xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bhyve_snapshot.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/smp.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/pcpu.h>
40 #include <sys/proc.h>
41 #include <sys/reg.h>
42 #include <sys/smr.h>
43 #include <sys/sysctl.h>
44 
45 #include <vm/vm.h>
46 #include <vm/vm_extern.h>
47 #include <vm/pmap.h>
48 
49 #include <machine/cpufunc.h>
50 #include <machine/psl.h>
51 #include <machine/md_var.h>
52 #include <machine/specialreg.h>
53 #include <machine/smp.h>
54 #include <machine/vmm.h>
55 #include <machine/vmm_dev.h>
56 #include <machine/vmm_instruction_emul.h>
57 #include <machine/vmm_snapshot.h>
58 
59 #include "vmm_lapic.h"
60 #include "vmm_stat.h"
61 #include "vmm_ktr.h"
62 #include "vmm_ioport.h"
63 #include "vatpic.h"
64 #include "vlapic.h"
65 #include "vlapic_priv.h"
66 
67 #include "x86.h"
68 #include "vmcb.h"
69 #include "svm.h"
70 #include "svm_softc.h"
71 #include "svm_msr.h"
72 #include "npt.h"
73 
74 SYSCTL_DECL(_hw_vmm);
75 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 
78 /*
79  * SVM CPUID function 0x8000_000A, edx bit decoding.
80  */
81 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
82 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
83 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
84 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
85 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
86 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
87 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
88 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
89 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
90 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
91 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
92 
93 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
94 				VMCB_CACHE_IOPM		|	\
95 				VMCB_CACHE_I		|	\
96 				VMCB_CACHE_TPR		|	\
97 				VMCB_CACHE_CR2		|	\
98 				VMCB_CACHE_CR		|	\
99 				VMCB_CACHE_DR		|	\
100 				VMCB_CACHE_DT		|	\
101 				VMCB_CACHE_SEG		|	\
102 				VMCB_CACHE_NP)
103 
104 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
105 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
106     0, NULL);
107 
108 static MALLOC_DEFINE(M_SVM, "svm", "svm");
109 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
110 
111 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
112 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
113     "SVM features advertised by CPUID.8000000AH:EDX");
114 
115 static int disable_npf_assist;
116 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
117     &disable_npf_assist, 0, NULL);
118 
119 /* Maximum ASIDs supported by the processor */
120 static uint32_t nasid;
121 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
122     "Number of ASIDs supported by this processor");
123 
124 /* Current ASID generation for each host cpu */
125 static struct asid asid[MAXCPU];
126 
127 /* SVM host state saved area of size 4KB for each physical core. */
128 static uint8_t *hsave;
129 
130 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
131 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
132 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
133 
134 static int svm_getdesc(void *vcpui, int reg, struct seg_desc *desc);
135 static int svm_setreg(void *vcpui, int ident, uint64_t val);
136 
137 static __inline int
138 flush_by_asid(void)
139 {
140 
141 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
142 }
143 
144 static __inline int
145 decode_assist(void)
146 {
147 
148 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
149 }
150 
151 static void
152 svm_disable(void *arg __unused)
153 {
154 	uint64_t efer;
155 
156 	efer = rdmsr(MSR_EFER);
157 	efer &= ~EFER_SVM;
158 	wrmsr(MSR_EFER, efer);
159 }
160 
161 /*
162  * Disable SVM on all CPUs.
163  */
164 static int
165 svm_modcleanup(void)
166 {
167 
168 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
169 
170 	if (hsave != NULL)
171 		kmem_free(hsave, (mp_maxid + 1) * PAGE_SIZE);
172 
173 	return (0);
174 }
175 
176 /*
177  * Verify that all the features required by bhyve are available.
178  */
179 static int
180 check_svm_features(void)
181 {
182 	u_int regs[4];
183 
184 	/* CPUID Fn8000_000A is for SVM */
185 	do_cpuid(0x8000000A, regs);
186 	svm_feature &= regs[3];
187 
188 	/*
189 	 * The number of ASIDs can be configured to be less than what is
190 	 * supported by the hardware but not more.
191 	 */
192 	if (nasid == 0 || nasid > regs[1])
193 		nasid = regs[1];
194 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
195 
196 	/* bhyve requires the Nested Paging feature */
197 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
198 		printf("SVM: Nested Paging feature not available.\n");
199 		return (ENXIO);
200 	}
201 
202 	/* bhyve requires the NRIP Save feature */
203 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
204 		printf("SVM: NRIP Save feature not available.\n");
205 		return (ENXIO);
206 	}
207 
208 	return (0);
209 }
210 
211 static void
212 svm_enable(void *arg __unused)
213 {
214 	uint64_t efer;
215 
216 	efer = rdmsr(MSR_EFER);
217 	efer |= EFER_SVM;
218 	wrmsr(MSR_EFER, efer);
219 
220 	wrmsr(MSR_VM_HSAVE_PA, vtophys(&hsave[curcpu * PAGE_SIZE]));
221 }
222 
223 /*
224  * Return 1 if SVM is enabled on this processor and 0 otherwise.
225  */
226 static int
227 svm_available(void)
228 {
229 	uint64_t msr;
230 
231 	/* Section 15.4 Enabling SVM from APM2. */
232 	if ((amd_feature2 & AMDID2_SVM) == 0) {
233 		printf("SVM: not available.\n");
234 		return (0);
235 	}
236 
237 	msr = rdmsr(MSR_VM_CR);
238 	if ((msr & VM_CR_SVMDIS) != 0) {
239 		printf("SVM: disabled by BIOS.\n");
240 		return (0);
241 	}
242 
243 	return (1);
244 }
245 
246 static int
247 svm_modinit(int ipinum)
248 {
249 	int error, cpu;
250 
251 	if (!svm_available())
252 		return (ENXIO);
253 
254 	error = check_svm_features();
255 	if (error)
256 		return (error);
257 
258 	vmcb_clean &= VMCB_CACHE_DEFAULT;
259 
260 	for (cpu = 0; cpu < MAXCPU; cpu++) {
261 		/*
262 		 * Initialize the host ASIDs to their "highest" valid values.
263 		 *
264 		 * The next ASID allocation will rollover both 'gen' and 'num'
265 		 * and start off the sequence at {1,1}.
266 		 */
267 		asid[cpu].gen = ~0UL;
268 		asid[cpu].num = nasid - 1;
269 	}
270 
271 	svm_msr_init();
272 	svm_npt_init(ipinum);
273 
274 	/* Enable SVM on all CPUs */
275 	hsave = kmem_malloc((mp_maxid + 1) * PAGE_SIZE, M_WAITOK | M_ZERO);
276 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
277 
278 	return (0);
279 }
280 
281 static void
282 svm_modresume(void)
283 {
284 
285 	svm_enable(NULL);
286 }
287 
288 #ifdef BHYVE_SNAPSHOT
289 void
290 svm_set_tsc_offset(struct svm_vcpu *vcpu, uint64_t offset)
291 {
292 	struct vmcb_ctrl *ctrl;
293 
294 	ctrl = svm_get_vmcb_ctrl(vcpu);
295 	ctrl->tsc_offset = offset;
296 
297 	svm_set_dirty(vcpu, VMCB_CACHE_I);
298 	SVM_CTR1(vcpu, "tsc offset changed to %#lx", offset);
299 
300 	vm_set_tsc_offset(vcpu->vcpu, offset);
301 }
302 #endif
303 
304 /* Pentium compatible MSRs */
305 #define MSR_PENTIUM_START 	0
306 #define MSR_PENTIUM_END 	0x1FFF
307 /* AMD 6th generation and Intel compatible MSRs */
308 #define MSR_AMD6TH_START 	0xC0000000UL
309 #define MSR_AMD6TH_END 		0xC0001FFFUL
310 /* AMD 7th and 8th generation compatible MSRs */
311 #define MSR_AMD7TH_START 	0xC0010000UL
312 #define MSR_AMD7TH_END 		0xC0011FFFUL
313 
314 /*
315  * Get the index and bit position for a MSR in permission bitmap.
316  * Two bits are used for each MSR: lower bit for read and higher bit for write.
317  */
318 static int
319 svm_msr_index(uint64_t msr, int *index, int *bit)
320 {
321 	uint32_t base, off;
322 
323 	*index = -1;
324 	*bit = (msr % 4) * 2;
325 	base = 0;
326 
327 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
328 		*index = msr / 4;
329 		return (0);
330 	}
331 
332 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
333 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
334 		off = (msr - MSR_AMD6TH_START);
335 		*index = (off + base) / 4;
336 		return (0);
337 	}
338 
339 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
340 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
341 		off = (msr - MSR_AMD7TH_START);
342 		*index = (off + base) / 4;
343 		return (0);
344 	}
345 
346 	return (EINVAL);
347 }
348 
349 /*
350  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
351  */
352 static void
353 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
354 {
355 	int index, bit, error __diagused;
356 
357 	error = svm_msr_index(msr, &index, &bit);
358 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
359 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
360 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
361 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
362 	    "msr %#lx", __func__, bit, msr));
363 
364 	if (read)
365 		perm_bitmap[index] &= ~(1UL << bit);
366 
367 	if (write)
368 		perm_bitmap[index] &= ~(2UL << bit);
369 }
370 
371 static void
372 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
373 {
374 
375 	svm_msr_perm(perm_bitmap, msr, true, true);
376 }
377 
378 static void
379 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
380 {
381 
382 	svm_msr_perm(perm_bitmap, msr, true, false);
383 }
384 
385 static __inline int
386 svm_get_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask)
387 {
388 	struct vmcb_ctrl *ctrl;
389 
390 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
391 
392 	ctrl = svm_get_vmcb_ctrl(vcpu);
393 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
394 }
395 
396 static __inline void
397 svm_set_intercept(struct svm_vcpu *vcpu, int idx, uint32_t bitmask, int enabled)
398 {
399 	struct vmcb_ctrl *ctrl;
400 	uint32_t oldval;
401 
402 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
403 
404 	ctrl = svm_get_vmcb_ctrl(vcpu);
405 	oldval = ctrl->intercept[idx];
406 
407 	if (enabled)
408 		ctrl->intercept[idx] |= bitmask;
409 	else
410 		ctrl->intercept[idx] &= ~bitmask;
411 
412 	if (ctrl->intercept[idx] != oldval) {
413 		svm_set_dirty(vcpu, VMCB_CACHE_I);
414 		SVM_CTR3(vcpu, "intercept[%d] modified from %#x to %#x", idx,
415 		    oldval, ctrl->intercept[idx]);
416 	}
417 }
418 
419 static __inline void
420 svm_disable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
421 {
422 
423 	svm_set_intercept(vcpu, off, bitmask, 0);
424 }
425 
426 static __inline void
427 svm_enable_intercept(struct svm_vcpu *vcpu, int off, uint32_t bitmask)
428 {
429 
430 	svm_set_intercept(vcpu, off, bitmask, 1);
431 }
432 
433 static void
434 vmcb_init(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t iopm_base_pa,
435     uint64_t msrpm_base_pa, uint64_t np_pml4)
436 {
437 	struct vmcb_ctrl *ctrl;
438 	struct vmcb_state *state;
439 	uint32_t mask;
440 	int n;
441 
442 	ctrl = svm_get_vmcb_ctrl(vcpu);
443 	state = svm_get_vmcb_state(vcpu);
444 
445 	ctrl->iopm_base_pa = iopm_base_pa;
446 	ctrl->msrpm_base_pa = msrpm_base_pa;
447 
448 	/* Enable nested paging */
449 	ctrl->np_enable = 1;
450 	ctrl->n_cr3 = np_pml4;
451 
452 	/*
453 	 * Intercept accesses to the control registers that are not shadowed
454 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
455 	 */
456 	for (n = 0; n < 16; n++) {
457 		mask = (BIT(n) << 16) | BIT(n);
458 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
459 			svm_disable_intercept(vcpu, VMCB_CR_INTCPT, mask);
460 		else
461 			svm_enable_intercept(vcpu, VMCB_CR_INTCPT, mask);
462 	}
463 
464 	/*
465 	 * Intercept everything when tracing guest exceptions otherwise
466 	 * just intercept machine check exception.
