xref: /freebsd/sys/amd64/vmm/amd/svm.c (revision 0b37c1590418417c894529d371800dfac71ef887)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/cpufunc.h>
45 #include <machine/psl.h>
46 #include <machine/md_var.h>
47 #include <machine/reg.h>
48 #include <machine/specialreg.h>
49 #include <machine/smp.h>
50 #include <machine/vmm.h>
51 #include <machine/vmm_dev.h>
52 #include <machine/vmm_instruction_emul.h>
53 
54 #include "vmm_lapic.h"
55 #include "vmm_stat.h"
56 #include "vmm_ktr.h"
57 #include "vmm_ioport.h"
58 #include "vatpic.h"
59 #include "vlapic.h"
60 #include "vlapic_priv.h"
61 
62 #include "x86.h"
63 #include "vmcb.h"
64 #include "svm.h"
65 #include "svm_softc.h"
66 #include "svm_msr.h"
67 #include "npt.h"
68 
69 SYSCTL_DECL(_hw_vmm);
70 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
71 
72 /*
73  * SVM CPUID function 0x8000_000A, edx bit decoding.
74  */
75 #define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
76 #define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
77 #define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
78 #define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
79 #define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
80 #define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
81 #define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
82 #define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
83 #define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
84 #define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
85 #define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
86 
87 #define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
88 				VMCB_CACHE_IOPM		|	\
89 				VMCB_CACHE_I		|	\
90 				VMCB_CACHE_TPR		|	\
91 				VMCB_CACHE_CR2		|	\
92 				VMCB_CACHE_CR		|	\
93 				VMCB_CACHE_DR		|	\
94 				VMCB_CACHE_DT		|	\
95 				VMCB_CACHE_SEG		|	\
96 				VMCB_CACHE_NP)
97 
98 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
99 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
100     0, NULL);
101 
102 static MALLOC_DEFINE(M_SVM, "svm", "svm");
103 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
104 
105 static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
106 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
107     "SVM features advertised by CPUID.8000000AH:EDX");
108 
109 static int disable_npf_assist;
110 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
111     &disable_npf_assist, 0, NULL);
112 
113 /* Maximum ASIDs supported by the processor */
114 static uint32_t nasid;
115 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
116     "Number of ASIDs supported by this processor");
117 
118 /* Current ASID generation for each host cpu */
119 static struct asid asid[MAXCPU];
120 
121 /*
122  * SVM host state saved area of size 4KB for each core.
123  */
124 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
125 
126 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
127 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
128 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
129 
130 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
131 
132 static __inline int
133 flush_by_asid(void)
134 {
135 
136 	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
137 }
138 
139 static __inline int
140 decode_assist(void)
141 {
142 
143 	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
144 }
145 
146 static void
147 svm_disable(void *arg __unused)
148 {
149 	uint64_t efer;
150 
151 	efer = rdmsr(MSR_EFER);
152 	efer &= ~EFER_SVM;
153 	wrmsr(MSR_EFER, efer);
154 }
155 
156 /*
157  * Disable SVM on all CPUs.
158  */
159 static int
160 svm_cleanup(void)
161 {
162 
163 	smp_rendezvous(NULL, svm_disable, NULL, NULL);
164 	return (0);
165 }
166 
167 /*
168  * Verify that all the features required by bhyve are available.
169  */
170 static int
171 check_svm_features(void)
172 {
173 	u_int regs[4];
174 
175 	/* CPUID Fn8000_000A is for SVM */
176 	do_cpuid(0x8000000A, regs);
177 	svm_feature &= regs[3];
178 
179 	/*
180 	 * The number of ASIDs can be configured to be less than what is
181 	 * supported by the hardware but not more.
182 	 */
183 	if (nasid == 0 || nasid > regs[1])
184 		nasid = regs[1];
185 	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
186 
187 	/* bhyve requires the Nested Paging feature */
188 	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
189 		printf("SVM: Nested Paging feature not available.\n");
190 		return (ENXIO);
191 	}
192 
193 	/* bhyve requires the NRIP Save feature */
194 	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
195 		printf("SVM: NRIP Save feature not available.\n");
196 		return (ENXIO);
197 	}
198 
199 	return (0);
200 }
201 
202 static void
203 svm_enable(void *arg __unused)
204 {
205 	uint64_t efer;
206 
207 	efer = rdmsr(MSR_EFER);
208 	efer |= EFER_SVM;
209 	wrmsr(MSR_EFER, efer);
210 
211 	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
212 }
213 
214 /*
215  * Return 1 if SVM is enabled on this processor and 0 otherwise.
216  */
217 static int
218 svm_available(void)
219 {
220 	uint64_t msr;
221 
222 	/* Section 15.4 Enabling SVM from APM2. */
223 	if ((amd_feature2 & AMDID2_SVM) == 0) {
224 		printf("SVM: not available.\n");
225 		return (0);
226 	}
227 
228 	msr = rdmsr(MSR_VM_CR);
229 	if ((msr & VM_CR_SVMDIS) != 0) {
230 		printf("SVM: disabled by BIOS.\n");
231 		return (0);
232 	}
233 
234 	return (1);
235 }
236 
237 static int
238 svm_init(int ipinum)
239 {
240 	int error, cpu;
241 
242 	if (!svm_available())
243 		return (ENXIO);
244 
245 	error = check_svm_features();
246 	if (error)
247 		return (error);
248 
249 	vmcb_clean &= VMCB_CACHE_DEFAULT;
250 
251 	for (cpu = 0; cpu < MAXCPU; cpu++) {
252 		/*
253 		 * Initialize the host ASIDs to their "highest" valid values.
254 		 *
255 		 * The next ASID allocation will rollover both 'gen' and 'num'
256 		 * and start off the sequence at {1,1}.
257 		 */
258 		asid[cpu].gen = ~0UL;
259 		asid[cpu].num = nasid - 1;
260 	}
261 
262 	svm_msr_init();
263 	svm_npt_init(ipinum);
264 
265 	/* Enable SVM on all CPUs */
266 	smp_rendezvous(NULL, svm_enable, NULL, NULL);
267 
268 	return (0);
269 }
270 
271 static void
272 svm_restore(void)
273 {
274 
275 	svm_enable(NULL);
276 }
277 
278 /* Pentium compatible MSRs */
279 #define MSR_PENTIUM_START 	0
280 #define MSR_PENTIUM_END 	0x1FFF
281 /* AMD 6th generation and Intel compatible MSRs */
282 #define MSR_AMD6TH_START 	0xC0000000UL
283 #define MSR_AMD6TH_END 		0xC0001FFFUL
284 /* AMD 7th and 8th generation compatible MSRs */
285 #define MSR_AMD7TH_START 	0xC0010000UL
286 #define MSR_AMD7TH_END 		0xC0011FFFUL
287 
288 /*
289  * Get the index and bit position for a MSR in permission bitmap.
290  * Two bits are used for each MSR: lower bit for read and higher bit for write.
