037 	ctrl->v_ign_tpr = 1;
1038 	ctrl->v_intr_vector = 0;
1039 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1040 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1041 }
1042 
1043 static __inline void
1044 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1045 {
1046 	struct vmcb_ctrl *ctrl;
1047 
1048 	ctrl = svm_get_vmcb_ctrl(vcpu);
1049 
1050 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1051 		KASSERT(!vintr_intercept_enabled(vcpu),
1052 		    ("%s: vintr intercept should be disabled", __func__));
1053 		return;
1054 	}
1055 
1056 	SVM_CTR0(vcpu, "Disable intr window exiting");
1057 	ctrl->v_irq = 0;
1058 	ctrl->v_intr_vector = 0;
1059 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1060 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1061 }
1062 
1063 static int
1064 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1065 {
1066 	struct vmcb_ctrl *ctrl;
1067 	int oldval, newval;
1068 
1069 	ctrl = svm_get_vmcb_ctrl(vcpu);
1070 	oldval = ctrl->intr_shadow;
1071 	newval = val ? 1 : 0;
1072 	if (newval != oldval) {
1073 		ctrl->intr_shadow = newval;
1074 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1075 	}
1076 	return (0);
1077 }
1078 
1079 static int
1080 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1081 {
1082 	struct vmcb_ctrl *ctrl;
1083 
1084 	ctrl = svm_get_vmcb_ctrl(vcpu);
1085 	*val = ctrl->intr_shadow;
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1091  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1092  * to track when the vcpu is done handling the NMI.
1093  */
1094 static int
1095 nmi_blocked(struct svm_vcpu *vcpu)
1096 {
1097 	int blocked;
1098 
1099 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1100 	return (blocked);
1101 }
1102 
1103 static void
1104 enable_nmi_blocking(struct svm_vcpu *vcpu)
1105 {
1106 
1107 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1108 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1109 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1110 }
1111 
1112 static void
1113 clear_nmi_blocking(struct svm_vcpu *vcpu)
1114 {
1115 	int error __diagused;
1116 
1117 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1118 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1119 	/*
1120 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1121 	 * the "iret" when it runs next. However, it is possible to inject
1122 	 * another NMI into the vcpu before the "iret" has actually executed.
1123 	 *
1124 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1125 	 * it will trap back into the hypervisor. If an NMI is pending for
1126 	 * the vcpu it will be injected into the guest.
1127 	 *
1128 	 * XXX this needs to be fixed
1129 	 */
1130 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1131 
1132 	/*
1133 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1134 	 * immediate VMRUN.
1135 	 */
1136 	error = svm_modify_intr_shadow(vcpu, 1);
1137 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1138 }
1139 
1140 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1141 
1142 static int
1143 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1144     bool *retu)
1145 {
1146 	struct vm_exit *vme;
1147 	struct vmcb_state *state;
1148 	uint64_t changed, lma, oldval;
1149 	int error __diagused;
1150 
1151 	state = svm_get_vmcb_state(vcpu);
1152 
1153 	oldval = state->efer;
1154 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1155 
1156 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1157 	changed = oldval ^ newval;
1158 
1159 	if (newval & EFER_MBZ_BITS)
1160 		goto gpf;
1161 
1162 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1163 	if (changed & EFER_LME) {
1164 		if (state->cr0 & CR0_PG)
1165 			goto gpf;
1166 	}
1167 
1168 	/* EFER.LMA = EFER.LME & CR0.PG */
1169 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1170 		lma = EFER_LMA;
1171 	else
1172 		lma = 0;
1173 
1174 	if ((newval & EFER_LMA) != lma)
1175 		goto gpf;
1176 
1177 	if (newval & EFER_NXE) {
1178 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1179 			goto gpf;
1180 	}
1181 
1182 	/*
1183 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1184 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1185 	 */
1186 	if (newval & EFER_LMSLE) {
1187 		vme = vm_exitinfo(vcpu->vcpu);
1188 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1189 		*retu = true;
1190 		return (0);
1191 	}
1192 
1193 	if (newval & EFER_FFXSR) {
1194 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1195 			goto gpf;
1196 	}
1197 
1198 	if (newval & EFER_TCE) {
1199 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1200 			goto gpf;
1201 	}
1202 
1203 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1204 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1205 	return (0);
1206 gpf:
1207 	vm_inject_gp(vcpu->vcpu);
1208 	return (0);
1209 }
1210 
1211 static int
1212 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1213     uint64_t val, bool *retu)
1214 {
1215 	int error;
1216 
1217 	if (lapic_msr(num))
1218 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1219 	else if (num == MSR_EFER)
1220 		error = svm_write_efer(sc, vcpu, val, retu);
1221 	else
1222 		error = svm_wrmsr(vcpu, num, val, retu);
1223 
1224 	return (error);
1225 }
1226 
1227 static int
1228 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1229 {
1230 	struct vmcb_state *state;
1231 	struct svm_regctx *ctx;
1232 	uint64_t result;
1233 	int error;
1234 
1235 	if (lapic_msr(num))
1236 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1237 	else
1238 		error = svm_rdmsr(vcpu, num, &result, retu);
1239 
1240 	if (error == 0) {
1241 		state = svm_get_vmcb_state(vcpu);
1242 		ctx = svm_get_guest_regctx(vcpu);
1243 		state->rax = result & 0xffffffff;
1244 		ctx->sctx_rdx = result >> 32;
1245 	}
1246 
1247 	return (error);
1248 }
1249 
1250 #ifdef KTR
1251 static const char *
1252 exit_reason_to_str(uint64_t reason)
1253 {
1254 	int i;
1255 	static char reasonbuf[32];
1256 	static const struct {
1257 		int reason;
1258 		const char *str;
1259 	} reasons[] = {
1260 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1261 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1262 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1263 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1264 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1265 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1266 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1267 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1268 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1269 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1270 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1271 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1272 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1273 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1274 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1275 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1276 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1277 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1278 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1279 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1280 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1281 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1282 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1283 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1284 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1285 		{ .reason = VMCB_EXIT_POPF,	.str = "popf" },
1286 		{ .reason = VMCB_EXIT_PUSHF,	.str = "pushf" },
1287 	};
1288 
1289 	for (i = 0; i < nitems(reasons); i++) {
1290 		if (reasons[i].reason == reason)
1291 			return (reasons[i].str);
1292 	}
1293 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1294 	return (reasonbuf);
1295 }
1296 #endif	/* KTR */
1297 
1298 /*
1299  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1300  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1301  * and exceptions caused by INT3, INTO and BOUND instructions.
1302  *
1303  * Return 1 if the nRIP is valid and 0 otherwise.