467 	 */
468 	if (vcpu_trace_exceptions(vcpu->vcpu)) {
469 		for (n = 0; n < 32; n++) {
470 			/*
471 			 * Skip unimplemented vectors in the exception bitmap.
472 			 */
473 			if (n == 2 || n == 9) {
474 				continue;
475 			}
476 			svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(n));
477 		}
478 	} else {
479 		svm_enable_intercept(vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
480 	}
481 
482 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
483 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
484 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
485 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
486 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
487 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
488 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
489 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
490 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
491 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE);
492 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
493 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
494 
495 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
496 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
497 
498 	/*
499 	 * Intercept SVM instructions since AMD enables them in guests otherwise.
500 	 * Non-intercepted VMMCALL causes #UD, skip it.
501 	 */
502 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
503 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
504 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
505 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
506 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
507 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
508 	if (vcpu_trap_wbinvd(vcpu->vcpu)) {
509 		svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT,
510 		    VMCB_INTCPT_WBINVD);
511 	}
512 
513 	/*
514 	 * From section "Canonicalization and Consistency Checks" in APMv2
515 	 * the VMRUN intercept bit must be set to pass the consistency check.
516 	 */
517 	svm_enable_intercept(vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
518 
519 	/*
520 	 * The ASID will be set to a non-zero value just before VMRUN.
521 	 */
522 	ctrl->asid = 0;
523 
524 	/*
525 	 * Section 15.21.1, Interrupt Masking in EFLAGS
526 	 * Section 15.21.2, Virtualizing APIC.TPR
527 	 *
528 	 * This must be set for %rflag and %cr8 isolation of guest and host.
529 	 */
530 	ctrl->v_intr_masking = 1;
531 
532 	/* Enable Last Branch Record aka LBR for debugging */
533 	ctrl->lbr_virt_en = 1;
534 	state->dbgctl = BIT(0);
535 
536 	/* EFER_SVM must always be set when the guest is executing */
537 	state->efer = EFER_SVM;
538 
539 	/* Set up the PAT to power-on state */
540 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
541 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
542 	    PAT_VALUE(2, PAT_UNCACHED)		|
543 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
544 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
545 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
546 	    PAT_VALUE(6, PAT_UNCACHED)		|
547 	    PAT_VALUE(7, PAT_UNCACHEABLE);
548 
549 	/* Set up DR6/7 to power-on state */
550 	state->dr6 = DBREG_DR6_RESERVED1;
551 	state->dr7 = DBREG_DR7_RESERVED1;
552 }
553 
554 /*
555  * Initialize a virtual machine.
556  */
557 static void *
558 svm_init(struct vm *vm, pmap_t pmap)
559 {
560 	struct svm_softc *svm_sc;
561 
562 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
563 
564 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
565 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
566 	if (svm_sc->msr_bitmap == NULL)
567 		panic("contigmalloc of SVM MSR bitmap failed");
568 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
569 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
570 	if (svm_sc->iopm_bitmap == NULL)
571 		panic("contigmalloc of SVM IO bitmap failed");
572 
573 	svm_sc->vm = vm;
574 	svm_sc->nptp = vtophys(pmap->pm_pmltop);
575 
576 	/*
577 	 * Intercept read and write accesses to all MSRs.
578 	 */
579 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
580 
581 	/*
582 	 * Access to the following MSRs is redirected to the VMCB when the
583 	 * guest is executing. Therefore it is safe to allow the guest to
584 	 * read/write these MSRs directly without hypervisor involvement.
585 	 */
586 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
587 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
588 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
589 
590 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
591 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
592 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
593 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
594 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
595 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
596 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
597 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
598 
599 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
600 
601 	/*
602 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
603 	 */
604 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
605 
606 	/* Intercept access to all I/O ports. */
607 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
608 
609 	return (svm_sc);
610 }
611 
612 static void *
613 svm_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
614 {
615 	struct svm_softc *sc = vmi;
616 	struct svm_vcpu *vcpu;
617 
618 	vcpu = malloc(sizeof(*vcpu), M_SVM, M_WAITOK | M_ZERO);
619 	vcpu->sc = sc;
620 	vcpu->vcpu = vcpu1;
621 	vcpu->vcpuid = vcpuid;
622 	vcpu->vmcb = malloc_aligned(sizeof(struct vmcb), PAGE_SIZE, M_SVM,
623 	    M_WAITOK | M_ZERO);
624 	vcpu->nextrip = ~0;
625 	vcpu->lastcpu = NOCPU;
626 	vcpu->vmcb_pa = vtophys(vcpu->vmcb);
627 	vmcb_init(sc, vcpu, vtophys(sc->iopm_bitmap), vtophys(sc->msr_bitmap),
628 	    sc->nptp);
629 	svm_msr_guest_init(sc, vcpu);
630 	return (vcpu);
631 }
632 
633 /*
634  * Collateral for a generic SVM VM-exit.
635  */
636 static void
637 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
638 {
639 
640 	vme->exitcode = VM_EXITCODE_SVM;
641 	vme->u.svm.exitcode = code;
642 	vme->u.svm.exitinfo1 = info1;
643 	vme->u.svm.exitinfo2 = info2;
644 }
645 
646 static int
647 svm_cpl(struct vmcb_state *state)
648 {
649 
650 	/*
651 	 * From APMv2:
652 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
653 	 *    from any segment DPL"
654 	 */
655 	return (state->cpl);
656 }
657 
658 static enum vm_cpu_mode
659 svm_vcpu_mode(struct vmcb *vmcb)
660 {
661 	struct vmcb_segment seg;
662 	struct vmcb_state *state;
663 	int error __diagused;
664 
665 	state = &vmcb->state;
666 
667 	if (state->efer & EFER_LMA) {
668 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
669 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
670 		    error));
671 
672 		/*
673 		 * Section 4.8.1 for APM2, check if Code Segment has
674 		 * Long attribute set in descriptor.
675 		 */
676 		if (seg.attrib & VMCB_CS_ATTRIB_L)
677 			return (CPU_MODE_64BIT);
678 		else
679 			return (CPU_MODE_COMPATIBILITY);
680 	} else  if (state->cr0 & CR0_PE) {
681 		return (CPU_MODE_PROTECTED);
682 	} else {
683 		return (CPU_MODE_REAL);
684 	}
685 }
686 
687 static enum vm_paging_mode
688 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
689 {
690 
691 	if ((cr0 & CR0_PG) == 0)
692 		return (PAGING_MODE_FLAT);
693 	if ((cr4 & CR4_PAE) == 0)
694 		return (PAGING_MODE_32);
695 	if (efer & EFER_LME)
696 		return (PAGING_MODE_64);
697 	else
698 		return (PAGING_MODE_PAE);
699 }
700 
701 /*
702  * ins/outs utility routines
703  */
704 static uint64_t
705 svm_inout_str_index(struct svm_regctx *regs, int in)
706 {
707 	uint64_t val;
708 
709 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
710 
711 	return (val);
712 }
713 
714 static uint64_t
715 svm_inout_str_count(struct svm_regctx *regs, int rep)
716 {
717 	uint64_t val;
718 
719 	val = rep ? regs->sctx_rcx : 1;
720 
721 	return (val);
722 }
723 
724 static void
725 svm_inout_str_seginfo(struct svm_vcpu *vcpu, int64_t info1, int in,
726     struct vm_inout_str *vis)
727 {
728 	int error __diagused, s;
729 
730 	if (in) {
731 		vis->seg_name = VM_REG_GUEST_ES;
732 	} else {
733 		/* The segment field has standard encoding */
734 		s = (info1 >> 10) & 0x7;
735 		vis->seg_name = vm_segment_name(s);
736 	}
737 
738 	error = svm_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
739 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
740 }
741 
742 static int
743 svm_inout_str_addrsize(uint64_t info1)
744 {
745         uint32_t size;
746 
747         size = (info1 >> 7) & 0x7;
748         switch (size) {
749         case 1:
750                 return (2);     /* 16 bit */
751         case 2:
752                 return (4);     /* 32 bit */
753         case 4:
754                 return (8);     /* 64 bit */
755         default:
756                 panic("%s: invalid size encoding %d", __func__, size);
757         }
758 }
759 
760 static void
761 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
762 {
763 	struct vmcb_state *state;
764 
765 	state = &vmcb->state;
766 	paging->cr3 = state->cr3;
767 	paging->cpl = svm_cpl(state);
768 	paging->cpu_mode = svm_vcpu_mode(vmcb);
769 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
770 	    state->efer);
771 }
772 
773 #define	UNHANDLED 0
774 
775 /*
776  * Handle guest I/O intercept.