291  */
292 static int
293 svm_msr_index(uint64_t msr, int *index, int *bit)
294 {
295 	uint32_t base, off;
296 
297 	*index = -1;
298 	*bit = (msr % 4) * 2;
299 	base = 0;
300 
301 	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
302 		*index = msr / 4;
303 		return (0);
304 	}
305 
306 	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
307 	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
308 		off = (msr - MSR_AMD6TH_START);
309 		*index = (off + base) / 4;
310 		return (0);
311 	}
312 
313 	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
314 	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
315 		off = (msr - MSR_AMD7TH_START);
316 		*index = (off + base) / 4;
317 		return (0);
318 	}
319 
320 	return (EINVAL);
321 }
322 
323 /*
324  * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
325  */
326 static void
327 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
328 {
329 	int index, bit, error;
330 
331 	error = svm_msr_index(msr, &index, &bit);
332 	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
333 	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
334 	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
335 	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
336 	    "msr %#lx", __func__, bit, msr));
337 
338 	if (read)
339 		perm_bitmap[index] &= ~(1UL << bit);
340 
341 	if (write)
342 		perm_bitmap[index] &= ~(2UL << bit);
343 }
344 
345 static void
346 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
347 {
348 
349 	svm_msr_perm(perm_bitmap, msr, true, true);
350 }
351 
352 static void
353 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
354 {
355 
356 	svm_msr_perm(perm_bitmap, msr, true, false);
357 }
358 
359 static __inline int
360 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
361 {
362 	struct vmcb_ctrl *ctrl;
363 
364 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
365 
366 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
367 	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
368 }
369 
370 static __inline void
371 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
372     int enabled)
373 {
374 	struct vmcb_ctrl *ctrl;
375 	uint32_t oldval;
376 
377 	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
378 
379 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
380 	oldval = ctrl->intercept[idx];
381 
382 	if (enabled)
383 		ctrl->intercept[idx] |= bitmask;
384 	else
385 		ctrl->intercept[idx] &= ~bitmask;
386 
387 	if (ctrl->intercept[idx] != oldval) {
388 		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
389 		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
390 		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
391 	}
392 }
393 
394 static __inline void
395 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
396 {
397 
398 	svm_set_intercept(sc, vcpu, off, bitmask, 0);
399 }
400 
401 static __inline void
402 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
403 {
404 
405 	svm_set_intercept(sc, vcpu, off, bitmask, 1);
406 }
407 
408 static void
409 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
410     uint64_t msrpm_base_pa, uint64_t np_pml4)
411 {
412 	struct vmcb_ctrl *ctrl;
413 	struct vmcb_state *state;
414 	uint32_t mask;
415 	int n;
416 
417 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
418 	state = svm_get_vmcb_state(sc, vcpu);
419 
420 	ctrl->iopm_base_pa = iopm_base_pa;
421 	ctrl->msrpm_base_pa = msrpm_base_pa;
422 
423 	/* Enable nested paging */
424 	ctrl->np_enable = 1;
425 	ctrl->n_cr3 = np_pml4;
426 
427 	/*
428 	 * Intercept accesses to the control registers that are not shadowed
429 	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
430 	 */
431 	for (n = 0; n < 16; n++) {
432 		mask = (BIT(n) << 16) | BIT(n);
433 		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
434 			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
435 		else
436 			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
437 	}
438 
439 
440 	/*
441 	 * Intercept everything when tracing guest exceptions otherwise
442 	 * just intercept machine check exception.
443 	 */
444 	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
445 		for (n = 0; n < 32; n++) {
446 			/*
447 			 * Skip unimplemented vectors in the exception bitmap.
448 			 */
449 			if (n == 2 || n == 9) {
450 				continue;
451 			}
452 			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
453 		}
454 	} else {
455 		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
456 	}
457 
458 	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
459 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
460 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
461 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
462 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
463 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
464 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
465 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
466 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
467 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
468 	    VMCB_INTCPT_FERR_FREEZE);
469 
470 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
471 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
472 
473 	/*
474 	 * From section "Canonicalization and Consistency Checks" in APMv2
475 	 * the VMRUN intercept bit must be set to pass the consistency check.
476 	 */
477 	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
478 
479 	/*
480 	 * The ASID will be set to a non-zero value just before VMRUN.
481 	 */
482 	ctrl->asid = 0;
483 
484 	/*
485 	 * Section 15.21.1, Interrupt Masking in EFLAGS
486 	 * Section 15.21.2, Virtualizing APIC.TPR
487 	 *
488 	 * This must be set for %rflag and %cr8 isolation of guest and host.
489 	 */
490 	ctrl->v_intr_masking = 1;
491 
492 	/* Enable Last Branch Record aka LBR for debugging */
493 	ctrl->lbr_virt_en = 1;
494 	state->dbgctl = BIT(0);
495 
496 	/* EFER_SVM must always be set when the guest is executing */
497 	state->efer = EFER_SVM;
498 
499 	/* Set up the PAT to power-on state */
500 	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
501 	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
502 	    PAT_VALUE(2, PAT_UNCACHED)		|
503 	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
504 	    PAT_VALUE(4, PAT_WRITE_BACK)	|
505 	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
506 	    PAT_VALUE(6, PAT_UNCACHED)		|
507 	    PAT_VALUE(7, PAT_UNCACHEABLE);
508 
509 	/* Set up DR6/7 to power-on state */
510 	state->dr6 = DBREG_DR6_RESERVED1;
511 	state->dr7 = DBREG_DR7_RESERVED1;
512 }
513 
514 /*
515  * Initialize a virtual machine.
516  */
517 static void *
518 svm_vminit(struct vm *vm, pmap_t pmap)
519 {
520 	struct svm_softc *svm_sc;
521 	struct svm_vcpu *vcpu;
522 	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
523 	int i;
524 	uint16_t maxcpus;
525 
526 	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
527 	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
528 		panic("malloc of svm_softc not aligned on page boundary");
529 
530 	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
531 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
532 	if (svm_sc->msr_bitmap == NULL)
533 		panic("contigmalloc of SVM MSR bitmap failed");
534 	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
535 	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
536 	if (svm_sc->iopm_bitmap == NULL)
537 		panic("contigmalloc of SVM IO bitmap failed");
538 
539 	svm_sc->vm = vm;
540 	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
541 
542 	/*
543 	 * Intercept read and write accesses to all MSRs.
544 	 */
545 	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
546 
547 	/*
548 	 * Access to the following MSRs is redirected to the VMCB when the
549 	 * guest is executing. Therefore it is safe to allow the guest to
550 	 * read/write these MSRs directly without hypervisor involvement.
551 	 */
552 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
553 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
554 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
555 
556 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
557 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
558 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
559 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
560 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
561 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
562 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
563 	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
564 
565 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
566 
567 	/*
568 	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
569 	 */
570 	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
571 
572 	/* Intercept access to all I/O ports. */
573 	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
574 
575 	iopm_pa = vtophys(svm_sc->iopm_bitmap);
576 	msrpm_pa = vtophys(svm_sc->msr_bitmap);
577 	pml4_pa = svm_sc->nptp;
578 	maxcpus = vm_get_maxcpus(svm_sc->vm);
579 	for (i = 0; i < maxcpus; i++) {
580 		vcpu = svm_get_vcpu(svm_sc, i);
581 		vcpu->nextrip = ~0;
582 		vcpu->lastcpu = NOCPU;
583 		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
584 		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
585 		svm_msr_guest_init(svm_sc, i);
586 	}
587 	return (svm_sc);
588 }
589 
590 /*
591  * Collateral for a generic SVM VM-exit.