1304  */
1305 static int
1306 nrip_valid(uint64_t exitcode)
1307 {
1308 	switch (exitcode) {
1309 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1310 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1311 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1312 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1313 	case 0x43:		/* INT3 */
1314 	case 0x44:		/* INTO */
1315 	case 0x45:		/* BOUND */
1316 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1317 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1318 		return (1);
1319 	default:
1320 		return (0);
1321 	}
1322 }
1323 
1324 static int
1325 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1326     struct vm_exit *vmexit)
1327 {
1328 	struct vmcb *vmcb;
1329 	struct vmcb_state *state;
1330 	struct vmcb_ctrl *ctrl;
1331 	struct svm_regctx *ctx;
1332 	uint64_t code, info1, info2, val;
1333 	uint32_t eax, ecx, edx;
1334 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1335 	bool retu;
1336 
1337 	ctx = svm_get_guest_regctx(vcpu);
1338 	vmcb = svm_get_vmcb(vcpu);
1339 	state = &vmcb->state;
1340 	ctrl = &vmcb->ctrl;
1341 
1342 	handled = 0;
1343 	code = ctrl->exitcode;
1344 	info1 = ctrl->exitinfo1;
1345 	info2 = ctrl->exitinfo2;
1346 
1347 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1348 	vmexit->rip = state->rip;
1349 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1350 
1351 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1352 
1353 	/*
1354 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1355 	 * in an inconsistent state and can trigger assertions that would
1356 	 * never happen otherwise.
1357 	 */
1358 	if (code == VMCB_EXIT_INVALID) {
1359 		vm_exit_svm(vmexit, code, info1, info2);
1360 		return (0);
1361 	}
1362 
1363 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1364 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1365 
1366 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1367 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1368 	    vmexit->inst_length, code, info1, info2));
1369 
1370 	svm_update_virqinfo(vcpu);
1371 	svm_save_intinfo(svm_sc, vcpu);
1372 
1373 	switch (code) {
1374 	case VMCB_EXIT_IRET:
1375 		/*
1376 		 * Restart execution at "iret" but with the intercept cleared.
1377 		 */
1378 		vmexit->inst_length = 0;
1379 		clear_nmi_blocking(vcpu);
1380 		handled = 1;
1381 		break;
1382 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1383 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1384 		handled = 1;
1385 		break;
1386 	case VMCB_EXIT_INTR:	/* external interrupt */
1387 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1388 		handled = 1;
1389 		break;
1390 	case VMCB_EXIT_NMI:	/* external NMI */
1391 		handled = 1;
1392 		break;
1393 	case 0x40 ... 0x5F:
1394 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1395 		reflect = 1;
1396 		idtvec = code - 0x40;
1397 		switch (idtvec) {
1398 		case IDT_MC:
1399 			/*
1400 			 * Call the machine check handler by hand. Also don't
1401 			 * reflect the machine check back into the guest.
1402 			 */
1403 			reflect = 0;
1404 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1405 			__asm __volatile("int $18");
1406 			break;
1407 		case IDT_PF:
1408 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1409 			KASSERT(error == 0, ("%s: error %d updating cr2",
1410 			    __func__, error));
1411 			/* fallthru */
1412 		case IDT_NP:
1413 		case IDT_SS:
1414 		case IDT_GP:
1415 		case IDT_AC:
1416 		case IDT_TS:
1417 			errcode_valid = 1;
1418 			break;
1419 
1420 		case IDT_DF:
1421 			errcode_valid = 1;
1422 			info1 = 0;
1423 			break;
1424 		case IDT_DB: {
1425 			/*
1426 			 * Check if we are being stepped (RFLAGS.TF)
1427 			 * and bounce vmexit to userland.
1428 			 */
1429 			bool stepped = 0;
1430 			uint64_t dr6 = 0;
1431 
1432 			svm_getreg(vcpu, VM_REG_GUEST_DR6, &dr6);
1433 			stepped = !!(dr6 & DBREG_DR6_BS);
1434 			if (stepped && (vcpu->caps & (1 << VM_CAP_RFLAGS_TF))) {
1435 				vmexit->exitcode = VM_EXITCODE_DB;
1436 				vmexit->u.dbg.trace_trap = 1;
1437 				vmexit->u.dbg.pushf_intercept = 0;
1438 
1439 				if (vcpu->dbg.popf_sstep) {
1440 					/*
1441 					 * DB# exit was caused by stepping over
1442 					 * popf.
1443 					 */
1444 					uint64_t rflags;
1445 
1446 					vcpu->dbg.popf_sstep = 0;
1447 
1448 					/*
1449 					 * Update shadowed TF bit so the next
1450 					 * setcap(..., RFLAGS_SSTEP, 0) restores
1451 					 * the correct value
1452 					 */
1453 					svm_getreg(vcpu, VM_REG_GUEST_RFLAGS,
1454 					    &rflags);
1455 					vcpu->dbg.rflags_tf = rflags & PSL_T;
1456 				} else if (vcpu->dbg.pushf_sstep) {
1457 					/*
1458 					 * DB# exit was caused by stepping over
1459 					 * pushf.
1460 					 */
1461 					vcpu->dbg.pushf_sstep = 0;
1462 
1463 					/*
1464 					 * Adjusting the pushed rflags after a
1465 					 * restarted pushf instruction must be
1466 					 * handled outside of svm.c due to the
1467 					 * critical_enter() lock being held.
1468 					 */
1469 					vmexit->u.dbg.pushf_intercept = 1;
1470 					vmexit->u.dbg.tf_shadow_val =
1471 					    vcpu->dbg.rflags_tf;
1472 					svm_paging_info(svm_get_vmcb(vcpu),
1473 					    &vmexit->u.dbg.paging);
1474 				}
1475 
1476 				/* Clear DR6 "single-step" bit. */
1477 				dr6 &= ~DBREG_DR6_BS;
1478 				error = svm_setreg(vcpu, VM_REG_GUEST_DR6, dr6);
1479 				KASSERT(error == 0,
1480 				    ("%s: error %d updating DR6\r\n", __func__,
1481 					error));
1482 
1483 				reflect = 0;
1484 			}
1485 			break;
1486 		}
1487 		case IDT_BP:
1488 			vmexit->exitcode = VM_EXITCODE_BPT;
1489 			vmexit->u.bpt.inst_length = vmexit->inst_length;
1490 			vmexit->inst_length = 0;
1491 
1492 			reflect = 0;
1493 			break;
1494 		case IDT_OF:
1495 		case IDT_BR:
1496 			/*
1497 			 * The 'nrip' field is populated for INT3, INTO and
1498 			 * BOUND exceptions and this also implies that
1499 			 * 'inst_length' is non-zero.
1500 			 *
1501 			 * Reset 'inst_length' to zero so the guest %rip at
1502 			 * event injection is identical to what it was when
1503 			 * the exception originally happened.