777  */
778 static int
779 svm_handle_io(struct svm_vcpu *vcpu, struct vm_exit *vmexit)
780 {
781 	struct vmcb_ctrl *ctrl;
782 	struct vmcb_state *state;
783 	struct svm_regctx *regs;
784 	struct vm_inout_str *vis;
785 	uint64_t info1;
786 	int inout_string;
787 
788 	state = svm_get_vmcb_state(vcpu);
789 	ctrl  = svm_get_vmcb_ctrl(vcpu);
790 	regs  = svm_get_guest_regctx(vcpu);
791 
792 	info1 = ctrl->exitinfo1;
793 	inout_string = info1 & BIT(2) ? 1 : 0;
794 
795 	/*
796 	 * The effective segment number in EXITINFO1[12:10] is populated
797 	 * only if the processor has the DecodeAssist capability.
798 	 *
799 	 * XXX this is not specified explicitly in APMv2 but can be verified
800 	 * empirically.
801 	 */
802 	if (inout_string && !decode_assist())
803 		return (UNHANDLED);
804 
805 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
806 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
807 	vmexit->u.inout.string 	= inout_string;
808 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
809 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
810 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
811 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
812 
813 	if (inout_string) {
814 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
815 		vis = &vmexit->u.inout_str;
816 		svm_paging_info(svm_get_vmcb(vcpu), &vis->paging);
817 		vis->rflags = state->rflags;
818 		vis->cr0 = state->cr0;
819 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
820 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
821 		vis->addrsize = svm_inout_str_addrsize(info1);
822 		svm_inout_str_seginfo(vcpu, info1, vmexit->u.inout.in, vis);
823 	}
824 
825 	return (UNHANDLED);
826 }
827 
828 static int
829 npf_fault_type(uint64_t exitinfo1)
830 {
831 
832 	if (exitinfo1 & VMCB_NPF_INFO1_W)
833 		return (VM_PROT_WRITE);
834 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
835 		return (VM_PROT_EXECUTE);
836 	else
837 		return (VM_PROT_READ);
838 }
839 
840 static bool
841 svm_npf_emul_fault(uint64_t exitinfo1)
842 {
843 
844 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
845 		return (false);
846 	}
847 
848 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
849 		return (false);
850 	}
851 
852 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
853 		return (false);
854 	}
855 
856 	return (true);
857 }
858 
859 static void
860 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
861 {
862 	struct vm_guest_paging *paging;
863 	struct vmcb_segment seg;
864 	struct vmcb_ctrl *ctrl;
865 	char *inst_bytes;
866 	int error __diagused, inst_len;
867 
868 	ctrl = &vmcb->ctrl;
869 	paging = &vmexit->u.inst_emul.paging;
870 
871 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
872 	vmexit->u.inst_emul.gpa = gpa;
873 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
874 	svm_paging_info(vmcb, paging);
875 
876 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
877 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
878 
879 	switch(paging->cpu_mode) {
880 	case CPU_MODE_REAL:
881 		vmexit->u.inst_emul.cs_base = seg.base;
882 		vmexit->u.inst_emul.cs_d = 0;
883 		break;
884 	case CPU_MODE_PROTECTED:
885 	case CPU_MODE_COMPATIBILITY:
886 		vmexit->u.inst_emul.cs_base = seg.base;
887 
888 		/*
889 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
890 		 */
891 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
892 		    1 : 0;
893 		break;
894 	default:
895 		vmexit->u.inst_emul.cs_base = 0;
896 		vmexit->u.inst_emul.cs_d = 0;
897 		break;
898 	}
899 
900 	/*
901 	 * Copy the instruction bytes into 'vie' if available.
902 	 */
903 	if (decode_assist() && !disable_npf_assist) {
904 		inst_len = ctrl->inst_len;
905 		inst_bytes = ctrl->inst_bytes;
906 	} else {
907 		inst_len = 0;
908 		inst_bytes = NULL;
909 	}
910 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
911 }
912 
913 #ifdef KTR
914 static const char *
915 intrtype_to_str(int intr_type)
916 {
917 	switch (intr_type) {
918 	case VMCB_EVENTINJ_TYPE_INTR:
919 		return ("hwintr");
920 	case VMCB_EVENTINJ_TYPE_NMI:
921 		return ("nmi");
922 	case VMCB_EVENTINJ_TYPE_INTn:
923 		return ("swintr");
924 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
925 		return ("exception");
926 	default:
927 		panic("%s: unknown intr_type %d", __func__, intr_type);
928 	}
929 }
930 #endif
931 
932 /*
933  * Inject an event to vcpu as described in section 15.20, "Event injection".
934  */
935 static void
936 svm_eventinject(struct svm_vcpu *vcpu, int intr_type, int vector,
937     uint32_t error, bool ec_valid)
938 {
939 	struct vmcb_ctrl *ctrl;
940 
941 	ctrl = svm_get_vmcb_ctrl(vcpu);
942 
943 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
944 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
945 
946 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
947 	    __func__, vector));
948 
949 	switch (intr_type) {
950 	case VMCB_EVENTINJ_TYPE_INTR:
951 	case VMCB_EVENTINJ_TYPE_NMI:
952 	case VMCB_EVENTINJ_TYPE_INTn:
953 		break;
954 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
955 		if (vector >= 0 && vector <= 31 && vector != 2)
956 			break;
957 		/* FALLTHROUGH */
958 	default:
959 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
960 		    intr_type, vector);
961 	}
962 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
963 	if (ec_valid) {
964 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
965 		ctrl->eventinj |= (uint64_t)error << 32;
966 		SVM_CTR3(vcpu, "Injecting %s at vector %d errcode %#x",
967 		    intrtype_to_str(intr_type), vector, error);
968 	} else {
969 		SVM_CTR2(vcpu, "Injecting %s at vector %d",
970 		    intrtype_to_str(intr_type), vector);
971 	}
972 }
973 
974 static void
975 svm_update_virqinfo(struct svm_vcpu *vcpu)
976 {
977 	struct vlapic *vlapic;
978 	struct vmcb_ctrl *ctrl;
979 
980 	vlapic = vm_lapic(vcpu->vcpu);
981 	ctrl = svm_get_vmcb_ctrl(vcpu);
982 
983 	/* Update %cr8 in the emulated vlapic */
984 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
985 
986 	/* Virtual interrupt injection is not used. */
987 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
988 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
989 }
990 
991 static void
992 svm_save_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
993 {
994 	struct vmcb_ctrl *ctrl;
995 	uint64_t intinfo;
996 
997 	ctrl = svm_get_vmcb_ctrl(vcpu);
998 	intinfo = ctrl->exitintinfo;
999 	if (!VMCB_EXITINTINFO_VALID(intinfo))
1000 		return;
1001 
1002 	/*
1003 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1004 	 *
1005 	 * If a #VMEXIT happened during event delivery then record the event
1006 	 * that was being delivered.
1007 	 */
1008 	SVM_CTR2(vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo,
1009 	    VMCB_EXITINTINFO_VECTOR(intinfo));
1010 	vmm_stat_incr(vcpu->vcpu, VCPU_EXITINTINFO, 1);
1011 	vm_exit_intinfo(vcpu->vcpu, intinfo);
1012 }
1013 
1014 #ifdef INVARIANTS
1015 static __inline int
1016 vintr_intercept_enabled(struct svm_vcpu *vcpu)
1017 {
1018 
1019 	return (svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR));
1020 }
1021 #endif
1022 
1023 static __inline void
1024 enable_intr_window_exiting(struct svm_vcpu *vcpu)
1025 {
1026 	struct vmcb_ctrl *ctrl;
1027 
1028 	ctrl = svm_get_vmcb_ctrl(vcpu);
1029 
1030 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1031 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1032 		KASSERT(vintr_intercept_enabled(vcpu),
1033 		    ("%s: vintr intercept should be enabled", __func__));
1034 		return;
1035 	}
1036 
1037 	SVM_CTR0(vcpu, "Enable intr window exiting");
1038 	ctrl->v_irq = 1;
1039 	ctrl->v_ign_tpr = 1;
1040 	ctrl->v_intr_vector = 0;
1041 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1042 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1043 }
1044 
1045 static __inline void
1046 disable_intr_window_exiting(struct svm_vcpu *vcpu)
1047 {
1048 	struct vmcb_ctrl *ctrl;
1049 
1050 	ctrl = svm_get_vmcb_ctrl(vcpu);
1051 
1052 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1053 		KASSERT(!vintr_intercept_enabled(vcpu),
1054 		    ("%s: vintr intercept should be disabled", __func__));
1055 		return;
1056 	}
1057 
1058 	SVM_CTR0(vcpu, "Disable intr window exiting");
1059 	ctrl->v_irq = 0;
1060 	ctrl->v_intr_vector = 0;
1061 	svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1062 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1063 }
1064 
1065 static int
1066 svm_modify_intr_shadow(struct svm_vcpu *vcpu, uint64_t val)
1067 {
1068 	struct vmcb_ctrl *ctrl;
1069 	int oldval, newval;
1070 
1071 	ctrl = svm_get_vmcb_ctrl(vcpu);
1072 	oldval = ctrl->intr_shadow;
1073 	newval = val ? 1 : 0;
1074 	if (newval != oldval) {
1075 		ctrl->intr_shadow = newval;
1076 		SVM_CTR1(vcpu, "Setting intr_shadow to %d", newval);
1077 	}
1078 	return (0);
1079 }
1080 
1081 static int
1082 svm_get_intr_shadow(struct svm_vcpu *vcpu, uint64_t *val)
1083 {
1084 	struct vmcb_ctrl *ctrl;
1085 
1086 	ctrl = svm_get_vmcb_ctrl(vcpu);
1087 	*val = ctrl->intr_shadow;
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1093  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1094  * to track when the vcpu is done handling the NMI.
1095  */
1096 static int
1097 nmi_blocked(struct svm_vcpu *vcpu)
1098 {
1099 	int blocked;
1100 
1101 	blocked = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1102 	return (blocked);
1103 }
1104 
1105 static void
1106 enable_nmi_blocking(struct svm_vcpu *vcpu)
1107 {
1108 
1109 	KASSERT(!nmi_blocked(vcpu), ("vNMI already blocked"));
1110 	SVM_CTR0(vcpu, "vNMI blocking enabled");
1111 	svm_enable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1112 }
1113 
1114 static void
1115 clear_nmi_blocking(struct svm_vcpu *vcpu)
1116 {
1117 	int error __diagused;
1118 
1119 	KASSERT(nmi_blocked(vcpu), ("vNMI already unblocked"));
1120 	SVM_CTR0(vcpu, "vNMI blocking cleared");
1121 	/*
1122 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1123 	 * the "iret" when it runs next. However, it is possible to inject
1124 	 * another NMI into the vcpu before the "iret" has actually executed.