592  */
593 static void
594 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
595 {
596 
597 	vme->exitcode = VM_EXITCODE_SVM;
598 	vme->u.svm.exitcode = code;
599 	vme->u.svm.exitinfo1 = info1;
600 	vme->u.svm.exitinfo2 = info2;
601 }
602 
603 static int
604 svm_cpl(struct vmcb_state *state)
605 {
606 
607 	/*
608 	 * From APMv2:
609 	 *   "Retrieve the CPL from the CPL field in the VMCB, not
610 	 *    from any segment DPL"
611 	 */
612 	return (state->cpl);
613 }
614 
615 static enum vm_cpu_mode
616 svm_vcpu_mode(struct vmcb *vmcb)
617 {
618 	struct vmcb_segment seg;
619 	struct vmcb_state *state;
620 	int error;
621 
622 	state = &vmcb->state;
623 
624 	if (state->efer & EFER_LMA) {
625 		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
626 		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
627 		    error));
628 
629 		/*
630 		 * Section 4.8.1 for APM2, check if Code Segment has
631 		 * Long attribute set in descriptor.
632 		 */
633 		if (seg.attrib & VMCB_CS_ATTRIB_L)
634 			return (CPU_MODE_64BIT);
635 		else
636 			return (CPU_MODE_COMPATIBILITY);
637 	} else  if (state->cr0 & CR0_PE) {
638 		return (CPU_MODE_PROTECTED);
639 	} else {
640 		return (CPU_MODE_REAL);
641 	}
642 }
643 
644 static enum vm_paging_mode
645 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
646 {
647 
648 	if ((cr0 & CR0_PG) == 0)
649 		return (PAGING_MODE_FLAT);
650 	if ((cr4 & CR4_PAE) == 0)
651 		return (PAGING_MODE_32);
652 	if (efer & EFER_LME)
653 		return (PAGING_MODE_64);
654 	else
655 		return (PAGING_MODE_PAE);
656 }
657 
658 /*
659  * ins/outs utility routines
660  */
661 static uint64_t
662 svm_inout_str_index(struct svm_regctx *regs, int in)
663 {
664 	uint64_t val;
665 
666 	val = in ? regs->sctx_rdi : regs->sctx_rsi;
667 
668 	return (val);
669 }
670 
671 static uint64_t
672 svm_inout_str_count(struct svm_regctx *regs, int rep)
673 {
674 	uint64_t val;
675 
676 	val = rep ? regs->sctx_rcx : 1;
677 
678 	return (val);
679 }
680 
681 static void
682 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
683     int in, struct vm_inout_str *vis)
684 {
685 	int error, s;
686 
687 	if (in) {
688 		vis->seg_name = VM_REG_GUEST_ES;
689 	} else {
690 		/* The segment field has standard encoding */
691 		s = (info1 >> 10) & 0x7;
692 		vis->seg_name = vm_segment_name(s);
693 	}
694 
695 	error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
696 	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
697 }
698 
699 static int
700 svm_inout_str_addrsize(uint64_t info1)
701 {
702         uint32_t size;
703 
704         size = (info1 >> 7) & 0x7;
705         switch (size) {
706         case 1:
707                 return (2);     /* 16 bit */
708         case 2:
709                 return (4);     /* 32 bit */
710         case 4:
711                 return (8);     /* 64 bit */
712         default:
713                 panic("%s: invalid size encoding %d", __func__, size);
714         }
715 }
716 
717 static void
718 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
719 {
720 	struct vmcb_state *state;
721 
722 	state = &vmcb->state;
723 	paging->cr3 = state->cr3;
724 	paging->cpl = svm_cpl(state);
725 	paging->cpu_mode = svm_vcpu_mode(vmcb);
726 	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
727 	    state->efer);
728 }
729 
730 #define	UNHANDLED 0
731 
732 /*
733  * Handle guest I/O intercept.
734  */
735 static int
736 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
737 {
738 	struct vmcb_ctrl *ctrl;
739 	struct vmcb_state *state;
740 	struct svm_regctx *regs;
741 	struct vm_inout_str *vis;
742 	uint64_t info1;
743 	int inout_string;
744 
745 	state = svm_get_vmcb_state(svm_sc, vcpu);
746 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
747 	regs  = svm_get_guest_regctx(svm_sc, vcpu);
748 
749 	info1 = ctrl->exitinfo1;
750 	inout_string = info1 & BIT(2) ? 1 : 0;
751 
752 	/*
753 	 * The effective segment number in EXITINFO1[12:10] is populated
754 	 * only if the processor has the DecodeAssist capability.
755 	 *
756 	 * XXX this is not specified explicitly in APMv2 but can be verified
757 	 * empirically.
758 	 */
759 	if (inout_string && !decode_assist())
760 		return (UNHANDLED);
761 
762 	vmexit->exitcode 	= VM_EXITCODE_INOUT;
763 	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
764 	vmexit->u.inout.string 	= inout_string;
765 	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
766 	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
767 	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
768 	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
769 
770 	if (inout_string) {
771 		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
772 		vis = &vmexit->u.inout_str;
773 		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
774 		vis->rflags = state->rflags;
775 		vis->cr0 = state->cr0;
776 		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
777 		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
778 		vis->addrsize = svm_inout_str_addrsize(info1);
779 		svm_inout_str_seginfo(svm_sc, vcpu, info1,
780 		    vmexit->u.inout.in, vis);
781 	}
782 
783 	return (UNHANDLED);
784 }
785 
786 static int
787 npf_fault_type(uint64_t exitinfo1)
788 {
789 
790 	if (exitinfo1 & VMCB_NPF_INFO1_W)
791 		return (VM_PROT_WRITE);
792 	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
793 		return (VM_PROT_EXECUTE);
794 	else
795 		return (VM_PROT_READ);
796 }
797 
798 static bool
799 svm_npf_emul_fault(uint64_t exitinfo1)
800 {
801 
802 	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
803 		return (false);
804 	}
805 
806 	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
807 		return (false);
808 	}
809 
810 	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
811 		return (false);
812 	}
813 
814 	return (true);
815 }
816 
817 static void
818 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
819 {
820 	struct vm_guest_paging *paging;
821 	struct vmcb_segment seg;
822 	struct vmcb_ctrl *ctrl;
823 	char *inst_bytes;
824 	int error, inst_len;
825 
826 	ctrl = &vmcb->ctrl;
827 	paging = &vmexit->u.inst_emul.paging;
828 
829 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
830 	vmexit->u.inst_emul.gpa = gpa;
831 	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
832 	svm_paging_info(vmcb, paging);
833 
834 	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
835 	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
836 
837 	switch(paging->cpu_mode) {
838 	case CPU_MODE_REAL:
839 		vmexit->u.inst_emul.cs_base = seg.base;
840 		vmexit->u.inst_emul.cs_d = 0;
841 		break;
842 	case CPU_MODE_PROTECTED:
843 	case CPU_MODE_COMPATIBILITY:
844 		vmexit->u.inst_emul.cs_base = seg.base;
845 
846 		/*
847 		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
848 		 */
849 		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
850 		    1 : 0;
851 		break;
852 	default:
853 		vmexit->u.inst_emul.cs_base = 0;
854 		vmexit->u.inst_emul.cs_d = 0;
855 		break;
856 	}
857 
858 	/*
859 	 * Copy the instruction bytes into 'vie' if available.