1504 			 */
1505 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1506 			    "to zero before injecting exception %d",
1507 			    vmexit->inst_length, idtvec);
1508 			vmexit->inst_length = 0;
1509 			/* fallthru */
1510 		default:
1511 			errcode_valid = 0;
1512 			info1 = 0;
1513 			break;
1514 		}
1515 
1516 		if (reflect) {
1517 			KASSERT(vmexit->inst_length == 0,
1518 			    ("invalid inst_length (%d) "
1519 			     "when reflecting exception %d into guest",
1520 				vmexit->inst_length, idtvec));
1521 			/* Reflect the exception back into the guest */
1522 			SVM_CTR2(vcpu, "Reflecting exception "
1523 			    "%d/%#x into the guest", idtvec, (int)info1);
1524 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1525 			    errcode_valid, info1, 0);
1526 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1527 			    __func__, error));
1528 			handled = 1;
1529 		}
1530 		break;
1531 	case VMCB_EXIT_MSR:	/* MSR access. */
1532 		eax = state->rax;
1533 		ecx = ctx->sctx_rcx;
1534 		edx = ctx->sctx_rdx;
1535 		retu = false;
1536 
1537 		if (info1) {
1538 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1539 			val = (uint64_t)edx << 32 | eax;
1540 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1541 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1542 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1543 				vmexit->u.msr.code = ecx;
1544 				vmexit->u.msr.wval = val;
1545 			} else if (!retu) {
1546 				handled = 1;
1547 			} else {
1548 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1549 				    ("emulate_wrmsr retu with bogus exitcode"));
1550 			}
1551 		} else {
1552 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1553 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1554 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1555 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1556 				vmexit->u.msr.code = ecx;
1557 			} else if (!retu) {
1558 				handled = 1;
1559 			} else {
1560 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1561 				    ("emulate_rdmsr retu with bogus exitcode"));
1562 			}
1563 		}
1564 		break;
1565 	case VMCB_EXIT_IO:
1566 		handled = svm_handle_io(vcpu, vmexit);
1567 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1568 		break;
1569 	case VMCB_EXIT_CPUID:
1570 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1571 		handled = x86_emulate_cpuid(vcpu->vcpu,
1572 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1573 		    &ctx->sctx_rdx);
1574 		break;
1575 	case VMCB_EXIT_HLT:
1576 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1577 		vmexit->exitcode = VM_EXITCODE_HLT;
1578 		vmexit->u.hlt.rflags = state->rflags;
1579 		break;
1580 	case VMCB_EXIT_PAUSE:
1581 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1582 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1583 		break;
1584 	case VMCB_EXIT_NPF:
1585 		/* EXITINFO2 contains the faulting guest physical address */
1586 		if (info1 & VMCB_NPF_INFO1_RSV) {
1587 			SVM_CTR2(vcpu, "nested page fault with "
1588 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1589 			    info1, info2);
1590 		} else if (vm_mem_allocated(vcpu->vcpu, info2)) {
1591 			vmexit->exitcode = VM_EXITCODE_PAGING;
1592 			vmexit->u.paging.gpa = info2;
1593 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1594 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1595 			SVM_CTR3(vcpu, "nested page fault "
1596 			    "on gpa %#lx/%#lx at rip %#lx",
1597 			    info2, info1, state->rip);
1598 		} else if (svm_npf_emul_fault(info1)) {
1599 			svm_handle_inst_emul(vmcb, info2, vmexit);
1600 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1601 			SVM_CTR3(vcpu, "inst_emul fault "
1602 			    "for gpa %#lx/%#lx at rip %#lx",
1603 			    info2, info1, state->rip);
1604 		}
1605 		break;
1606 	case VMCB_EXIT_MONITOR:
1607 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1608 		break;
1609 	case VMCB_EXIT_MWAIT:
1610 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1611 		break;
1612 	case VMCB_EXIT_PUSHF: {
1613 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1614 			uint64_t rflags;
1615 
1616 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1617 			/* Restart this instruction. */
1618 			vmexit->inst_length = 0;
1619 			/* Disable PUSHF intercepts - avoid a loop. */
1620 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1621 			    VMCB_INTCPT_PUSHF, 0);
1622 			/* Trace restarted instruction. */
1623 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1624 			/* Let the IDT_DB handler know that pushf was stepped.
1625 			 */
1626 			vcpu->dbg.pushf_sstep = 1;
1627 			handled = 1;
1628 		}
1629 		break;
1630 	}
1631 	case VMCB_EXIT_POPF: {
1632 		if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
1633 			uint64_t rflags;
1634 
1635 			svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
1636 			/* Restart this instruction */
1637 			vmexit->inst_length = 0;
1638 			/* Disable POPF intercepts - avoid a loop*/
1639 			svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
1640 			    VMCB_INTCPT_POPF, 0);
1641 			/* Trace restarted instruction */
1642 			svm_setreg(vcpu, VM_REG_GUEST_RFLAGS, (rflags | PSL_T));
1643 			vcpu->dbg.popf_sstep = 1;
1644 			handled = 1;
1645 		}
1646 		break;
1647 	}
1648 	case VMCB_EXIT_SHUTDOWN:
1649 	case VMCB_EXIT_VMRUN:
1650 	case VMCB_EXIT_VMMCALL:
1651 	case VMCB_EXIT_VMLOAD:
1652 	case VMCB_EXIT_VMSAVE:
1653 	case VMCB_EXIT_STGI:
1654 	case VMCB_EXIT_CLGI:
1655 	case VMCB_EXIT_SKINIT:
1656 	case VMCB_EXIT_ICEBP:
1657 	case VMCB_EXIT_INVLPGA:
1658 		vm_inject_ud(vcpu->vcpu);
1659 		handled = 1;
1660 		break;
1661 	case VMCB_EXIT_INVD:
1662 	case VMCB_EXIT_WBINVD:
1663 		/* ignore exit */
1664 		handled = 1;
1665 		break;
1666 	default:
1667 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1668 		break;
1669 	}
1670 
1671 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1672 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1673 	    vmexit->rip, vmexit->inst_length);
1674 
1675 	if (handled) {
1676 		vmexit->rip += vmexit->inst_length;
1677 		vmexit->inst_length = 0;
1678 		state->rip = vmexit->rip;
1679 	} else {
1680 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1681 			/*
1682 			 * If this VM exit was not claimed by anybody then
1683 			 * treat it as a generic SVM exit.
1684 			 */
1685 			vm_exit_svm(vmexit, code, info1, info2);
1686 		} else {
1687 			/*
1688 			 * The exitcode and collateral have been populated.
1689 			 * The VM exit will be processed further in userland.
1690 			 */
1691 		}
1692 	}
1693 	return (handled);
1694 }
1695 
1696 static void
1697 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1698 {
1699 	uint64_t intinfo;
1700 
1701 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1702 		return;
1703 
1704 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1705 	    "valid: %#lx", __func__, intinfo));
1706 
1707 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1708 		VMCB_EXITINTINFO_VECTOR(intinfo),
1709 		VMCB_EXITINTINFO_EC(intinfo),
1710 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1711 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1712 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1713 }
1714 
1715 /*
1716  * Inject event to virtual cpu.