1125 	 *
1126 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1127 	 * it will trap back into the hypervisor. If an NMI is pending for
1128 	 * the vcpu it will be injected into the guest.
1129 	 *
1130 	 * XXX this needs to be fixed
1131 	 */
1132 	svm_disable_intercept(vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1133 
1134 	/*
1135 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1136 	 * immediate VMRUN.
1137 	 */
1138 	error = svm_modify_intr_shadow(vcpu, 1);
1139 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1140 }
1141 
1142 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1143 
1144 static int
1145 svm_write_efer(struct svm_softc *sc, struct svm_vcpu *vcpu, uint64_t newval,
1146     bool *retu)
1147 {
1148 	struct vm_exit *vme;
1149 	struct vmcb_state *state;
1150 	uint64_t changed, lma, oldval;
1151 	int error __diagused;
1152 
1153 	state = svm_get_vmcb_state(vcpu);
1154 
1155 	oldval = state->efer;
1156 	SVM_CTR2(vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1157 
1158 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1159 	changed = oldval ^ newval;
1160 
1161 	if (newval & EFER_MBZ_BITS)
1162 		goto gpf;
1163 
1164 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1165 	if (changed & EFER_LME) {
1166 		if (state->cr0 & CR0_PG)
1167 			goto gpf;
1168 	}
1169 
1170 	/* EFER.LMA = EFER.LME & CR0.PG */
1171 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1172 		lma = EFER_LMA;
1173 	else
1174 		lma = 0;
1175 
1176 	if ((newval & EFER_LMA) != lma)
1177 		goto gpf;
1178 
1179 	if (newval & EFER_NXE) {
1180 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_NO_EXECUTE))
1181 			goto gpf;
1182 	}
1183 
1184 	/*
1185 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1186 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1187 	 */
1188 	if (newval & EFER_LMSLE) {
1189 		vme = vm_exitinfo(vcpu->vcpu);
1190 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1191 		*retu = true;
1192 		return (0);
1193 	}
1194 
1195 	if (newval & EFER_FFXSR) {
1196 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_FFXSR))
1197 			goto gpf;
1198 	}
1199 
1200 	if (newval & EFER_TCE) {
1201 		if (!vm_cpuid_capability(vcpu->vcpu, VCC_TCE))
1202 			goto gpf;
1203 	}
1204 
1205 	error = svm_setreg(vcpu, VM_REG_GUEST_EFER, newval);
1206 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1207 	return (0);
1208 gpf:
1209 	vm_inject_gp(vcpu->vcpu);
1210 	return (0);
1211 }
1212 
1213 static int
1214 emulate_wrmsr(struct svm_softc *sc, struct svm_vcpu *vcpu, u_int num,
1215     uint64_t val, bool *retu)
1216 {
1217 	int error;
1218 
1219 	if (lapic_msr(num))
1220 		error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
1221 	else if (num == MSR_EFER)
1222 		error = svm_write_efer(sc, vcpu, val, retu);
1223 	else
1224 		error = svm_wrmsr(vcpu, num, val, retu);
1225 
1226 	return (error);
1227 }
1228 
1229 static int
1230 emulate_rdmsr(struct svm_vcpu *vcpu, u_int num, bool *retu)
1231 {
1232 	struct vmcb_state *state;
1233 	struct svm_regctx *ctx;
1234 	uint64_t result;
1235 	int error;
1236 
1237 	if (lapic_msr(num))
1238 		error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
1239 	else
1240 		error = svm_rdmsr(vcpu, num, &result, retu);
1241 
1242 	if (error == 0) {
1243 		state = svm_get_vmcb_state(vcpu);
1244 		ctx = svm_get_guest_regctx(vcpu);
1245 		state->rax = result & 0xffffffff;
1246 		ctx->sctx_rdx = result >> 32;
1247 	}
1248 
1249 	return (error);
1250 }
1251 
1252 #ifdef KTR
1253 static const char *
1254 exit_reason_to_str(uint64_t reason)
1255 {
1256 	int i;
1257 	static char reasonbuf[32];
1258 	static const struct {
1259 		int reason;
1260 		const char *str;
1261 	} reasons[] = {
1262 		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1263 		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1264 		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1265 		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1266 		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1267 		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1268 		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1269 		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1270 		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1271 		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1272 		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1273 		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1274 		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1275 		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1276 		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1277 		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1278 		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1279 		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1280 		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1281 		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1282 		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1283 		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1284 		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1285 		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1286 		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1287 	};
1288 
1289 	for (i = 0; i < nitems(reasons); i++) {
1290 		if (reasons[i].reason == reason)
1291 			return (reasons[i].str);
1292 	}
1293 	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1294 	return (reasonbuf);
1295 }
1296 #endif	/* KTR */
1297 
1298 /*
1299  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1300  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1301  * and exceptions caused by INT3, INTO and BOUND instructions.
1302  *
1303  * Return 1 if the nRIP is valid and 0 otherwise.
1304  */
1305 static int
1306 nrip_valid(uint64_t exitcode)
1307 {
1308 	switch (exitcode) {
1309 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1310 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1311 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1312 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1313 	case 0x43:		/* INT3 */
1314 	case 0x44:		/* INTO */
1315 	case 0x45:		/* BOUND */
1316 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1317 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1318 		return (1);
1319 	default:
1320 		return (0);
1321 	}
1322 }
1323 
1324 static int
1325 svm_vmexit(struct svm_softc *svm_sc, struct svm_vcpu *vcpu,
1326     struct vm_exit *vmexit)
1327 {
1328 	struct vmcb *vmcb;
1329 	struct vmcb_state *state;
1330 	struct vmcb_ctrl *ctrl;
1331 	struct svm_regctx *ctx;
1332 	uint64_t code, info1, info2, val;
1333 	uint32_t eax, ecx, edx;
1334 	int error __diagused, errcode_valid, handled, idtvec, reflect;
1335 	bool retu;
1336 
1337 	ctx = svm_get_guest_regctx(vcpu);
1338 	vmcb = svm_get_vmcb(vcpu);
1339 	state = &vmcb->state;
1340 	ctrl = &vmcb->ctrl;
1341 
1342 	handled = 0;
1343 	code = ctrl->exitcode;
1344 	info1 = ctrl->exitinfo1;
1345 	info2 = ctrl->exitinfo2;
1346 
1347 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1348 	vmexit->rip = state->rip;
1349 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1350 
1351 	vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
1352 
1353 	/*
1354 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1355 	 * in an inconsistent state and can trigger assertions that would
1356 	 * never happen otherwise.
1357 	 */
1358 	if (code == VMCB_EXIT_INVALID) {
1359 		vm_exit_svm(vmexit, code, info1, info2);
1360 		return (0);
1361 	}
1362 
1363 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1364 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1365 
1366 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1367 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1368 	    vmexit->inst_length, code, info1, info2));
1369 
1370 	svm_update_virqinfo(vcpu);
1371 	svm_save_intinfo(svm_sc, vcpu);
1372 
1373 	switch (code) {
1374 	case VMCB_EXIT_IRET:
1375 		/*
1376 		 * Restart execution at "iret" but with the intercept cleared.
1377 		 */
1378 		vmexit->inst_length = 0;
1379 		clear_nmi_blocking(vcpu);
1380 		handled = 1;
1381 		break;
1382 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1383 		vmm_stat_incr(vcpu->vcpu, VMEXIT_VINTR, 1);
1384 		handled = 1;
1385 		break;
1386 	case VMCB_EXIT_INTR:	/* external interrupt */
1387 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
1388 		handled = 1;
1389 		break;
1390 	case VMCB_EXIT_NMI:	/* external NMI */
1391 		handled = 1;
1392 		break;
1393 	case 0x40 ... 0x5F:
1394 		vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
1395 		reflect = 1;
1396 		idtvec = code - 0x40;
1397 		switch (idtvec) {
1398 		case IDT_MC:
1399 			/*
1400 			 * Call the machine check handler by hand. Also don't
1401 			 * reflect the machine check back into the guest.
1402 			 */
1403 			reflect = 0;
1404 			SVM_CTR0(vcpu, "Vectoring to MCE handler");
1405 			__asm __volatile("int $18");
1406 			break;
1407 		case IDT_PF:
1408 			error = svm_setreg(vcpu, VM_REG_GUEST_CR2, info2);
1409 			KASSERT(error == 0, ("%s: error %d updating cr2",
1410 			    __func__, error));
1411 			/* fallthru */
1412 		case IDT_NP:
1413 		case IDT_SS:
1414 		case IDT_GP:
1415 		case IDT_AC:
1416 		case IDT_TS:
1417 			errcode_valid = 1;
1418 			break;
1419 
1420 		case IDT_DF:
1421 			errcode_valid = 1;
1422 			info1 = 0;
1423 			break;
1424 
1425 		case IDT_BP:
1426 		case IDT_OF:
1427 		case IDT_BR:
1428 			/*
1429 			 * The 'nrip' field is populated for INT3, INTO and
1430 			 * BOUND exceptions and this also implies that
1431 			 * 'inst_length' is non-zero.
1432 			 *
1433 			 * Reset 'inst_length' to zero so the guest %rip at
1434 			 * event injection is identical to what it was when
1435 			 * the exception originally happened.