860 	 */
861 	if (decode_assist() && !disable_npf_assist) {
862 		inst_len = ctrl->inst_len;
863 		inst_bytes = ctrl->inst_bytes;
864 	} else {
865 		inst_len = 0;
866 		inst_bytes = NULL;
867 	}
868 	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
869 }
870 
871 #ifdef KTR
872 static const char *
873 intrtype_to_str(int intr_type)
874 {
875 	switch (intr_type) {
876 	case VMCB_EVENTINJ_TYPE_INTR:
877 		return ("hwintr");
878 	case VMCB_EVENTINJ_TYPE_NMI:
879 		return ("nmi");
880 	case VMCB_EVENTINJ_TYPE_INTn:
881 		return ("swintr");
882 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
883 		return ("exception");
884 	default:
885 		panic("%s: unknown intr_type %d", __func__, intr_type);
886 	}
887 }
888 #endif
889 
890 /*
891  * Inject an event to vcpu as described in section 15.20, "Event injection".
892  */
893 static void
894 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
895 		 uint32_t error, bool ec_valid)
896 {
897 	struct vmcb_ctrl *ctrl;
898 
899 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
900 
901 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
902 	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
903 
904 	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
905 	    __func__, vector));
906 
907 	switch (intr_type) {
908 	case VMCB_EVENTINJ_TYPE_INTR:
909 	case VMCB_EVENTINJ_TYPE_NMI:
910 	case VMCB_EVENTINJ_TYPE_INTn:
911 		break;
912 	case VMCB_EVENTINJ_TYPE_EXCEPTION:
913 		if (vector >= 0 && vector <= 31 && vector != 2)
914 			break;
915 		/* FALLTHROUGH */
916 	default:
917 		panic("%s: invalid intr_type/vector: %d/%d", __func__,
918 		    intr_type, vector);
919 	}
920 	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
921 	if (ec_valid) {
922 		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
923 		ctrl->eventinj |= (uint64_t)error << 32;
924 		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
925 		    intrtype_to_str(intr_type), vector, error);
926 	} else {
927 		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
928 		    intrtype_to_str(intr_type), vector);
929 	}
930 }
931 
932 static void
933 svm_update_virqinfo(struct svm_softc *sc, int vcpu)
934 {
935 	struct vm *vm;
936 	struct vlapic *vlapic;
937 	struct vmcb_ctrl *ctrl;
938 
939 	vm = sc->vm;
940 	vlapic = vm_lapic(vm, vcpu);
941 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
942 
943 	/* Update %cr8 in the emulated vlapic */
944 	vlapic_set_cr8(vlapic, ctrl->v_tpr);
945 
946 	/* Virtual interrupt injection is not used. */
947 	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
948 	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
949 }
950 
951 static void
952 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
953 {
954 	struct vmcb_ctrl *ctrl;
955 	uint64_t intinfo;
956 
957 	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
958 	intinfo = ctrl->exitintinfo;
959 	if (!VMCB_EXITINTINFO_VALID(intinfo))
960 		return;
961 
962 	/*
963 	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
964 	 *
965 	 * If a #VMEXIT happened during event delivery then record the event
966 	 * that was being delivered.
967 	 */
968 	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
969 		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
970 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
971 	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
972 }
973 
974 #ifdef INVARIANTS
975 static __inline int
976 vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
977 {
978 
979 	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
980 	    VMCB_INTCPT_VINTR));
981 }
982 #endif
983 
984 static __inline void
985 enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
986 {
987 	struct vmcb_ctrl *ctrl;
988 
989 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
990 
991 	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
992 		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
993 		KASSERT(vintr_intercept_enabled(sc, vcpu),
994 		    ("%s: vintr intercept should be enabled", __func__));
995 		return;
996 	}
997 
998 	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
999 	ctrl->v_irq = 1;
1000 	ctrl->v_ign_tpr = 1;
1001 	ctrl->v_intr_vector = 0;
1002 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1003 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1004 }
1005 
1006 static __inline void
1007 disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1008 {
1009 	struct vmcb_ctrl *ctrl;
1010 
1011 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1012 
1013 	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1014 		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1015 		    ("%s: vintr intercept should be disabled", __func__));
1016 		return;
1017 	}
1018 
1019 	VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1020 	ctrl->v_irq = 0;
1021 	ctrl->v_intr_vector = 0;
1022 	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1023 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1024 }
1025 
1026 static int
1027 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1028 {
1029 	struct vmcb_ctrl *ctrl;
1030 	int oldval, newval;
1031 
1032 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1033 	oldval = ctrl->intr_shadow;
1034 	newval = val ? 1 : 0;
1035 	if (newval != oldval) {
1036 		ctrl->intr_shadow = newval;
1037 		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1038 	}
1039 	return (0);
1040 }
1041 
1042 static int
1043 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1044 {
1045 	struct vmcb_ctrl *ctrl;
1046 
1047 	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1048 	*val = ctrl->intr_shadow;
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Once an NMI is injected it blocks delivery of further NMIs until the handler
1054  * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1055  * to track when the vcpu is done handling the NMI.
1056  */
1057 static int
1058 nmi_blocked(struct svm_softc *sc, int vcpu)
1059 {
1060 	int blocked;
1061 
1062 	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1063 	    VMCB_INTCPT_IRET);
1064 	return (blocked);
1065 }
1066 
1067 static void
1068 enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1069 {
1070 
1071 	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1072 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1073 	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1074 }
1075 
1076 static void
1077 clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1078 {
1079 	int error;
1080 
1081 	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1082 	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1083 	/*
1084 	 * When the IRET intercept is cleared the vcpu will attempt to execute
1085 	 * the "iret" when it runs next. However, it is possible to inject
1086 	 * another NMI into the vcpu before the "iret" has actually executed.
1087 	 *
1088 	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1089 	 * it will trap back into the hypervisor. If an NMI is pending for
1090 	 * the vcpu it will be injected into the guest.
1091 	 *
1092 	 * XXX this needs to be fixed
1093 	 */
1094 	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1095 
1096 	/*
1097 	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1098 	 * immediate VMRUN.