1717  */
1718 static void
1719 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1720     struct vlapic *vlapic)
1721 {
1722 	struct vmcb_ctrl *ctrl;
1723 	struct vmcb_state *state;
1724 	uint8_t v_tpr;
1725 	int vector, need_intr_window;
1726 	int extint_pending;
1727 
1728 	if (vcpu->caps & (1 << VM_CAP_MASK_HWINTR)) {
1729 		return;
1730 	}
1731 
1732 	state = svm_get_vmcb_state(vcpu);
1733 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1734 
1735 	need_intr_window = 0;
1736 
1737 	if (vcpu->nextrip != state->rip) {
1738 		ctrl->intr_shadow = 0;
1739 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1740 		    "cleared due to rip change: %#lx/%#lx",
1741 		    vcpu->nextrip, state->rip);
1742 	}
1743 
1744 	/*
1745 	 * Inject pending events or exceptions for this vcpu.
1746 	 *
1747 	 * An event might be pending because the previous #VMEXIT happened
1748 	 * during event delivery (i.e. ctrl->exitintinfo).
1749 	 *
1750 	 * An event might also be pending because an exception was injected
1751 	 * by the hypervisor (e.g. #PF during instruction emulation).
1752 	 */
1753 	svm_inj_intinfo(sc, vcpu);
1754 
1755 	/* NMI event has priority over interrupts. */
1756 	if (vm_nmi_pending(vcpu->vcpu)) {
1757 		if (nmi_blocked(vcpu)) {
1758 			/*
1759 			 * Can't inject another NMI if the guest has not
1760 			 * yet executed an "iret" after the last NMI.
1761 			 */
1762 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1763 			    "to NMI-blocking");
1764 		} else if (ctrl->intr_shadow) {
1765 			/*
1766 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1767 			 */
1768 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1769 			    "interrupt shadow");
1770 			need_intr_window = 1;
1771 			goto done;
1772 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1773 			/*
1774 			 * If there is already an exception/interrupt pending
1775 			 * then defer the NMI until after that.
1776 			 */
1777 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1778 			    "eventinj %#lx", ctrl->eventinj);
1779 
1780 			/*
1781 			 * Use self-IPI to trigger a VM-exit as soon as
1782 			 * possible after the event injection is completed.
1783 			 *
1784 			 * This works only if the external interrupt exiting
1785 			 * is at a lower priority than the event injection.
1786 			 *
1787 			 * Although not explicitly specified in APMv2 the
1788 			 * relative priorities were verified empirically.
1789 			 */
1790 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1791 		} else {
1792 			vm_nmi_clear(vcpu->vcpu);
1793 
1794 			/* Inject NMI, vector number is not used */
1795 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1796 			    IDT_NMI, 0, false);
1797 
1798 			/* virtual NMI blocking is now in effect */
1799 			enable_nmi_blocking(vcpu);
1800 
1801 			SVM_CTR0(vcpu, "Injecting vNMI");
1802 		}
1803 	}
1804 
1805 	extint_pending = vm_extint_pending(vcpu->vcpu);
1806 	if (!extint_pending) {
1807 		if (!vlapic_pending_intr(vlapic, &vector))
1808 			goto done;
1809 		KASSERT(vector >= 16 && vector <= 255,
1810 		    ("invalid vector %d from local APIC", vector));
1811 	} else {
1812 		/* Ask the legacy pic for a vector to inject */
1813 		vatpic_pending_intr(sc->vm, &vector);
1814 		KASSERT(vector >= 0 && vector <= 255,
1815 		    ("invalid vector %d from INTR", vector));
1816 	}
1817 
1818 	/*
1819 	 * If the guest has disabled interrupts or is in an interrupt shadow
1820 	 * then we cannot inject the pending interrupt.
1821 	 */
1822 	if ((state->rflags & PSL_I) == 0) {
1823 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1824 		    "rflags %#lx", vector, state->rflags);
1825 		need_intr_window = 1;
1826 		goto done;
1827 	}
1828 
1829 	if (ctrl->intr_shadow) {
1830 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1831 		    "interrupt shadow", vector);
1832 		need_intr_window = 1;
1833 		goto done;
1834 	}
1835 
1836 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1837 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1838 		    "eventinj %#lx", vector, ctrl->eventinj);
1839 		need_intr_window = 1;
1840 		goto done;
1841 	}
1842 
1843 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1844 
1845 	if (!extint_pending) {
1846 		vlapic_intr_accepted(vlapic, vector);
1847 	} else {
1848 		vm_extint_clear(vcpu->vcpu);
1849 		vatpic_intr_accepted(sc->vm, vector);
1850 	}
1851 
1852 	/*
1853 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1854 	 * interrupt. This is done because the PIC might have another vector
1855 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1856 	 * that was preempted by the ExtInt then it allows us to inject the
1857 	 * APIC vector as soon as possible.
1858 	 */
1859 	need_intr_window = 1;
1860 done:
1861 	/*
1862 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1863 	 * the processor reflects this write to V_TPR without hypervisor
1864 	 * intervention.
1865 	 *
1866 	 * The guest can also modify the TPR by writing to it via the memory
1867 	 * mapped APIC page. In this case, the write will be emulated by the
1868 	 * hypervisor. For this reason V_TPR must be updated before every
1869 	 * VMRUN.
1870 	 */
1871 	v_tpr = vlapic_get_cr8(vlapic);
1872 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1873 	if (ctrl->v_tpr != v_tpr) {
1874 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1875 		    ctrl->v_tpr, v_tpr);
1876 		ctrl->v_tpr = v_tpr;
1877 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1878 	}
1879 
1880 	if (need_intr_window) {
1881 		/*
1882 		 * We use V_IRQ in conjunction with the VINTR intercept to
1883 		 * trap into the hypervisor as soon as a virtual interrupt
1884 		 * can be delivered.
1885 		 *
1886 		 * Since injected events are not subject to intercept checks
1887 		 * we need to ensure that the V_IRQ is not actually going to
1888 		 * be delivered on VM entry. The KASSERT below enforces this.
1889 		 */
1890 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1891 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1892 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1893 		    "intr_shadow (%u), rflags (%#lx)",
1894 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1895 		enable_intr_window_exiting(vcpu);
1896 	} else {
1897 		disable_intr_window_exiting(vcpu);
1898 	}
1899 }
1900 
1901 static __inline void
1902 restore_host_tss(void)
1903 {
1904 	struct system_segment_descriptor *tss_sd;
1905 
1906 	/*
1907 	 * The TSS descriptor was in use prior to launching the guest so it
1908 	 * has been marked busy.
1909 	 *
1910 	 * 'ltr' requires the descriptor to be marked available so change the
1911 	 * type to "64-bit available TSS".
1912 	 */
1913 	tss_sd = PCPU_GET(tss);
1914 	tss_sd->sd_type = SDT_SYSTSS;
1915 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1916 }
1917 
1918 static void
1919 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1920 {
1921 	struct vmcb_ctrl *ctrl;
1922 	long eptgen;
1923 	int cpu;
1924 	bool alloc_asid;
1925 
1926 	cpu = curcpu;
1927 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1928 	smr_enter(pmap->pm_eptsmr);
1929 
1930 	ctrl = svm_get_vmcb_ctrl(vcpu);
1931 
1932 	/*
1933 	 * The TLB entries associated with the vcpu's ASID are not valid
1934 	 * if either of the following conditions is true:
1935 	 *
1936 	 * 1. The vcpu's ASID generation is different than the host cpu's
1937 	 *    ASID generation. This happens when the vcpu migrates to a new
1938 	 *    host cpu. It can also happen when the number of vcpus executing
1939 	 *    on a host cpu is greater than the number of ASIDs available.