1436 			 */
1437 			SVM_CTR2(vcpu, "Reset inst_length from %d "
1438 			    "to zero before injecting exception %d",
1439 			    vmexit->inst_length, idtvec);
1440 			vmexit->inst_length = 0;
1441 			/* fallthru */
1442 		default:
1443 			errcode_valid = 0;
1444 			info1 = 0;
1445 			break;
1446 		}
1447 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1448 		    "when reflecting exception %d into guest",
1449 		    vmexit->inst_length, idtvec));
1450 
1451 		if (reflect) {
1452 			/* Reflect the exception back into the guest */
1453 			SVM_CTR2(vcpu, "Reflecting exception "
1454 			    "%d/%#x into the guest", idtvec, (int)info1);
1455 			error = vm_inject_exception(vcpu->vcpu, idtvec,
1456 			    errcode_valid, info1, 0);
1457 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1458 			    __func__, error));
1459 		}
1460 		handled = 1;
1461 		break;
1462 	case VMCB_EXIT_MSR:	/* MSR access. */
1463 		eax = state->rax;
1464 		ecx = ctx->sctx_rcx;
1465 		edx = ctx->sctx_rdx;
1466 		retu = false;
1467 
1468 		if (info1) {
1469 			vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
1470 			val = (uint64_t)edx << 32 | eax;
1471 			SVM_CTR2(vcpu, "wrmsr %#x val %#lx", ecx, val);
1472 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1473 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1474 				vmexit->u.msr.code = ecx;
1475 				vmexit->u.msr.wval = val;
1476 			} else if (!retu) {
1477 				handled = 1;
1478 			} else {
1479 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1480 				    ("emulate_wrmsr retu with bogus exitcode"));
1481 			}
1482 		} else {
1483 			SVM_CTR1(vcpu, "rdmsr %#x", ecx);
1484 			vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
1485 			if (emulate_rdmsr(vcpu, ecx, &retu)) {
1486 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1487 				vmexit->u.msr.code = ecx;
1488 			} else if (!retu) {
1489 				handled = 1;
1490 			} else {
1491 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1492 				    ("emulate_rdmsr retu with bogus exitcode"));
1493 			}
1494 		}
1495 		break;
1496 	case VMCB_EXIT_IO:
1497 		handled = svm_handle_io(vcpu, vmexit);
1498 		vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
1499 		break;
1500 	case VMCB_EXIT_CPUID:
1501 		vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
1502 		handled = x86_emulate_cpuid(vcpu->vcpu,
1503 		    &state->rax, &ctx->sctx_rbx, &ctx->sctx_rcx,
1504 		    &ctx->sctx_rdx);
1505 		break;
1506 	case VMCB_EXIT_HLT:
1507 		vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
1508 		vmexit->exitcode = VM_EXITCODE_HLT;
1509 		vmexit->u.hlt.rflags = state->rflags;
1510 		break;
1511 	case VMCB_EXIT_PAUSE:
1512 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1513 		vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
1514 		break;
1515 	case VMCB_EXIT_NPF:
1516 		/* EXITINFO2 contains the faulting guest physical address */
1517 		if (info1 & VMCB_NPF_INFO1_RSV) {
1518 			SVM_CTR2(vcpu, "nested page fault with "
1519 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1520 			    info1, info2);
1521 		} else if (vm_mem_allocated(vcpu->vcpu, info2)) {
1522 			vmexit->exitcode = VM_EXITCODE_PAGING;
1523 			vmexit->u.paging.gpa = info2;
1524 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1525 			vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
1526 			SVM_CTR3(vcpu, "nested page fault "
1527 			    "on gpa %#lx/%#lx at rip %#lx",
1528 			    info2, info1, state->rip);
1529 		} else if (svm_npf_emul_fault(info1)) {
1530 			svm_handle_inst_emul(vmcb, info2, vmexit);
1531 			vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
1532 			SVM_CTR3(vcpu, "inst_emul fault "
1533 			    "for gpa %#lx/%#lx at rip %#lx",
1534 			    info2, info1, state->rip);
1535 		}
1536 		break;
1537 	case VMCB_EXIT_MONITOR:
1538 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1539 		break;
1540 	case VMCB_EXIT_MWAIT:
1541 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1542 		break;
1543 	case VMCB_EXIT_SHUTDOWN:
1544 	case VMCB_EXIT_VMRUN:
1545 	case VMCB_EXIT_VMMCALL:
1546 	case VMCB_EXIT_VMLOAD:
1547 	case VMCB_EXIT_VMSAVE:
1548 	case VMCB_EXIT_STGI:
1549 	case VMCB_EXIT_CLGI:
1550 	case VMCB_EXIT_SKINIT:
1551 	case VMCB_EXIT_ICEBP:
1552 	case VMCB_EXIT_INVLPGA:
1553 		vm_inject_ud(vcpu->vcpu);
1554 		handled = 1;
1555 		break;
1556 	case VMCB_EXIT_INVD:
1557 	case VMCB_EXIT_WBINVD:
1558 		/* ignore exit */
1559 		handled = 1;
1560 		break;
1561 	default:
1562 		vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
1563 		break;
1564 	}
1565 
1566 	SVM_CTR4(vcpu, "%s %s vmexit at %#lx/%d",
1567 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1568 	    vmexit->rip, vmexit->inst_length);
1569 
1570 	if (handled) {
1571 		vmexit->rip += vmexit->inst_length;
1572 		vmexit->inst_length = 0;
1573 		state->rip = vmexit->rip;
1574 	} else {
1575 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1576 			/*
1577 			 * If this VM exit was not claimed by anybody then
1578 			 * treat it as a generic SVM exit.
1579 			 */
1580 			vm_exit_svm(vmexit, code, info1, info2);
1581 		} else {
1582 			/*
1583 			 * The exitcode and collateral have been populated.
1584 			 * The VM exit will be processed further in userland.
1585 			 */
1586 		}
1587 	}
1588 	return (handled);
1589 }
1590 
1591 static void
1592 svm_inj_intinfo(struct svm_softc *svm_sc, struct svm_vcpu *vcpu)
1593 {
1594 	uint64_t intinfo;
1595 
1596 	if (!vm_entry_intinfo(vcpu->vcpu, &intinfo))
1597 		return;
1598 
1599 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1600 	    "valid: %#lx", __func__, intinfo));
1601 
1602 	svm_eventinject(vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1603 		VMCB_EXITINTINFO_VECTOR(intinfo),
1604 		VMCB_EXITINTINFO_EC(intinfo),
1605 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1606 	vmm_stat_incr(vcpu->vcpu, VCPU_INTINFO_INJECTED, 1);
1607 	SVM_CTR1(vcpu, "Injected entry intinfo: %#lx", intinfo);
1608 }
1609 
1610 /*
1611  * Inject event to virtual cpu.
1612  */
1613 static void
1614 svm_inj_interrupts(struct svm_softc *sc, struct svm_vcpu *vcpu,
1615     struct vlapic *vlapic)
1616 {
1617 	struct vmcb_ctrl *ctrl;
1618 	struct vmcb_state *state;
1619 	uint8_t v_tpr;
1620 	int vector, need_intr_window;
1621 	int extint_pending;
1622 
1623 	state = svm_get_vmcb_state(vcpu);
1624 	ctrl  = svm_get_vmcb_ctrl(vcpu);
1625 
1626 	need_intr_window = 0;
1627 
1628 	if (vcpu->nextrip != state->rip) {
1629 		ctrl->intr_shadow = 0;
1630 		SVM_CTR2(vcpu, "Guest interrupt blocking "
1631 		    "cleared due to rip change: %#lx/%#lx",
1632 		    vcpu->nextrip, state->rip);
1633 	}
1634 
1635 	/*
1636 	 * Inject pending events or exceptions for this vcpu.
1637 	 *
1638 	 * An event might be pending because the previous #VMEXIT happened
1639 	 * during event delivery (i.e. ctrl->exitintinfo).
1640 	 *
1641 	 * An event might also be pending because an exception was injected
1642 	 * by the hypervisor (e.g. #PF during instruction emulation).
1643 	 */
1644 	svm_inj_intinfo(sc, vcpu);
1645 
1646 	/* NMI event has priority over interrupts. */
1647 	if (vm_nmi_pending(vcpu->vcpu)) {
1648 		if (nmi_blocked(vcpu)) {
1649 			/*
1650 			 * Can't inject another NMI if the guest has not
1651 			 * yet executed an "iret" after the last NMI.
1652 			 */
1653 			SVM_CTR0(vcpu, "Cannot inject NMI due "
1654 			    "to NMI-blocking");
1655 		} else if (ctrl->intr_shadow) {
1656 			/*
1657 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1658 			 */
1659 			SVM_CTR0(vcpu, "Cannot inject NMI due to "
1660 			    "interrupt shadow");
1661 			need_intr_window = 1;
1662 			goto done;
1663 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1664 			/*
1665 			 * If there is already an exception/interrupt pending
1666 			 * then defer the NMI until after that.
1667 			 */
1668 			SVM_CTR1(vcpu, "Cannot inject NMI due to "
1669 			    "eventinj %#lx", ctrl->eventinj);
1670 
1671 			/*
1672 			 * Use self-IPI to trigger a VM-exit as soon as
1673 			 * possible after the event injection is completed.
1674 			 *
1675 			 * This works only if the external interrupt exiting
1676 			 * is at a lower priority than the event injection.
1677 			 *
1678 			 * Although not explicitly specified in APMv2 the
1679 			 * relative priorities were verified empirically.
1680 			 */
1681 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1682 		} else {
1683 			vm_nmi_clear(vcpu->vcpu);
1684 
1685 			/* Inject NMI, vector number is not used */
1686 			svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_NMI,
1687 			    IDT_NMI, 0, false);
1688 
1689 			/* virtual NMI blocking is now in effect */
1690 			enable_nmi_blocking(vcpu);
1691 
1692 			SVM_CTR0(vcpu, "Injecting vNMI");
1693 		}
1694 	}
1695 
1696 	extint_pending = vm_extint_pending(vcpu->vcpu);
1697 	if (!extint_pending) {
1698 		if (!vlapic_pending_intr(vlapic, &vector))
1699 			goto done;
1700 		KASSERT(vector >= 16 && vector <= 255,
1701 		    ("invalid vector %d from local APIC", vector));
1702 	} else {
1703 		/* Ask the legacy pic for a vector to inject */
1704 		vatpic_pending_intr(sc->vm, &vector);
1705 		KASSERT(vector >= 0 && vector <= 255,
1706 		    ("invalid vector %d from INTR", vector));
1707 	}
1708 
1709 	/*
1710 	 * If the guest has disabled interrupts or is in an interrupt shadow
1711 	 * then we cannot inject the pending interrupt.
1712 	 */
1713 	if ((state->rflags & PSL_I) == 0) {
1714 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1715 		    "rflags %#lx", vector, state->rflags);
1716 		need_intr_window = 1;
1717 		goto done;
1718 	}
1719 
1720 	if (ctrl->intr_shadow) {
1721 		SVM_CTR1(vcpu, "Cannot inject vector %d due to "
1722 		    "interrupt shadow", vector);
1723 		need_intr_window = 1;
1724 		goto done;
1725 	}
1726 
1727 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1728 		SVM_CTR2(vcpu, "Cannot inject vector %d due to "
1729 		    "eventinj %#lx", vector, ctrl->eventinj);
1730 		need_intr_window = 1;
1731 		goto done;
1732 	}
1733 
1734 	svm_eventinject(vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1735 
1736 	if (!extint_pending) {
1737 		vlapic_intr_accepted(vlapic, vector);
1738 	} else {
1739 		vm_extint_clear(vcpu->vcpu);
1740 		vatpic_intr_accepted(sc->vm, vector);
1741 	}
1742 
1743 	/*
1744 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1745 	 * interrupt. This is done because the PIC might have another vector
1746 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1747 	 * that was preempted by the ExtInt then it allows us to inject the
1748 	 * APIC vector as soon as possible.