1099 	 */
1100 	error = svm_modify_intr_shadow(sc, vcpu, 1);
1101 	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1102 }
1103 
1104 #define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1105 
1106 static int
1107 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1108 {
1109 	struct vm_exit *vme;
1110 	struct vmcb_state *state;
1111 	uint64_t changed, lma, oldval;
1112 	int error;
1113 
1114 	state = svm_get_vmcb_state(sc, vcpu);
1115 
1116 	oldval = state->efer;
1117 	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1118 
1119 	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1120 	changed = oldval ^ newval;
1121 
1122 	if (newval & EFER_MBZ_BITS)
1123 		goto gpf;
1124 
1125 	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1126 	if (changed & EFER_LME) {
1127 		if (state->cr0 & CR0_PG)
1128 			goto gpf;
1129 	}
1130 
1131 	/* EFER.LMA = EFER.LME & CR0.PG */
1132 	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1133 		lma = EFER_LMA;
1134 	else
1135 		lma = 0;
1136 
1137 	if ((newval & EFER_LMA) != lma)
1138 		goto gpf;
1139 
1140 	if (newval & EFER_NXE) {
1141 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1142 			goto gpf;
1143 	}
1144 
1145 	/*
1146 	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1147 	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1148 	 */
1149 	if (newval & EFER_LMSLE) {
1150 		vme = vm_exitinfo(sc->vm, vcpu);
1151 		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1152 		*retu = true;
1153 		return (0);
1154 	}
1155 
1156 	if (newval & EFER_FFXSR) {
1157 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1158 			goto gpf;
1159 	}
1160 
1161 	if (newval & EFER_TCE) {
1162 		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1163 			goto gpf;
1164 	}
1165 
1166 	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1167 	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1168 	return (0);
1169 gpf:
1170 	vm_inject_gp(sc->vm, vcpu);
1171 	return (0);
1172 }
1173 
1174 static int
1175 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1176     bool *retu)
1177 {
1178 	int error;
1179 
1180 	if (lapic_msr(num))
1181 		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1182 	else if (num == MSR_EFER)
1183 		error = svm_write_efer(sc, vcpu, val, retu);
1184 	else
1185 		error = svm_wrmsr(sc, vcpu, num, val, retu);
1186 
1187 	return (error);
1188 }
1189 
1190 static int
1191 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1192 {
1193 	struct vmcb_state *state;
1194 	struct svm_regctx *ctx;
1195 	uint64_t result;
1196 	int error;
1197 
1198 	if (lapic_msr(num))
1199 		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1200 	else
1201 		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1202 
1203 	if (error == 0) {
1204 		state = svm_get_vmcb_state(sc, vcpu);
1205 		ctx = svm_get_guest_regctx(sc, vcpu);
1206 		state->rax = result & 0xffffffff;
1207 		ctx->sctx_rdx = result >> 32;
1208 	}
1209 
1210 	return (error);
1211 }
1212 
1213 #ifdef KTR
1214 static const char *
1215 exit_reason_to_str(uint64_t reason)
1216 {
1217 	static char reasonbuf[32];
1218 
1219 	switch (reason) {
1220 	case VMCB_EXIT_INVALID:
1221 		return ("invalvmcb");
1222 	case VMCB_EXIT_SHUTDOWN:
1223 		return ("shutdown");
1224 	case VMCB_EXIT_NPF:
1225 		return ("nptfault");
1226 	case VMCB_EXIT_PAUSE:
1227 		return ("pause");
1228 	case VMCB_EXIT_HLT:
1229 		return ("hlt");
1230 	case VMCB_EXIT_CPUID:
1231 		return ("cpuid");
1232 	case VMCB_EXIT_IO:
1233 		return ("inout");
1234 	case VMCB_EXIT_MC:
1235 		return ("mchk");
1236 	case VMCB_EXIT_INTR:
1237 		return ("extintr");
1238 	case VMCB_EXIT_NMI:
1239 		return ("nmi");
1240 	case VMCB_EXIT_VINTR:
1241 		return ("vintr");
1242 	case VMCB_EXIT_MSR:
1243 		return ("msr");
1244 	case VMCB_EXIT_IRET:
1245 		return ("iret");
1246 	case VMCB_EXIT_MONITOR:
1247 		return ("monitor");
1248 	case VMCB_EXIT_MWAIT:
1249 		return ("mwait");
1250 	default:
1251 		snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1252 		return (reasonbuf);
1253 	}
1254 }
1255 #endif	/* KTR */
1256 
1257 /*
1258  * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1259  * that are due to instruction intercepts as well as MSR and IOIO intercepts
1260  * and exceptions caused by INT3, INTO and BOUND instructions.
1261  *
1262  * Return 1 if the nRIP is valid and 0 otherwise.
1263  */
1264 static int
1265 nrip_valid(uint64_t exitcode)
1266 {
1267 	switch (exitcode) {
1268 	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1269 	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1270 	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1271 	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1272 	case 0x43:		/* INT3 */
1273 	case 0x44:		/* INTO */
1274 	case 0x45:		/* BOUND */
1275 	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1276 	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1277 		return (1);
1278 	default:
1279 		return (0);
1280 	}
1281 }
1282 
1283 static int
1284 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1285 {
1286 	struct vmcb *vmcb;
1287 	struct vmcb_state *state;
1288 	struct vmcb_ctrl *ctrl;
1289 	struct svm_regctx *ctx;
1290 	uint64_t code, info1, info2, val;
1291 	uint32_t eax, ecx, edx;
1292 	int error, errcode_valid, handled, idtvec, reflect;
1293 	bool retu;
1294 
1295 	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1296 	vmcb = svm_get_vmcb(svm_sc, vcpu);
1297 	state = &vmcb->state;
1298 	ctrl = &vmcb->ctrl;
1299 
1300 	handled = 0;
1301 	code = ctrl->exitcode;
1302 	info1 = ctrl->exitinfo1;
1303 	info2 = ctrl->exitinfo2;
1304 
1305 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1306 	vmexit->rip = state->rip;
1307 	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1308 
1309 	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1310 
1311 	/*
1312 	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1313 	 * in an inconsistent state and can trigger assertions that would
1314 	 * never happen otherwise.
1315 	 */
1316 	if (code == VMCB_EXIT_INVALID) {
1317 		vm_exit_svm(vmexit, code, info1, info2);
1318 		return (0);
1319 	}
1320 
1321 	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1322 	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1323 
1324 	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1325 	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1326 	    vmexit->inst_length, code, info1, info2));
1327 
1328 	svm_update_virqinfo(svm_sc, vcpu);
1329 	svm_save_intinfo(svm_sc, vcpu);
1330 
1331 	switch (code) {
1332 	case VMCB_EXIT_IRET:
1333 		/*
1334 		 * Restart execution at "iret" but with the intercept cleared.
1335 		 */
1336 		vmexit->inst_length = 0;
1337 		clear_nmi_blocking(svm_sc, vcpu);
1338 		handled = 1;
1339 		break;
1340 	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1341 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1342 		handled = 1;
1343 		break;
1344 	case VMCB_EXIT_INTR:	/* external interrupt */
1345 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1346 		handled = 1;
1347 		break;
1348 	case VMCB_EXIT_NMI:	/* external NMI */
1349 		handled = 1;
1350 		break;
1351 	case 0x40 ... 0x5F:
1352 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1353 		reflect = 1;
1354 		idtvec = code - 0x40;
1355 		switch (idtvec) {
1356 		case IDT_MC:
1357 			/*
1358 			 * Call the machine check handler by hand. Also don't
1359 			 * reflect the machine check back into the guest.