1940 	 *
1941 	 * 2. The pmap generation number is different than the value cached in
1942 	 *    the 'vcpustate'. This happens when the host invalidates pages
1943 	 *    belonging to the guest.
1944 	 *
1945 	 *	asidgen		eptgen	      Action
1946 	 *	mismatch	mismatch
1947 	 *	   0		   0		(a)
1948 	 *	   0		   1		(b1) or (b2)
1949 	 *	   1		   0		(c)
1950 	 *	   1		   1		(d)
1951 	 *
1952 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1953 	 *     no further action is needed.
1954 	 *
1955 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1956 	 *      retained and the TLB entries associated with this ASID
1957 	 *      are flushed by VMRUN.
1958 	 *
1959 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1960 	 *      allocated.
1961 	 *
1962 	 * (c) A new ASID is allocated.
1963 	 *
1964 	 * (d) A new ASID is allocated.
1965 	 */
1966 
1967 	alloc_asid = false;
1968 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1969 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1970 
1971 	if (vcpu->asid.gen != asid[cpu].gen) {
1972 		alloc_asid = true;	/* (c) and (d) */
1973 	} else if (vcpu->eptgen != eptgen) {
1974 		if (flush_by_asid())
1975 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1976 		else
1977 			alloc_asid = true;			/* (b2) */
1978 	} else {
1979 		/*
1980 		 * This is the common case (a).
1981 		 */
1982 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1983 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1984 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1985 	}
1986 
1987 	if (alloc_asid) {
1988 		if (++asid[cpu].num >= nasid) {
1989 			asid[cpu].num = 1;
1990 			if (++asid[cpu].gen == 0)
1991 				asid[cpu].gen = 1;
1992 			/*
1993 			 * If this cpu does not support "flush-by-asid"
1994 			 * then flush the entire TLB on a generation
1995 			 * bump. Subsequent ASID allocation in this
1996 			 * generation can be done without a TLB flush.
1997 			 */
1998 			if (!flush_by_asid())
1999 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
2000 		}
2001 		vcpu->asid.gen = asid[cpu].gen;
2002 		vcpu->asid.num = asid[cpu].num;
2003 
2004 		ctrl->asid = vcpu->asid.num;
2005 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
2006 		/*
2007 		 * If this cpu supports "flush-by-asid" then the TLB
2008 		 * was not flushed after the generation bump. The TLB
2009 		 * is flushed selectively after every new ASID allocation.
2010 		 */
2011 		if (flush_by_asid())
2012 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
2013 	}
2014 	vcpu->eptgen = eptgen;
2015 
2016 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
2017 	KASSERT(ctrl->asid == vcpu->asid.num,
2018 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
2019 }
2020 
2021 static void
2022 svm_pmap_deactivate(pmap_t pmap)
2023 {
2024 	smr_exit(pmap->pm_eptsmr);
2025 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2026 }
2027 
2028 static __inline void
2029 disable_gintr(void)
2030 {
2031 
2032 	__asm __volatile("clgi");
2033 }
2034 
2035 static __inline void
2036 enable_gintr(void)
2037 {
2038 
2039         __asm __volatile("stgi");
2040 }
2041 
2042 static __inline void
2043 svm_dr_enter_guest(struct svm_regctx *gctx)
2044 {
2045 
2046 	/* Save host control debug registers. */
2047 	gctx->host_dr7 = rdr7();
2048 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2049 
2050 	/*
2051 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2052 	 * exceptions in the host based on the guest DRx values.  The
2053 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
2054 	 * VMCB.
2055 	 */
2056 	load_dr7(0);
2057 	wrmsr(MSR_DEBUGCTLMSR, 0);
2058 
2059 	/* Save host debug registers. */
2060 	gctx->host_dr0 = rdr0();
2061 	gctx->host_dr1 = rdr1();
2062 	gctx->host_dr2 = rdr2();
2063 	gctx->host_dr3 = rdr3();
2064 	gctx->host_dr6 = rdr6();
2065 
2066 	/* Restore guest debug registers. */
2067 	load_dr0(gctx->sctx_dr0);
2068 	load_dr1(gctx->sctx_dr1);
2069 	load_dr2(gctx->sctx_dr2);
2070 	load_dr3(gctx->sctx_dr3);
2071 }
2072 
2073 static __inline void
2074 svm_dr_leave_guest(struct svm_regctx *gctx)
2075 {
2076 
2077 	/* Save guest debug registers. */
2078 	gctx->sctx_dr0 = rdr0();
2079 	gctx->sctx_dr1 = rdr1();
2080 	gctx->sctx_dr2 = rdr2();
2081 	gctx->sctx_dr3 = rdr3();
2082 
2083 	/*
2084 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
2085 	 * last.
2086 	 */
2087 	load_dr0(gctx->host_dr0);
2088 	load_dr1(gctx->host_dr1);
2089 	load_dr2(gctx->host_dr2);
2090 	load_dr3(gctx->host_dr3);
2091 	load_dr6(gctx->host_dr6);
2092 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
2093 	load_dr7(gctx->host_dr7);
2094 }
2095 
2096 /*
2097  * Start vcpu with specified RIP.
2098  */
2099 static int
2100 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
2101 {
2102 	struct svm_regctx *gctx;
2103 	struct svm_softc *svm_sc;
2104 	struct svm_vcpu *vcpu;
2105 	struct vmcb_state *state;
2106 	struct vmcb_ctrl *ctrl;
2107 	struct vm_exit *vmexit;
2108 	struct vlapic *vlapic;
2109 	uint64_t vmcb_pa;
2110 	int handled;
2111 	uint16_t ldt_sel;
2112 
2113 	vcpu = vcpui;
2114 	svm_sc = vcpu->sc;
2115 	state = svm_get_vmcb_state(vcpu);
2116 	ctrl = svm_get_vmcb_ctrl(vcpu);
2117 	vmexit = vm_exitinfo(vcpu->vcpu);
2118 	vlapic = vm_lapic(vcpu->vcpu);
2119 
2120 	gctx = svm_get_guest_regctx(vcpu);
2121 	vmcb_pa = vcpu->vmcb_pa;
2122 
2123 	if (vcpu->lastcpu != curcpu) {
2124 		/*
2125 		 * Force new ASID allocation by invalidating the generation.
2126 		 */
2127 		vcpu->asid.gen = 0;
2128 
2129 		/*
2130 		 * Invalidate the VMCB state cache by marking all fields dirty.
2131 		 */
2132 		svm_set_dirty(vcpu, 0xffffffff);
2133 
2134 		/*
2135 		 * XXX
2136 		 * Setting 'vcpu->lastcpu' here is bit premature because
2137 		 * we may return from this function without actually executing
2138 		 * the VMRUN  instruction. This could happen if a rendezvous
2139 		 * or an AST is pending on the first time through the loop.