1749 	 */
1750 	need_intr_window = 1;
1751 done:
1752 	/*
1753 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1754 	 * the processor reflects this write to V_TPR without hypervisor
1755 	 * intervention.
1756 	 *
1757 	 * The guest can also modify the TPR by writing to it via the memory
1758 	 * mapped APIC page. In this case, the write will be emulated by the
1759 	 * hypervisor. For this reason V_TPR must be updated before every
1760 	 * VMRUN.
1761 	 */
1762 	v_tpr = vlapic_get_cr8(vlapic);
1763 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1764 	if (ctrl->v_tpr != v_tpr) {
1765 		SVM_CTR2(vcpu, "VMCB V_TPR changed from %#x to %#x",
1766 		    ctrl->v_tpr, v_tpr);
1767 		ctrl->v_tpr = v_tpr;
1768 		svm_set_dirty(vcpu, VMCB_CACHE_TPR);
1769 	}
1770 
1771 	if (need_intr_window) {
1772 		/*
1773 		 * We use V_IRQ in conjunction with the VINTR intercept to
1774 		 * trap into the hypervisor as soon as a virtual interrupt
1775 		 * can be delivered.
1776 		 *
1777 		 * Since injected events are not subject to intercept checks
1778 		 * we need to ensure that the V_IRQ is not actually going to
1779 		 * be delivered on VM entry. The KASSERT below enforces this.
1780 		 */
1781 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1782 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1783 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1784 		    "intr_shadow (%u), rflags (%#lx)",
1785 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1786 		enable_intr_window_exiting(vcpu);
1787 	} else {
1788 		disable_intr_window_exiting(vcpu);
1789 	}
1790 }
1791 
1792 static __inline void
1793 restore_host_tss(void)
1794 {
1795 	struct system_segment_descriptor *tss_sd;
1796 
1797 	/*
1798 	 * The TSS descriptor was in use prior to launching the guest so it
1799 	 * has been marked busy.
1800 	 *
1801 	 * 'ltr' requires the descriptor to be marked available so change the
1802 	 * type to "64-bit available TSS".
1803 	 */
1804 	tss_sd = PCPU_GET(tss);
1805 	tss_sd->sd_type = SDT_SYSTSS;
1806 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1807 }
1808 
1809 static void
1810 svm_pmap_activate(struct svm_vcpu *vcpu, pmap_t pmap)
1811 {
1812 	struct vmcb_ctrl *ctrl;
1813 	long eptgen;
1814 	int cpu;
1815 	bool alloc_asid;
1816 
1817 	cpu = curcpu;
1818 	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1819 	smr_enter(pmap->pm_eptsmr);
1820 
1821 	ctrl = svm_get_vmcb_ctrl(vcpu);
1822 
1823 	/*
1824 	 * The TLB entries associated with the vcpu's ASID are not valid
1825 	 * if either of the following conditions is true:
1826 	 *
1827 	 * 1. The vcpu's ASID generation is different than the host cpu's
1828 	 *    ASID generation. This happens when the vcpu migrates to a new
1829 	 *    host cpu. It can also happen when the number of vcpus executing
1830 	 *    on a host cpu is greater than the number of ASIDs available.
1831 	 *
1832 	 * 2. The pmap generation number is different than the value cached in
1833 	 *    the 'vcpustate'. This happens when the host invalidates pages
1834 	 *    belonging to the guest.
1835 	 *
1836 	 *	asidgen		eptgen	      Action
1837 	 *	mismatch	mismatch
1838 	 *	   0		   0		(a)
1839 	 *	   0		   1		(b1) or (b2)
1840 	 *	   1		   0		(c)
1841 	 *	   1		   1		(d)
1842 	 *
1843 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1844 	 *     no further action is needed.
1845 	 *
1846 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1847 	 *      retained and the TLB entries associated with this ASID
1848 	 *      are flushed by VMRUN.
1849 	 *
1850 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1851 	 *      allocated.
1852 	 *
1853 	 * (c) A new ASID is allocated.
1854 	 *
1855 	 * (d) A new ASID is allocated.
1856 	 */
1857 
1858 	alloc_asid = false;
1859 	eptgen = atomic_load_long(&pmap->pm_eptgen);
1860 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1861 
1862 	if (vcpu->asid.gen != asid[cpu].gen) {
1863 		alloc_asid = true;	/* (c) and (d) */
1864 	} else if (vcpu->eptgen != eptgen) {
1865 		if (flush_by_asid())
1866 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1867 		else
1868 			alloc_asid = true;			/* (b2) */
1869 	} else {
1870 		/*
1871 		 * This is the common case (a).
1872 		 */
1873 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1874 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1875 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1876 	}
1877 
1878 	if (alloc_asid) {
1879 		if (++asid[cpu].num >= nasid) {
1880 			asid[cpu].num = 1;
1881 			if (++asid[cpu].gen == 0)
1882 				asid[cpu].gen = 1;
1883 			/*
1884 			 * If this cpu does not support "flush-by-asid"
1885 			 * then flush the entire TLB on a generation
1886 			 * bump. Subsequent ASID allocation in this
1887 			 * generation can be done without a TLB flush.
1888 			 */
1889 			if (!flush_by_asid())
1890 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1891 		}
1892 		vcpu->asid.gen = asid[cpu].gen;
1893 		vcpu->asid.num = asid[cpu].num;
1894 
1895 		ctrl->asid = vcpu->asid.num;
1896 		svm_set_dirty(vcpu, VMCB_CACHE_ASID);
1897 		/*
1898 		 * If this cpu supports "flush-by-asid" then the TLB
1899 		 * was not flushed after the generation bump. The TLB
1900 		 * is flushed selectively after every new ASID allocation.
1901 		 */
1902 		if (flush_by_asid())
1903 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1904 	}
1905 	vcpu->eptgen = eptgen;
1906 
1907 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1908 	KASSERT(ctrl->asid == vcpu->asid.num,
1909 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpu->asid.num));
1910 }
1911 
1912 static void
1913 svm_pmap_deactivate(pmap_t pmap)
1914 {
1915 	smr_exit(pmap->pm_eptsmr);
1916 	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1917 }
1918 
1919 static __inline void
1920 disable_gintr(void)
1921 {
1922 
1923 	__asm __volatile("clgi");
1924 }
1925 
1926 static __inline void
1927 enable_gintr(void)
1928 {
1929 
1930         __asm __volatile("stgi");
1931 }
1932 
1933 static __inline void
1934 svm_dr_enter_guest(struct svm_regctx *gctx)
1935 {
1936 
1937 	/* Save host control debug registers. */
1938 	gctx->host_dr7 = rdr7();
1939 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
1940 
1941 	/*
1942 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
1943 	 * exceptions in the host based on the guest DRx values.  The
1944 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
1945 	 * VMCB.
1946 	 */
1947 	load_dr7(0);
1948 	wrmsr(MSR_DEBUGCTLMSR, 0);
1949 
1950 	/* Save host debug registers. */
1951 	gctx->host_dr0 = rdr0();
1952 	gctx->host_dr1 = rdr1();
1953 	gctx->host_dr2 = rdr2();
1954 	gctx->host_dr3 = rdr3();
1955 	gctx->host_dr6 = rdr6();
1956 
1957 	/* Restore guest debug registers. */
1958 	load_dr0(gctx->sctx_dr0);
1959 	load_dr1(gctx->sctx_dr1);
1960 	load_dr2(gctx->sctx_dr2);
1961 	load_dr3(gctx->sctx_dr3);
1962 }
1963 
1964 static __inline void
1965 svm_dr_leave_guest(struct svm_regctx *gctx)
1966 {
1967 
1968 	/* Save guest debug registers. */
1969 	gctx->sctx_dr0 = rdr0();
1970 	gctx->sctx_dr1 = rdr1();
1971 	gctx->sctx_dr2 = rdr2();
1972 	gctx->sctx_dr3 = rdr3();
1973 
1974 	/*
1975 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
1976 	 * last.
1977 	 */
1978 	load_dr0(gctx->host_dr0);
1979 	load_dr1(gctx->host_dr1);
1980 	load_dr2(gctx->host_dr2);
1981 	load_dr3(gctx->host_dr3);
1982 	load_dr6(gctx->host_dr6);
1983 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
1984 	load_dr7(gctx->host_dr7);
1985 }
1986 
1987 /*
1988  * Start vcpu with specified RIP.
1989  */
1990 static int
1991 svm_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
1992 {
1993 	struct svm_regctx *gctx;
1994 	struct svm_softc *svm_sc;
1995 	struct svm_vcpu *vcpu;
1996 	struct vmcb_state *state;
1997 	struct vmcb_ctrl *ctrl;
1998 	struct vm_exit *vmexit;
1999 	struct vlapic *vlapic;
2000 	uint64_t vmcb_pa;
2001 	int handled;
2002 	uint16_t ldt_sel;
2003 
2004 	vcpu = vcpui;
2005 	svm_sc = vcpu->sc;
2006 	state = svm_get_vmcb_state(vcpu);
2007 	ctrl = svm_get_vmcb_ctrl(vcpu);
2008 	vmexit = vm_exitinfo(vcpu->vcpu);
2009 	vlapic = vm_lapic(vcpu->vcpu);
2010 
2011 	gctx = svm_get_guest_regctx(vcpu);
2012 	vmcb_pa = vcpu->vmcb_pa;
2013 
2014 	if (vcpu->lastcpu != curcpu) {
2015 		/*
2016 		 * Force new ASID allocation by invalidating the generation.
2017 		 */
2018 		vcpu->asid.gen = 0;
2019 
2020 		/*
2021 		 * Invalidate the VMCB state cache by marking all fields dirty.
2022 		 */
2023 		svm_set_dirty(vcpu, 0xffffffff);
2024 
2025 		/*
2026 		 * XXX
2027 		 * Setting 'vcpu->lastcpu' here is bit premature because
2028 		 * we may return from this function without actually executing
2029 		 * the VMRUN  instruction. This could happen if a rendezvous
2030 		 * or an AST is pending on the first time through the loop.
2031 		 *
2032 		 * This works for now but any new side-effects of vcpu
2033 		 * migration should take this case into account.
2034 		 */
2035 		vcpu->lastcpu = curcpu;
2036 		vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
2037 	}
2038 
2039 	svm_msr_guest_enter(vcpu);
2040 
2041 	/* Update Guest RIP */
2042 	state->rip = rip;
2043 
2044 	do {
2045 		/*
2046 		 * Disable global interrupts to guarantee atomicity during
2047 		 * loading of guest state. This includes not only the state
2048 		 * loaded by the "vmrun" instruction but also software state
2049 		 * maintained by the hypervisor: suspended and rendezvous
2050 		 * state, NPT generation number, vlapic interrupts etc.