1360 			 */
1361 			reflect = 0;
1362 			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1363 			__asm __volatile("int $18");
1364 			break;
1365 		case IDT_PF:
1366 			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1367 			    info2);
1368 			KASSERT(error == 0, ("%s: error %d updating cr2",
1369 			    __func__, error));
1370 			/* fallthru */
1371 		case IDT_NP:
1372 		case IDT_SS:
1373 		case IDT_GP:
1374 		case IDT_AC:
1375 		case IDT_TS:
1376 			errcode_valid = 1;
1377 			break;
1378 
1379 		case IDT_DF:
1380 			errcode_valid = 1;
1381 			info1 = 0;
1382 			break;
1383 
1384 		case IDT_BP:
1385 		case IDT_OF:
1386 		case IDT_BR:
1387 			/*
1388 			 * The 'nrip' field is populated for INT3, INTO and
1389 			 * BOUND exceptions and this also implies that
1390 			 * 'inst_length' is non-zero.
1391 			 *
1392 			 * Reset 'inst_length' to zero so the guest %rip at
1393 			 * event injection is identical to what it was when
1394 			 * the exception originally happened.
1395 			 */
1396 			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1397 			    "to zero before injecting exception %d",
1398 			    vmexit->inst_length, idtvec);
1399 			vmexit->inst_length = 0;
1400 			/* fallthru */
1401 		default:
1402 			errcode_valid = 0;
1403 			info1 = 0;
1404 			break;
1405 		}
1406 		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1407 		    "when reflecting exception %d into guest",
1408 		    vmexit->inst_length, idtvec));
1409 
1410 		if (reflect) {
1411 			/* Reflect the exception back into the guest */
1412 			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1413 			    "%d/%#x into the guest", idtvec, (int)info1);
1414 			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1415 			    errcode_valid, info1, 0);
1416 			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1417 			    __func__, error));
1418 		}
1419 		handled = 1;
1420 		break;
1421 	case VMCB_EXIT_MSR:	/* MSR access. */
1422 		eax = state->rax;
1423 		ecx = ctx->sctx_rcx;
1424 		edx = ctx->sctx_rdx;
1425 		retu = false;
1426 
1427 		if (info1) {
1428 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1429 			val = (uint64_t)edx << 32 | eax;
1430 			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1431 			    ecx, val);
1432 			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1433 				vmexit->exitcode = VM_EXITCODE_WRMSR;
1434 				vmexit->u.msr.code = ecx;
1435 				vmexit->u.msr.wval = val;
1436 			} else if (!retu) {
1437 				handled = 1;
1438 			} else {
1439 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1440 				    ("emulate_wrmsr retu with bogus exitcode"));
1441 			}
1442 		} else {
1443 			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1444 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1445 			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1446 				vmexit->exitcode = VM_EXITCODE_RDMSR;
1447 				vmexit->u.msr.code = ecx;
1448 			} else if (!retu) {
1449 				handled = 1;
1450 			} else {
1451 				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1452 				    ("emulate_rdmsr retu with bogus exitcode"));
1453 			}
1454 		}
1455 		break;
1456 	case VMCB_EXIT_IO:
1457 		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1458 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1459 		break;
1460 	case VMCB_EXIT_CPUID:
1461 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1462 		handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
1463 		    (uint32_t *)&state->rax,
1464 		    (uint32_t *)&ctx->sctx_rbx,
1465 		    (uint32_t *)&ctx->sctx_rcx,
1466 		    (uint32_t *)&ctx->sctx_rdx);
1467 		break;
1468 	case VMCB_EXIT_HLT:
1469 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1470 		vmexit->exitcode = VM_EXITCODE_HLT;
1471 		vmexit->u.hlt.rflags = state->rflags;
1472 		break;
1473 	case VMCB_EXIT_PAUSE:
1474 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1475 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1476 		break;
1477 	case VMCB_EXIT_NPF:
1478 		/* EXITINFO2 contains the faulting guest physical address */
1479 		if (info1 & VMCB_NPF_INFO1_RSV) {
1480 			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1481 			    "reserved bits set: info1(%#lx) info2(%#lx)",
1482 			    info1, info2);
1483 		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1484 			vmexit->exitcode = VM_EXITCODE_PAGING;
1485 			vmexit->u.paging.gpa = info2;
1486 			vmexit->u.paging.fault_type = npf_fault_type(info1);
1487 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1488 			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1489 			    "on gpa %#lx/%#lx at rip %#lx",
1490 			    info2, info1, state->rip);
1491 		} else if (svm_npf_emul_fault(info1)) {
1492 			svm_handle_inst_emul(vmcb, info2, vmexit);
1493 			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1494 			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1495 			    "for gpa %#lx/%#lx at rip %#lx",
1496 			    info2, info1, state->rip);
1497 		}
1498 		break;
1499 	case VMCB_EXIT_MONITOR:
1500 		vmexit->exitcode = VM_EXITCODE_MONITOR;
1501 		break;
1502 	case VMCB_EXIT_MWAIT:
1503 		vmexit->exitcode = VM_EXITCODE_MWAIT;
1504 		break;
1505 	default:
1506 		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1507 		break;
1508 	}
1509 
1510 	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1511 	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1512 	    vmexit->rip, vmexit->inst_length);
1513 
1514 	if (handled) {
1515 		vmexit->rip += vmexit->inst_length;
1516 		vmexit->inst_length = 0;
1517 		state->rip = vmexit->rip;
1518 	} else {
1519 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1520 			/*
1521 			 * If this VM exit was not claimed by anybody then
1522 			 * treat it as a generic SVM exit.
1523 			 */
1524 			vm_exit_svm(vmexit, code, info1, info2);
1525 		} else {
1526 			/*
1527 			 * The exitcode and collateral have been populated.
1528 			 * The VM exit will be processed further in userland.
1529 			 */
1530 		}
1531 	}
1532 	return (handled);
1533 }
1534 
1535 static void
1536 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1537 {
1538 	uint64_t intinfo;
1539 
1540 	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1541 		return;
1542 
1543 	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1544 	    "valid: %#lx", __func__, intinfo));
1545 
1546 	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1547 		VMCB_EXITINTINFO_VECTOR(intinfo),
1548 		VMCB_EXITINTINFO_EC(intinfo),
1549 		VMCB_EXITINTINFO_EC_VALID(intinfo));
1550 	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1551 	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1552 }
1553 
1554 /*
1555  * Inject event to virtual cpu.
1556  */
1557 static void
1558 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1559 {
1560 	struct vmcb_ctrl *ctrl;
1561 	struct vmcb_state *state;
1562 	struct svm_vcpu *vcpustate;
1563 	uint8_t v_tpr;
1564 	int vector, need_intr_window;
1565 	int extint_pending;
1566 
1567 	state = svm_get_vmcb_state(sc, vcpu);
1568 	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1569 	vcpustate = svm_get_vcpu(sc, vcpu);
1570 
1571 	need_intr_window = 0;
1572 
1573 	if (vcpustate->nextrip != state->rip) {
1574 		ctrl->intr_shadow = 0;
1575 		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1576 		    "cleared due to rip change: %#lx/%#lx",
1577 		    vcpustate->nextrip, state->rip);
1578 	}
1579 
1580 	/*
1581 	 * Inject pending events or exceptions for this vcpu.
1582 	 *
1583 	 * An event might be pending because the previous #VMEXIT happened
1584 	 * during event delivery (i.e. ctrl->exitintinfo).
1585 	 *
1586 	 * An event might also be pending because an exception was injected
1587 	 * by the hypervisor (e.g. #PF during instruction emulation).