2140 		 *
2141 		 * This works for now but any new side-effects of vcpu
2142 		 * migration should take this case into account.
2143 		 */
2144 		vcpu->lastcpu = curcpu;
2145 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2146 	}
2147 
2148 	svm_msr_guest_enter(vcpu);
2149 
2150 	/* Update Guest RIP */
2151 	state->rip = rip;
2152 
2153 	do {
2154 		/*
2155 		 * Disable global interrupts to guarantee atomicity during
2156 		 * loading of guest state. This includes not only the state
2157 		 * loaded by the "vmrun" instruction but also software state
2158 		 * maintained by the hypervisor: suspended and rendezvous
2159 		 * state, NPT generation number, vlapic interrupts etc.
2160 		 */
2161 		disable_gintr();
2162 
2163 		if (vcpu_suspended(evinfo)) {
2164 			enable_gintr();
2165 			vm_exit_suspended(vcpu->vcpu, state->rip);
2166 			break;
2167 		}
2168 
2169 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2170 			enable_gintr();
2171 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2172 			break;
2173 		}
2174 
2175 		if (vcpu_reqidle(evinfo)) {
2176 			enable_gintr();
2177 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2178 			break;
2179 		}
2180 
2181 		/* We are asked to give the cpu by scheduler. */
2182 		if (vcpu_should_yield(vcpu->vcpu)) {
2183 			enable_gintr();
2184 			vm_exit_astpending(vcpu->vcpu, state->rip);
2185 			break;
2186 		}
2187 
2188 		if (vcpu_debugged(vcpu->vcpu)) {
2189 			enable_gintr();
2190 			vm_exit_debug(vcpu->vcpu, state->rip);
2191 			break;
2192 		}
2193 
2194 		/*
2195 		 * #VMEXIT resumes the host with the guest LDTR, so
2196 		 * save the current LDT selector so it can be restored
2197 		 * after an exit.  The userspace hypervisor probably
2198 		 * doesn't use a LDT, but save and restore it to be
2199 		 * safe.
2200 		 */
2201 		ldt_sel = sldt();
2202 
2203 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2204 
2205 		/*
2206 		 * Check the pmap generation and the ASID generation to
2207 		 * ensure that the vcpu does not use stale TLB mappings.
2208 		 */
2209 		svm_pmap_activate(vcpu, pmap);
2210 
2211 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2212 		vcpu->dirty = 0;
2213 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2214 
2215 		/* Launch Virtual Machine. */
2216 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2217 		svm_dr_enter_guest(gctx);
2218 		svm_launch(vmcb_pa, gctx, get_pcpu());
2219 		svm_dr_leave_guest(gctx);
2220 
2221 		svm_pmap_deactivate(pmap);
2222 
2223 		/*
2224 		 * The host GDTR and IDTR is saved by VMRUN and restored
2225 		 * automatically on #VMEXIT. However, the host TSS needs
2226 		 * to be restored explicitly.
2227 		 */
2228 		restore_host_tss();
2229 
2230 		/* Restore host LDTR. */
2231 		lldt(ldt_sel);
2232 
2233 		/* #VMEXIT disables interrupts so re-enable them here. */
2234 		enable_gintr();
2235 
2236 		/* Update 'nextrip' */
2237 		vcpu->nextrip = state->rip;
2238 
2239 		/* Handle #VMEXIT and if required return to user space. */
2240 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2241 	} while (handled);
2242 
2243 	svm_msr_guest_exit(vcpu);
2244 
2245 	return (0);
2246 }
2247 
2248 static void
2249 svm_vcpu_cleanup(void *vcpui)
2250 {
2251 	struct svm_vcpu *vcpu = vcpui;
2252 
2253 	free(vcpu->vmcb, M_SVM);
2254 	free(vcpu, M_SVM);
2255 }
2256 
2257 static void
2258 svm_cleanup(void *vmi)
2259 {
2260 	struct svm_softc *sc = vmi;
2261 
2262 	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2263 	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2264 	free(sc, M_SVM);
2265 }
2266 
2267 static register_t *
2268 swctx_regptr(struct svm_regctx *regctx, int reg)
2269 {
2270 
2271 	switch (reg) {
2272 	case VM_REG_GUEST_RBX:
2273 		return (&regctx->sctx_rbx);
2274 	case VM_REG_GUEST_RCX:
2275 		return (&regctx->sctx_rcx);
2276 	case VM_REG_GUEST_RDX:
2277 		return (&regctx->sctx_rdx);
2278 	case VM_REG_GUEST_RDI:
2279 		return (&regctx->sctx_rdi);
2280 	case VM_REG_GUEST_RSI:
2281 		return (&regctx->sctx_rsi);
2282 	case VM_REG_GUEST_RBP:
2283 		return (&regctx->sctx_rbp);
2284 	case VM_REG_GUEST_R8:
2285 		return (&regctx->sctx_r8);
2286 	case VM_REG_GUEST_R9:
2287 		return (&regctx->sctx_r9);
2288 	case VM_REG_GUEST_R10:
2289 		return (&regctx->sctx_r10);
2290 	case VM_REG_GUEST_R11:
2291 		return (&regctx->sctx_r11);
2292 	case VM_REG_GUEST_R12:
2293 		return (&regctx->sctx_r12);
2294 	case VM_REG_GUEST_R13:
2295 		return (&regctx->sctx_r13);
2296 	case VM_REG_GUEST_R14:
2297 		return (&regctx->sctx_r14);
2298 	case VM_REG_GUEST_R15:
2299 		return (&regctx->sctx_r15);
2300 	case VM_REG_GUEST_DR0:
2301 		return (&regctx->sctx_dr0);
2302 	case VM_REG_GUEST_DR1:
2303 		return (&regctx->sctx_dr1);
2304 	case VM_REG_GUEST_DR2:
2305 		return (&regctx->sctx_dr2);
2306 	case VM_REG_GUEST_DR3:
2307 		return (&regctx->sctx_dr3);
2308 	default:
2309 		return (NULL);
2310 	}
2311 }
2312 
2313 static int
2314 svm_getreg(void *vcpui, int ident, uint64_t *val)
2315 {
2316 	struct svm_vcpu *vcpu;
2317 	register_t *reg;
2318 
2319 	vcpu = vcpui;
2320 
2321 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2322 		return (svm_get_intr_shadow(vcpu, val));
2323 	}
2324 
2325 	if (vmcb_read(vcpu, ident, val) == 0) {
2326 		return (0);
2327 	}
2328 
2329 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2330 
2331 	if (reg != NULL) {
2332 		*val = *reg;
2333 		return (0);
2334 	}
2335 
2336 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2337 	return (EINVAL);
2338 }
2339 
2340 static int
2341 svm_setreg(void *vcpui, int ident, uint64_t val)
2342 {
2343 	struct svm_vcpu *vcpu;
2344 	register_t *reg;
2345 
2346 	vcpu = vcpui;
2347 
2348 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2349 		return (svm_modify_intr_shadow(vcpu, val));
2350 	}
2351 
2352 	/* Do not permit user write access to VMCB fields by offset. */
2353 	if (!VMCB_ACCESS_OK(ident)) {
2354 		if (vmcb_write(vcpu, ident, val) == 0) {
2355 			return (0);
2356 		}
2357 	}
2358 
2359 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2360 
2361 	if (reg != NULL) {
2362 		*reg = val;
2363 		return (0);
2364 	}
2365 
2366 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2367 		/* Ignore. */
2368 		return (0);
2369 	}
2370 
2371 	/*
2372 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2373 	 * vcpu's ASID. This needs to be treated differently depending on
2374 	 * whether 'running' is true/false.