2051 		 */
2052 		disable_gintr();
2053 
2054 		if (vcpu_suspended(evinfo)) {
2055 			enable_gintr();
2056 			vm_exit_suspended(vcpu->vcpu, state->rip);
2057 			break;
2058 		}
2059 
2060 		if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
2061 			enable_gintr();
2062 			vm_exit_rendezvous(vcpu->vcpu, state->rip);
2063 			break;
2064 		}
2065 
2066 		if (vcpu_reqidle(evinfo)) {
2067 			enable_gintr();
2068 			vm_exit_reqidle(vcpu->vcpu, state->rip);
2069 			break;
2070 		}
2071 
2072 		/* We are asked to give the cpu by scheduler. */
2073 		if (vcpu_should_yield(vcpu->vcpu)) {
2074 			enable_gintr();
2075 			vm_exit_astpending(vcpu->vcpu, state->rip);
2076 			break;
2077 		}
2078 
2079 		if (vcpu_debugged(vcpu->vcpu)) {
2080 			enable_gintr();
2081 			vm_exit_debug(vcpu->vcpu, state->rip);
2082 			break;
2083 		}
2084 
2085 		/*
2086 		 * #VMEXIT resumes the host with the guest LDTR, so
2087 		 * save the current LDT selector so it can be restored
2088 		 * after an exit.  The userspace hypervisor probably
2089 		 * doesn't use a LDT, but save and restore it to be
2090 		 * safe.
2091 		 */
2092 		ldt_sel = sldt();
2093 
2094 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2095 
2096 		/*
2097 		 * Check the pmap generation and the ASID generation to
2098 		 * ensure that the vcpu does not use stale TLB mappings.
2099 		 */
2100 		svm_pmap_activate(vcpu, pmap);
2101 
2102 		ctrl->vmcb_clean = vmcb_clean & ~vcpu->dirty;
2103 		vcpu->dirty = 0;
2104 		SVM_CTR1(vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2105 
2106 		/* Launch Virtual Machine. */
2107 		SVM_CTR1(vcpu, "Resume execution at %#lx", state->rip);
2108 		svm_dr_enter_guest(gctx);
2109 		svm_launch(vmcb_pa, gctx, get_pcpu());
2110 		svm_dr_leave_guest(gctx);
2111 
2112 		svm_pmap_deactivate(pmap);
2113 
2114 		/*
2115 		 * The host GDTR and IDTR is saved by VMRUN and restored
2116 		 * automatically on #VMEXIT. However, the host TSS needs
2117 		 * to be restored explicitly.
2118 		 */
2119 		restore_host_tss();
2120 
2121 		/* Restore host LDTR. */
2122 		lldt(ldt_sel);
2123 
2124 		/* #VMEXIT disables interrupts so re-enable them here. */
2125 		enable_gintr();
2126 
2127 		/* Update 'nextrip' */
2128 		vcpu->nextrip = state->rip;
2129 
2130 		/* Handle #VMEXIT and if required return to user space. */
2131 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2132 	} while (handled);
2133 
2134 	svm_msr_guest_exit(vcpu);
2135 
2136 	return (0);
2137 }
2138 
2139 static void
2140 svm_vcpu_cleanup(void *vcpui)
2141 {
2142 	struct svm_vcpu *vcpu = vcpui;
2143 
2144 	free(vcpu->vmcb, M_SVM);
2145 	free(vcpu, M_SVM);
2146 }
2147 
2148 static void
2149 svm_cleanup(void *vmi)
2150 {
2151 	struct svm_softc *sc = vmi;
2152 
2153 	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2154 	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2155 	free(sc, M_SVM);
2156 }
2157 
2158 static register_t *
2159 swctx_regptr(struct svm_regctx *regctx, int reg)
2160 {
2161 
2162 	switch (reg) {
2163 	case VM_REG_GUEST_RBX:
2164 		return (&regctx->sctx_rbx);
2165 	case VM_REG_GUEST_RCX:
2166 		return (&regctx->sctx_rcx);
2167 	case VM_REG_GUEST_RDX:
2168 		return (&regctx->sctx_rdx);
2169 	case VM_REG_GUEST_RDI:
2170 		return (&regctx->sctx_rdi);
2171 	case VM_REG_GUEST_RSI:
2172 		return (&regctx->sctx_rsi);
2173 	case VM_REG_GUEST_RBP:
2174 		return (&regctx->sctx_rbp);
2175 	case VM_REG_GUEST_R8:
2176 		return (&regctx->sctx_r8);
2177 	case VM_REG_GUEST_R9:
2178 		return (&regctx->sctx_r9);
2179 	case VM_REG_GUEST_R10:
2180 		return (&regctx->sctx_r10);
2181 	case VM_REG_GUEST_R11:
2182 		return (&regctx->sctx_r11);
2183 	case VM_REG_GUEST_R12:
2184 		return (&regctx->sctx_r12);
2185 	case VM_REG_GUEST_R13:
2186 		return (&regctx->sctx_r13);
2187 	case VM_REG_GUEST_R14:
2188 		return (&regctx->sctx_r14);
2189 	case VM_REG_GUEST_R15:
2190 		return (&regctx->sctx_r15);
2191 	case VM_REG_GUEST_DR0:
2192 		return (&regctx->sctx_dr0);
2193 	case VM_REG_GUEST_DR1:
2194 		return (&regctx->sctx_dr1);
2195 	case VM_REG_GUEST_DR2:
2196 		return (&regctx->sctx_dr2);
2197 	case VM_REG_GUEST_DR3:
2198 		return (&regctx->sctx_dr3);
2199 	default:
2200 		return (NULL);
2201 	}
2202 }
2203 
2204 static int
2205 svm_getreg(void *vcpui, int ident, uint64_t *val)
2206 {
2207 	struct svm_vcpu *vcpu;
2208 	register_t *reg;
2209 
2210 	vcpu = vcpui;
2211 
2212 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2213 		return (svm_get_intr_shadow(vcpu, val));
2214 	}
2215 
2216 	if (vmcb_read(vcpu, ident, val) == 0) {
2217 		return (0);
2218 	}
2219 
2220 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2221 
2222 	if (reg != NULL) {
2223 		*val = *reg;
2224 		return (0);
2225 	}
2226 
2227 	SVM_CTR1(vcpu, "svm_getreg: unknown register %#x", ident);
2228 	return (EINVAL);
2229 }
2230 
2231 static int
2232 svm_setreg(void *vcpui, int ident, uint64_t val)
2233 {
2234 	struct svm_vcpu *vcpu;
2235 	register_t *reg;
2236 
2237 	vcpu = vcpui;
2238 
2239 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2240 		return (svm_modify_intr_shadow(vcpu, val));
2241 	}
2242 
2243 	/* Do not permit user write access to VMCB fields by offset. */
2244 	if (!VMCB_ACCESS_OK(ident)) {
2245 		if (vmcb_write(vcpu, ident, val) == 0) {
2246 			return (0);
2247 		}
2248 	}
2249 
2250 	reg = swctx_regptr(svm_get_guest_regctx(vcpu), ident);
2251 
2252 	if (reg != NULL) {
2253 		*reg = val;
2254 		return (0);
2255 	}
2256 
2257 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2258 		/* Ignore. */
2259 		return (0);
2260 	}
2261 
2262 	/*
2263 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2264 	 * vcpu's ASID. This needs to be treated differently depending on
2265 	 * whether 'running' is true/false.