1588 	 */
1589 	svm_inj_intinfo(sc, vcpu);
1590 
1591 	/* NMI event has priority over interrupts. */
1592 	if (vm_nmi_pending(sc->vm, vcpu)) {
1593 		if (nmi_blocked(sc, vcpu)) {
1594 			/*
1595 			 * Can't inject another NMI if the guest has not
1596 			 * yet executed an "iret" after the last NMI.
1597 			 */
1598 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1599 			    "to NMI-blocking");
1600 		} else if (ctrl->intr_shadow) {
1601 			/*
1602 			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1603 			 */
1604 			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1605 			    "interrupt shadow");
1606 			need_intr_window = 1;
1607 			goto done;
1608 		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1609 			/*
1610 			 * If there is already an exception/interrupt pending
1611 			 * then defer the NMI until after that.
1612 			 */
1613 			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1614 			    "eventinj %#lx", ctrl->eventinj);
1615 
1616 			/*
1617 			 * Use self-IPI to trigger a VM-exit as soon as
1618 			 * possible after the event injection is completed.
1619 			 *
1620 			 * This works only if the external interrupt exiting
1621 			 * is at a lower priority than the event injection.
1622 			 *
1623 			 * Although not explicitly specified in APMv2 the
1624 			 * relative priorities were verified empirically.
1625 			 */
1626 			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1627 		} else {
1628 			vm_nmi_clear(sc->vm, vcpu);
1629 
1630 			/* Inject NMI, vector number is not used */
1631 			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1632 			    IDT_NMI, 0, false);
1633 
1634 			/* virtual NMI blocking is now in effect */
1635 			enable_nmi_blocking(sc, vcpu);
1636 
1637 			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1638 		}
1639 	}
1640 
1641 	extint_pending = vm_extint_pending(sc->vm, vcpu);
1642 	if (!extint_pending) {
1643 		if (!vlapic_pending_intr(vlapic, &vector))
1644 			goto done;
1645 		KASSERT(vector >= 16 && vector <= 255,
1646 		    ("invalid vector %d from local APIC", vector));
1647 	} else {
1648 		/* Ask the legacy pic for a vector to inject */
1649 		vatpic_pending_intr(sc->vm, &vector);
1650 		KASSERT(vector >= 0 && vector <= 255,
1651 		    ("invalid vector %d from INTR", vector));
1652 	}
1653 
1654 	/*
1655 	 * If the guest has disabled interrupts or is in an interrupt shadow
1656 	 * then we cannot inject the pending interrupt.
1657 	 */
1658 	if ((state->rflags & PSL_I) == 0) {
1659 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1660 		    "rflags %#lx", vector, state->rflags);
1661 		need_intr_window = 1;
1662 		goto done;
1663 	}
1664 
1665 	if (ctrl->intr_shadow) {
1666 		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1667 		    "interrupt shadow", vector);
1668 		need_intr_window = 1;
1669 		goto done;
1670 	}
1671 
1672 	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1673 		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1674 		    "eventinj %#lx", vector, ctrl->eventinj);
1675 		need_intr_window = 1;
1676 		goto done;
1677 	}
1678 
1679 	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1680 
1681 	if (!extint_pending) {
1682 		vlapic_intr_accepted(vlapic, vector);
1683 	} else {
1684 		vm_extint_clear(sc->vm, vcpu);
1685 		vatpic_intr_accepted(sc->vm, vector);
1686 	}
1687 
1688 	/*
1689 	 * Force a VM-exit as soon as the vcpu is ready to accept another
1690 	 * interrupt. This is done because the PIC might have another vector
1691 	 * that it wants to inject. Also, if the APIC has a pending interrupt
1692 	 * that was preempted by the ExtInt then it allows us to inject the
1693 	 * APIC vector as soon as possible.
1694 	 */
1695 	need_intr_window = 1;
1696 done:
1697 	/*
1698 	 * The guest can modify the TPR by writing to %CR8. In guest mode
1699 	 * the processor reflects this write to V_TPR without hypervisor
1700 	 * intervention.
1701 	 *
1702 	 * The guest can also modify the TPR by writing to it via the memory
1703 	 * mapped APIC page. In this case, the write will be emulated by the
1704 	 * hypervisor. For this reason V_TPR must be updated before every
1705 	 * VMRUN.
1706 	 */
1707 	v_tpr = vlapic_get_cr8(vlapic);
1708 	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1709 	if (ctrl->v_tpr != v_tpr) {
1710 		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1711 		    ctrl->v_tpr, v_tpr);
1712 		ctrl->v_tpr = v_tpr;
1713 		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1714 	}
1715 
1716 	if (need_intr_window) {
1717 		/*
1718 		 * We use V_IRQ in conjunction with the VINTR intercept to
1719 		 * trap into the hypervisor as soon as a virtual interrupt
1720 		 * can be delivered.
1721 		 *
1722 		 * Since injected events are not subject to intercept checks
1723 		 * we need to ensure that the V_IRQ is not actually going to
1724 		 * be delivered on VM entry. The KASSERT below enforces this.
1725 		 */
1726 		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1727 		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1728 		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1729 		    "intr_shadow (%u), rflags (%#lx)",
1730 		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1731 		enable_intr_window_exiting(sc, vcpu);
1732 	} else {
1733 		disable_intr_window_exiting(sc, vcpu);
1734 	}
1735 }
1736 
1737 static __inline void
1738 restore_host_tss(void)
1739 {
1740 	struct system_segment_descriptor *tss_sd;
1741 
1742 	/*
1743 	 * The TSS descriptor was in use prior to launching the guest so it
1744 	 * has been marked busy.
1745 	 *
1746 	 * 'ltr' requires the descriptor to be marked available so change the
1747 	 * type to "64-bit available TSS".
1748 	 */
1749 	tss_sd = PCPU_GET(tss);
1750 	tss_sd->sd_type = SDT_SYSTSS;
1751 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1752 }
1753 
1754 static void
1755 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
1756 {
1757 	struct svm_vcpu *vcpustate;
1758 	struct vmcb_ctrl *ctrl;
1759 	long eptgen;
1760 	bool alloc_asid;
1761 
1762 	KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
1763 	    "active on cpu %u", __func__, thiscpu));
1764 
1765 	vcpustate = svm_get_vcpu(sc, vcpuid);
1766 	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1767 
1768 	/*
1769 	 * The TLB entries associated with the vcpu's ASID are not valid
1770 	 * if either of the following conditions is true:
1771 	 *
1772 	 * 1. The vcpu's ASID generation is different than the host cpu's
1773 	 *    ASID generation. This happens when the vcpu migrates to a new
1774 	 *    host cpu. It can also happen when the number of vcpus executing
1775 	 *    on a host cpu is greater than the number of ASIDs available.
1776 	 *
1777 	 * 2. The pmap generation number is different than the value cached in
1778 	 *    the 'vcpustate'. This happens when the host invalidates pages
1779 	 *    belonging to the guest.
1780 	 *
1781 	 *	asidgen		eptgen	      Action
1782 	 *	mismatch	mismatch
1783 	 *	   0		   0		(a)
1784 	 *	   0		   1		(b1) or (b2)
1785 	 *	   1		   0		(c)
1786 	 *	   1		   1		(d)
1787 	 *
1788 	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1789 	 *     no further action is needed.