2375 	 */
2376 
2377 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2378 	return (EINVAL);
2379 }
2380 
2381 static int
2382 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2383 {
2384 	return (vmcb_getdesc(vcpui, reg, desc));
2385 }
2386 
2387 static int
2388 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2389 {
2390 	return (vmcb_setdesc(vcpui, reg, desc));
2391 }
2392 
2393 #ifdef BHYVE_SNAPSHOT
2394 static int
2395 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2396 {
2397 	int ret;
2398 	uint64_t val;
2399 
2400 	if (meta->op == VM_SNAPSHOT_SAVE) {
2401 		ret = svm_getreg(vcpui, ident, &val);
2402 		if (ret != 0)
2403 			goto done;
2404 
2405 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2406 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2407 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2408 
2409 		ret = svm_setreg(vcpui, ident, val);
2410 		if (ret != 0)
2411 			goto done;
2412 	} else {
2413 		ret = EINVAL;
2414 		goto done;
2415 	}
2416 
2417 done:
2418 	return (ret);
2419 }
2420 #endif
2421 
2422 static int
2423 svm_setcap(void *vcpui, int type, int val)
2424 {
2425 	struct svm_vcpu *vcpu;
2426 	struct vlapic *vlapic;
2427 	int error;
2428 
2429 	vcpu = vcpui;
2430 	error = 0;
2431 
2432 	switch (type) {
2433 	case VM_CAP_HALT_EXIT:
2434 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2435 		    VMCB_INTCPT_HLT, val);
2436 		break;
2437 	case VM_CAP_PAUSE_EXIT:
2438 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2439 		    VMCB_INTCPT_PAUSE, val);
2440 		break;
2441 	case VM_CAP_UNRESTRICTED_GUEST:
2442 		/* Unrestricted guest execution cannot be disabled in SVM */
2443 		if (val == 0)
2444 			error = EINVAL;
2445 		break;
2446 	case VM_CAP_BPT_EXIT:
2447 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP), val);
2448 		break;
2449 	case VM_CAP_IPI_EXIT:
2450 		vlapic = vm_lapic(vcpu->vcpu);
2451 		vlapic->ipi_exit = val;
2452 		break;
2453 	case VM_CAP_MASK_HWINTR:
2454 		vcpu->caps &= ~(1 << VM_CAP_MASK_HWINTR);
2455 		vcpu->caps |= (val << VM_CAP_MASK_HWINTR);
2456 		break;
2457 	case VM_CAP_RFLAGS_TF: {
2458 		uint64_t rflags;
2459 
2460 		/* Fetch RFLAGS. */
2461 		if (svm_getreg(vcpu, VM_REG_GUEST_RFLAGS, &rflags)) {
2462 			error = (EINVAL);
2463 			break;
2464 		}
2465 		if (val) {
2466 			/* Save current TF bit. */
2467 			vcpu->dbg.rflags_tf = rflags & PSL_T;
2468 			/* Trace next instruction. */
2469 			if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2470 				(rflags | PSL_T))) {
2471 				error = (EINVAL);
2472 				break;
2473 			}
2474 			vcpu->caps |= (1 << VM_CAP_RFLAGS_TF);
2475 		} else {
2476 			/*
2477 			 * Restore shadowed RFLAGS.TF only if vCPU was
2478 			 * previously stepped
2479 			 */
2480 			if (vcpu->caps & (1 << VM_CAP_RFLAGS_TF)) {
2481 				rflags &= ~PSL_T;
2482 				rflags |= vcpu->dbg.rflags_tf;
2483 				vcpu->dbg.rflags_tf = 0;
2484 
2485 				if (svm_setreg(vcpu, VM_REG_GUEST_RFLAGS,
2486 					rflags)) {
2487 					error = (EINVAL);
2488 					break;
2489 				}
2490 				vcpu->caps &= ~(1 << VM_CAP_RFLAGS_TF);
2491 			}
2492 		}
2493 
2494 		svm_set_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_DB), val);
2495 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_POPF,
2496 		    val);
2497 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PUSHF,
2498 		    val);
2499 		break;
2500 	}
2501 	default:
2502 		error = ENOENT;
2503 		break;
2504 	}
2505 	return (error);
2506 }
2507 
2508 static int
2509 svm_getcap(void *vcpui, int type, int *retval)
2510 {
2511 	struct svm_vcpu *vcpu;
2512 	struct vlapic *vlapic;
2513 	int error;
2514 
2515 	vcpu = vcpui;
2516 	error = 0;
2517 
2518 	switch (type) {
2519 	case VM_CAP_HALT_EXIT:
2520 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2521 		    VMCB_INTCPT_HLT);
2522 		break;
2523 	case VM_CAP_PAUSE_EXIT:
2524 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2525 		    VMCB_INTCPT_PAUSE);
2526 		break;
2527 	case VM_CAP_UNRESTRICTED_GUEST:
2528 		*retval = 1;	/* unrestricted guest is always enabled */
2529 		break;
2530 	case VM_CAP_BPT_EXIT:
2531 		*retval = svm_get_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_BP));
2532 		break;
2533 	case VM_CAP_IPI_EXIT:
2534 		vlapic = vm_lapic(vcpu->vcpu);
2535 		*retval = vlapic->ipi_exit;
2536 		break;
2537 	case VM_CAP_RFLAGS_TF:
2538 		*retval = !!(vcpu->caps & (1 << VM_CAP_RFLAGS_TF));
2539 		break;
2540 	case VM_CAP_MASK_HWINTR:
2541 		*retval = !!(vcpu->caps & (1 << VM_CAP_MASK_HWINTR));
2542 		break;
2543 	default:
2544 		error = ENOENT;
2545 		break;
2546 	}
2547 	return (error);
2548 }
2549 
2550 static struct vmspace *
2551 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2552 {
2553 	return (svm_npt_alloc(min, max));
2554 }
2555 
2556 static void
2557 svm_vmspace_free(struct vmspace *vmspace)
2558 {
2559 	svm_npt_free(vmspace);
2560 }
2561 
2562 static struct vlapic *
2563 svm_vlapic_init(void *vcpui)
2564 {
2565 	struct svm_vcpu *vcpu;
2566 	struct vlapic *vlapic;
2567 
2568 	vcpu = vcpui;
2569 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2570 	vlapic->vm = vcpu->sc->vm;
2571 	vlapic->vcpu = vcpu->vcpu;
2572 	vlapic->vcpuid = vcpu->vcpuid;
2573 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2574 	    M_WAITOK | M_ZERO);
2575 
2576 	vlapic_init(vlapic);
2577 
2578 	return (vlapic);
2579 }
2580 
2581 static void
2582 svm_vlapic_cleanup(struct vlapic *vlapic)
2583 {
2584 
2585         vlapic_cleanup(vlapic);
2586 	free(vlapic->apic_page, M_SVM_VLAPIC);
2587         free(vlapic, M_SVM_VLAPIC);
2588 }
2589 
2590 #ifdef BHYVE_SNAPSHOT
2591 static int
2592 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2593 {
2594 	struct svm_vcpu *vcpu;
2595 	int err, running, hostcpu;
2596 
2597 	vcpu = vcpui;
2598 	err = 0;
2599 
2600 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2601 	if (running && hostcpu != curcpu) {
2602 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2603 		    vcpu->vcpuid);
2604 		return (EINVAL);
2605 	}
2606 
2607 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2608 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2609 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2610 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2611 
2612 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2613 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2614 
2615 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2616 
2617 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2618 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2619 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2620 
2621 	/* Guest segments */
2622 	/* ES */
2623 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2624 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2625 
2626 	/* CS */
2627 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2628 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2629 
2630 	/* SS */
2631 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2632 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2633 
2634 	/* DS */
2635 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2636 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2637 