2266 	 */
2267 
2268 	SVM_CTR1(vcpu, "svm_setreg: unknown register %#x", ident);
2269 	return (EINVAL);
2270 }
2271 
2272 static int
2273 svm_getdesc(void *vcpui, int reg, struct seg_desc *desc)
2274 {
2275 	return (vmcb_getdesc(vcpui, reg, desc));
2276 }
2277 
2278 static int
2279 svm_setdesc(void *vcpui, int reg, struct seg_desc *desc)
2280 {
2281 	return (vmcb_setdesc(vcpui, reg, desc));
2282 }
2283 
2284 #ifdef BHYVE_SNAPSHOT
2285 static int
2286 svm_snapshot_reg(void *vcpui, int ident, struct vm_snapshot_meta *meta)
2287 {
2288 	int ret;
2289 	uint64_t val;
2290 
2291 	if (meta->op == VM_SNAPSHOT_SAVE) {
2292 		ret = svm_getreg(vcpui, ident, &val);
2293 		if (ret != 0)
2294 			goto done;
2295 
2296 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2297 	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2298 		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2299 
2300 		ret = svm_setreg(vcpui, ident, val);
2301 		if (ret != 0)
2302 			goto done;
2303 	} else {
2304 		ret = EINVAL;
2305 		goto done;
2306 	}
2307 
2308 done:
2309 	return (ret);
2310 }
2311 #endif
2312 
2313 static int
2314 svm_setcap(void *vcpui, int type, int val)
2315 {
2316 	struct svm_vcpu *vcpu;
2317 	struct vlapic *vlapic;
2318 	int error;
2319 
2320 	vcpu = vcpui;
2321 	error = 0;
2322 
2323 	switch (type) {
2324 	case VM_CAP_HALT_EXIT:
2325 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2326 		    VMCB_INTCPT_HLT, val);
2327 		break;
2328 	case VM_CAP_PAUSE_EXIT:
2329 		svm_set_intercept(vcpu, VMCB_CTRL1_INTCPT,
2330 		    VMCB_INTCPT_PAUSE, val);
2331 		break;
2332 	case VM_CAP_UNRESTRICTED_GUEST:
2333 		/* Unrestricted guest execution cannot be disabled in SVM */
2334 		if (val == 0)
2335 			error = EINVAL;
2336 		break;
2337 	case VM_CAP_IPI_EXIT:
2338 		vlapic = vm_lapic(vcpu->vcpu);
2339 		vlapic->ipi_exit = val;
2340 		break;
2341 	default:
2342 		error = ENOENT;
2343 		break;
2344 	}
2345 	return (error);
2346 }
2347 
2348 static int
2349 svm_getcap(void *vcpui, int type, int *retval)
2350 {
2351 	struct svm_vcpu *vcpu;
2352 	struct vlapic *vlapic;
2353 	int error;
2354 
2355 	vcpu = vcpui;
2356 	error = 0;
2357 
2358 	switch (type) {
2359 	case VM_CAP_HALT_EXIT:
2360 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2361 		    VMCB_INTCPT_HLT);
2362 		break;
2363 	case VM_CAP_PAUSE_EXIT:
2364 		*retval = svm_get_intercept(vcpu, VMCB_CTRL1_INTCPT,
2365 		    VMCB_INTCPT_PAUSE);
2366 		break;
2367 	case VM_CAP_UNRESTRICTED_GUEST:
2368 		*retval = 1;	/* unrestricted guest is always enabled */
2369 		break;
2370 	case VM_CAP_IPI_EXIT:
2371 		vlapic = vm_lapic(vcpu->vcpu);
2372 		*retval = vlapic->ipi_exit;
2373 		break;
2374 	default:
2375 		error = ENOENT;
2376 		break;
2377 	}
2378 	return (error);
2379 }
2380 
2381 static struct vmspace *
2382 svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2383 {
2384 	return (svm_npt_alloc(min, max));
2385 }
2386 
2387 static void
2388 svm_vmspace_free(struct vmspace *vmspace)
2389 {
2390 	svm_npt_free(vmspace);
2391 }
2392 
2393 static struct vlapic *
2394 svm_vlapic_init(void *vcpui)
2395 {
2396 	struct svm_vcpu *vcpu;
2397 	struct vlapic *vlapic;
2398 
2399 	vcpu = vcpui;
2400 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2401 	vlapic->vm = vcpu->sc->vm;
2402 	vlapic->vcpu = vcpu->vcpu;
2403 	vlapic->vcpuid = vcpu->vcpuid;
2404 	vlapic->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_SVM_VLAPIC,
2405 	    M_WAITOK | M_ZERO);
2406 
2407 	vlapic_init(vlapic);
2408 
2409 	return (vlapic);
2410 }
2411 
2412 static void
2413 svm_vlapic_cleanup(struct vlapic *vlapic)
2414 {
2415 
2416         vlapic_cleanup(vlapic);
2417 	free(vlapic->apic_page, M_SVM_VLAPIC);
2418         free(vlapic, M_SVM_VLAPIC);
2419 }
2420 
2421 #ifdef BHYVE_SNAPSHOT
2422 static int
2423 svm_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
2424 {
2425 	struct svm_vcpu *vcpu;
2426 	int err, running, hostcpu;
2427 
2428 	vcpu = vcpui;
2429 	err = 0;
2430 
2431 	running = vcpu_is_running(vcpu->vcpu, &hostcpu);
2432 	if (running && hostcpu != curcpu) {
2433 		printf("%s: %s%d is running", __func__, vm_name(vcpu->sc->vm),
2434 		    vcpu->vcpuid);
2435 		return (EINVAL);
2436 	}
2437 
2438 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR0, meta);
2439 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR2, meta);
2440 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR3, meta);
2441 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CR4, meta);
2442 
2443 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR6, meta);
2444 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DR7, meta);
2445 
2446 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RAX, meta);
2447 
2448 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RSP, meta);
2449 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RIP, meta);
2450 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_RFLAGS, meta);
2451 
2452 	/* Guest segments */
2453 	/* ES */
2454 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_ES, meta);
2455 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_ES, meta);
2456 
2457 	/* CS */
2458 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_CS, meta);
2459 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_CS, meta);
2460 
2461 	/* SS */
2462 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_SS, meta);
2463 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_SS, meta);
2464 
2465 	/* DS */
2466 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_DS, meta);
2467 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_DS, meta);
2468 
2469 	/* FS */
2470 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_FS, meta);
2471 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_FS, meta);
2472 
2473 	/* GS */
2474 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_GS, meta);
2475 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GS, meta);
2476 
2477 	/* TR */
2478 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_TR, meta);
2479 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_TR, meta);
2480 
2481 	/* LDTR */
2482 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_LDTR, meta);
2483 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_LDTR, meta);
2484 
2485 	/* EFER */
2486 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_EFER, meta);
2487 
2488 	/* IDTR and GDTR */
2489 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_IDTR, meta);
2490 	err += vmcb_snapshot_desc(vcpu, VM_REG_GUEST_GDTR, meta);
2491 
2492 	/* Specific AMD registers */
2493 	err += svm_snapshot_reg(vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2494 
2495 	err += vmcb_snapshot_any(vcpu,
2496 				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2497 	err += vmcb_snapshot_any(vcpu,
2498 				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2499 	err += vmcb_snapshot_any(vcpu,
2500 				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2501 	err += vmcb_snapshot_any(vcpu,
2502 				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2503 	err += vmcb_snapshot_any(vcpu,
2504 				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2505 
2506 	err += vmcb_snapshot_any(vcpu,
2507 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILTHRESH, 2), meta);
2508 	err += vmcb_snapshot_any(vcpu,
2509 				VMCB_ACCESS(VMCB_OFF_PAUSE_FILCNT, 2), meta);
2510 
2511 	err += vmcb_snapshot_any(vcpu,
2512 				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2513 
2514 	err += vmcb_snapshot_any(vcpu,
2515 				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2516 
2517 	err += vmcb_snapshot_any(vcpu,
2518 				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2519 
2520 	err += vmcb_snapshot_any(vcpu,
2521 				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2522 	err += vmcb_snapshot_any(vcpu,
2523 				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2524 	err += vmcb_snapshot_any(vcpu,
2525 				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2526 	err += vmcb_snapshot_any(vcpu,
2527 				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2528 
2529 	err += vmcb_snapshot_any(vcpu,
2530 				VMCB_ACCESS(VMCB_OFF_NP_ENABLE, 1), meta);
2531 
2532 	err += vmcb_snapshot_any(vcpu,
2533 				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2534 	err += vmcb_snapshot_any(vcpu,
2535 				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2536 	err += vmcb_snapshot_any(vcpu,
2537 				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2538 	err += vmcb_snapshot_any(vcpu,
2539 				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2540 
2541 	err += vmcb_snapshot_any(vcpu,
2542 				VMCB_ACCESS(VMCB_OFF_CPL, 1), meta);
2543 
2544 	err += vmcb_snapshot_any(vcpu,
2545 				VMCB_ACCESS(VMCB_OFF_STAR, 8), meta);
2546 	err += vmcb_snapshot_any(vcpu,
2547 				VMCB_ACCESS(VMCB_OFF_LSTAR, 8), meta);
2548 	err += vmcb_snapshot_any(vcpu,
2549 				VMCB_ACCESS(VMCB_OFF_CSTAR, 8), meta);
2550 
2551 	err += vmcb_snapshot_any(vcpu,
2552 				VMCB_ACCESS(VMCB_OFF_SFMASK, 8), meta);
2553 
2554 	err += vmcb_snapshot_any(vcpu,
2555 				VMCB_ACCESS(VMCB_OFF_KERNELGBASE, 8), meta);
2556 
2557 	err += vmcb_snapshot_any(vcpu,
2558 				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2559 	err += vmcb_snapshot_any(vcpu,
2560 				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2561 	err += vmcb_snapshot_any(vcpu,
2562 				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2563 
2564 	err += vmcb_snapshot_any(vcpu,
2565 				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2566 
2567 	err += vmcb_snapshot_any(vcpu,
2568 				VMCB_ACCESS(VMCB_OFF_DBGCTL, 8), meta);
2569 	err += vmcb_snapshot_any(vcpu,
2570 				VMCB_ACCESS(VMCB_OFF_BR_FROM, 8), meta);
2571 	err += vmcb_snapshot_any(vcpu,
2572 				VMCB_ACCESS(VMCB_OFF_BR_TO, 8), meta);
2573 	err += vmcb_snapshot_any(vcpu,
2574 				VMCB_ACCESS(VMCB_OFF_INT_FROM, 8), meta);
2575 	err += vmcb_snapshot_any(vcpu,
2576 				VMCB_ACCESS(VMCB_OFF_INT_TO, 8), meta);
2577 	if (err != 0)
2578 		goto done;
2579 
2580 	/* Snapshot swctx for virtual cpu */
2581 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, err, done);
2582 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, err, done);
2583 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, err, done);
2584 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, err, done);
2585 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, err, done);
2586 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, err, done);
2587 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, err, done);
2588 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, err, done);
2589 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, err, done);
2590 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, err, done);
2591 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, err, done);
2592 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, err, done);
2593 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, err, done);
2594 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, err, done);
2595 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, err, done);
2596 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, err, done);
2597 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, err, done);
2598 	SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, err, done);
2599 
2600 	/* Restore other svm_vcpu struct fields */
2601 
2602 	/* Restore NEXTRIP field */
2603 	SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, err, done);
2604 
2605 	/* Restore lastcpu field */
2606 	SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, err, done);
2607 	SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, err, done);
2608 
2609 	/* Restore EPTGEN field - EPT is Extended Page Table */
2610 	SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, err, done);
2611 
2612 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, err, done);
2613 	SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, err, done);
2614 
2615 	/* Set all caches dirty */
2616 	if (meta->op == VM_SNAPSHOT_RESTORE)
2617 		svm_set_dirty(vcpu, 0xffffffff);
2618 
2619 done:
2620 	return (err);
2621 }
2622 
2623 static int
2624 svm_restore_tsc(void *vcpui, uint64_t offset)
2625 {
2626 	struct svm_vcpu *vcpu = vcpui;
2627 
2628 	svm_set_tsc_offset(vcpu, offset);
2629 
2630 	return (0);
2631 }
2632 #endif
2633 
2634 const struct vmm_ops vmm_ops_amd = {
2635 	.modinit	= svm_modinit,
2636 	.modcleanup	= svm_modcleanup,
2637 	.modresume	= svm_modresume,
2638 	.init		= svm_init,
2639 	.run		= svm_run,
2640 	.cleanup	= svm_cleanup,
2641 	.vcpu_init	= svm_vcpu_init,
2642 	.vcpu_cleanup	= svm_vcpu_cleanup,
2643 	.getreg		= svm_getreg,
2644 	.setreg		= svm_setreg,
2645 	.getdesc	= svm_getdesc,
2646 	.setdesc	= svm_setdesc,
2647 	.getcap		= svm_getcap,
2648 	.setcap		= svm_setcap,
2649 	.vmspace_alloc	= svm_vmspace_alloc,
2650 	.vmspace_free	= svm_vmspace_free,
2651 	.vlapic_init	= svm_vlapic_init,
2652 	.vlapic_cleanup	= svm_vlapic_cleanup,
2653 #ifdef BHYVE_SNAPSHOT
2654 	.vcpu_snapshot	= svm_vcpu_snapshot,
2655 	.restore_tsc	= svm_restore_tsc,
2656 #endif
2657 };
2658