2638 	/* FS */
2639 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2640 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2641 
2642 	/* GS */
2643 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2644 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2645 
2646 	/* TR */
2647 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2648 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2649 
2650 	/* LDTR */
2651 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2652 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2653 
2654 	/* EFER */
2655 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2656 
2657 	/* IDTR and GDTR */
2658 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2659 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2660 
2661 	/* Specific AMD registers */
2662 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2663 
2664 	err += vmcb_snapshot_any(vcpu,
2665 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2666 	err += vmcb_snapshot_any(vcpu,
2667 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2668 	err += vmcb_snapshot_any(vcpu,
2669 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2670 	err += vmcb_snapshot_any(vcpu,
2671 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2672 	err += vmcb_snapshot_any(vcpu,
2673 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2674 
2675 	err += vmcb_snapshot_any(vcpu,
2676 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2677 	err += vmcb_snapshot_any(vcpu,
2678 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2679 
2680 	err += vmcb_snapshot_any(vcpu,
2681 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2682 
2683 	err += vmcb_snapshot_any(vcpu,
2684 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2685 
2686 	err += vmcb_snapshot_any(vcpu,
2687 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2688 
2689 	err += vmcb_snapshot_any(vcpu,
2690 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2691 	err += vmcb_snapshot_any(vcpu,
2692 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2693 	err += vmcb_snapshot_any(vcpu,
2694 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2695 	err += vmcb_snapshot_any(vcpu,
2696 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2697 
2698 	err += vmcb_snapshot_any(vcpu,
2699 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2700 
2701 	err += vmcb_snapshot_any(vcpu,
2702 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2703 	err += vmcb_snapshot_any(vcpu,
2704 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2705 	err += vmcb_snapshot_any(vcpu,
2706 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2707 	err += vmcb_snapshot_any(vcpu,
2708 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2709 
2710 	err += vmcb_snapshot_any(vcpu,
2711 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2712 
2713 	err += vmcb_snapshot_any(vcpu,
2714 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2715 	err += vmcb_snapshot_any(vcpu,
2716 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2717 	err += vmcb_snapshot_any(vcpu,
2718 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2719 
2720 	err += vmcb_snapshot_any(vcpu,
2721 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2722 
2723 	err += vmcb_snapshot_any(vcpu,
2724 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2725 
2726 	err += vmcb_snapshot_any(vcpu,
2727 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2728 	err += vmcb_snapshot_any(vcpu,
2729 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2730 	err += vmcb_snapshot_any(vcpu,
2731 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2732 
2733 	err += vmcb_snapshot_any(vcpu,
2734 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2735 
2736 	err += vmcb_snapshot_any(vcpu,
2737 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2738 	err += vmcb_snapshot_any(vcpu,
2739 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2740 	err += vmcb_snapshot_any(vcpu,
2741 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2742 	err += vmcb_snapshot_any(vcpu,
2743 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2744 	err += vmcb_snapshot_any(vcpu,
2745 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2746 	if (err != 0)
2747 		goto done;
2748 
2749 	/* Snapshot swctx for virtual cpu */
2750 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2751 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2752 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2753 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2754 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2755 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2756 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2757 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2758 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2759 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2760 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2761 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2762 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2763 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2764 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2765 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2766 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2767 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2768 
2769 	/* Restore other svm_vcpu struct fields */
2770 
2771 	/* Restore NEXTRIP field */
2772 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2773 
2774 	/* Restore lastcpu field */
2775 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2776 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2777 
2778 	/* Restore EPTGEN field - EPT is Extended Page Table */
2779 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2780 
2781 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2782 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2783 
2784 	SNAPSHOT_BUF_OR_LEAVE(&vcpu->mtrr, sizeof(vcpu->mtrr), meta, err, done);
2785 
2786 	/* Set all caches dirty */
2787 	if (meta->op == VM_SNAPSHOT_RESTORE)
2788 		svm_set_dirty(vcpu, 0xffffffff);
2789 
2790 done:
2791 	return (err);
2792 }
2793 
2794 static int
2795 svm_restore_tsc(void *vcpui, uint64_t offset)
2796 {
2797 	struct svm_vcpu *vcpu = vcpui;
2798 
2799 	svm_set_tsc_offset(vcpu, offset);
2800 
2801 	return (0);
2802 }
2803 #endif
2804 
2805 const struct vmm_ops vmm_ops_amd = {
2806 	.modinit	= svm_modinit,
2807 	.modcleanup	= svm_modcleanup,
2808 	.modresume	= svm_modresume,
2809 	.init		= svm_init,
2810 	.run		= svm_run,
2811 	.cleanup	= svm_cleanup,
2812 	.vcpu_init	= svm_vcpu_init,
2813 	.vcpu_cleanup	= svm_vcpu_cleanup,
2814 	.getreg		= svm_getreg,
2815 	.setreg		= svm_setreg,
2816 	.getdesc	= svm_getdesc,
2817 	.setdesc	= svm_setdesc,
2818 	.getcap		= svm_getcap,
2819 	.setcap		= svm_setcap,
2820 	.vmspace_alloc	= svm_vmspace_alloc,
2821 	.vmspace_free	= svm_vmspace_free,
2822 	.vlapic_init	= svm_vlapic_init,
2823 	.vlapic_cleanup	= svm_vlapic_cleanup,
2824 #ifdef BHYVE_SNAPSHOT
2825 	.vcpu_snapshot	= svm_vcpu_snapshot,
2826 	.restore_tsc	= svm_restore_tsc,
2827 #endif
2828 };
2829