1790 	 *
1791 	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1792 	 *      retained and the TLB entries associated with this ASID
1793 	 *      are flushed by VMRUN.
1794 	 *
1795 	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1796 	 *      allocated.
1797 	 *
1798 	 * (c) A new ASID is allocated.
1799 	 *
1800 	 * (d) A new ASID is allocated.
1801 	 */
1802 
1803 	alloc_asid = false;
1804 	eptgen = pmap->pm_eptgen;
1805 	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1806 
1807 	if (vcpustate->asid.gen != asid[thiscpu].gen) {
1808 		alloc_asid = true;	/* (c) and (d) */
1809 	} else if (vcpustate->eptgen != eptgen) {
1810 		if (flush_by_asid())
1811 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1812 		else
1813 			alloc_asid = true;			/* (b2) */
1814 	} else {
1815 		/*
1816 		 * This is the common case (a).
1817 		 */
1818 		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1819 		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1820 		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1821 	}
1822 
1823 	if (alloc_asid) {
1824 		if (++asid[thiscpu].num >= nasid) {
1825 			asid[thiscpu].num = 1;
1826 			if (++asid[thiscpu].gen == 0)
1827 				asid[thiscpu].gen = 1;
1828 			/*
1829 			 * If this cpu does not support "flush-by-asid"
1830 			 * then flush the entire TLB on a generation
1831 			 * bump. Subsequent ASID allocation in this
1832 			 * generation can be done without a TLB flush.
1833 			 */
1834 			if (!flush_by_asid())
1835 				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1836 		}
1837 		vcpustate->asid.gen = asid[thiscpu].gen;
1838 		vcpustate->asid.num = asid[thiscpu].num;
1839 
1840 		ctrl->asid = vcpustate->asid.num;
1841 		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1842 		/*
1843 		 * If this cpu supports "flush-by-asid" then the TLB
1844 		 * was not flushed after the generation bump. The TLB
1845 		 * is flushed selectively after every new ASID allocation.
1846 		 */
1847 		if (flush_by_asid())
1848 			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1849 	}
1850 	vcpustate->eptgen = eptgen;
1851 
1852 	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1853 	KASSERT(ctrl->asid == vcpustate->asid.num,
1854 	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1855 }
1856 
1857 static __inline void
1858 disable_gintr(void)
1859 {
1860 
1861 	__asm __volatile("clgi");
1862 }
1863 
1864 static __inline void
1865 enable_gintr(void)
1866 {
1867 
1868         __asm __volatile("stgi");
1869 }
1870 
1871 static __inline void
1872 svm_dr_enter_guest(struct svm_regctx *gctx)
1873 {
1874 
1875 	/* Save host control debug registers. */
1876 	gctx->host_dr7 = rdr7();
1877 	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
1878 
1879 	/*
1880 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
1881 	 * exceptions in the host based on the guest DRx values.  The
1882 	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
1883 	 * VMCB.
1884 	 */
1885 	load_dr7(0);
1886 	wrmsr(MSR_DEBUGCTLMSR, 0);
1887 
1888 	/* Save host debug registers. */
1889 	gctx->host_dr0 = rdr0();
1890 	gctx->host_dr1 = rdr1();
1891 	gctx->host_dr2 = rdr2();
1892 	gctx->host_dr3 = rdr3();
1893 	gctx->host_dr6 = rdr6();
1894 
1895 	/* Restore guest debug registers. */
1896 	load_dr0(gctx->sctx_dr0);
1897 	load_dr1(gctx->sctx_dr1);
1898 	load_dr2(gctx->sctx_dr2);
1899 	load_dr3(gctx->sctx_dr3);
1900 }
1901 
1902 static __inline void
1903 svm_dr_leave_guest(struct svm_regctx *gctx)
1904 {
1905 
1906 	/* Save guest debug registers. */
1907 	gctx->sctx_dr0 = rdr0();
1908 	gctx->sctx_dr1 = rdr1();
1909 	gctx->sctx_dr2 = rdr2();
1910 	gctx->sctx_dr3 = rdr3();
1911 
1912 	/*
1913 	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
1914 	 * last.
1915 	 */
1916 	load_dr0(gctx->host_dr0);
1917 	load_dr1(gctx->host_dr1);
1918 	load_dr2(gctx->host_dr2);
1919 	load_dr3(gctx->host_dr3);
1920 	load_dr6(gctx->host_dr6);
1921 	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
1922 	load_dr7(gctx->host_dr7);
1923 }
1924 
1925 /*
1926  * Start vcpu with specified RIP.
1927  */
1928 static int
1929 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
1930 	struct vm_eventinfo *evinfo)
1931 {
1932 	struct svm_regctx *gctx;
1933 	struct svm_softc *svm_sc;
1934 	struct svm_vcpu *vcpustate;
1935 	struct vmcb_state *state;
1936 	struct vmcb_ctrl *ctrl;
1937 	struct vm_exit *vmexit;
1938 	struct vlapic *vlapic;
1939 	struct vm *vm;
1940 	uint64_t vmcb_pa;
1941 	int handled;
1942 	uint16_t ldt_sel;
1943 
1944 	svm_sc = arg;
1945 	vm = svm_sc->vm;
1946 
1947 	vcpustate = svm_get_vcpu(svm_sc, vcpu);
1948 	state = svm_get_vmcb_state(svm_sc, vcpu);
1949 	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
1950 	vmexit = vm_exitinfo(vm, vcpu);
1951 	vlapic = vm_lapic(vm, vcpu);
1952 
1953 	gctx = svm_get_guest_regctx(svm_sc, vcpu);
1954 	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
1955 
1956 	if (vcpustate->lastcpu != curcpu) {
1957 		/*
1958 		 * Force new ASID allocation by invalidating the generation.
1959 		 */
1960 		vcpustate->asid.gen = 0;
1961 
1962 		/*
1963 		 * Invalidate the VMCB state cache by marking all fields dirty.
1964 		 */
1965 		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
1966 
1967 		/*
1968 		 * XXX
1969 		 * Setting 'vcpustate->lastcpu' here is bit premature because
1970 		 * we may return from this function without actually executing
1971 		 * the VMRUN  instruction. This could happen if a rendezvous
1972 		 * or an AST is pending on the first time through the loop.
1973 		 *
1974 		 * This works for now but any new side-effects of vcpu
1975 		 * migration should take this case into account.
1976 		 */
1977 		vcpustate->lastcpu = curcpu;
1978 		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
1979 	}
1980 
1981 	svm_msr_guest_enter(svm_sc, vcpu);
1982 
1983 	/* Update Guest RIP */
1984 	state->rip = rip;
1985 
1986 	do {
1987 		/*
1988 		 * Disable global interrupts to guarantee atomicity during
1989 		 * loading of guest state. This includes not only the state
1990 		 * loaded by the "vmrun" instruction but also software state
1991 		 * maintained by the hypervisor: suspended and rendezvous
1992 		 * state, NPT generation number, vlapic interrupts etc.
1993 		 */
1994 		disable_gintr();
1995 
1996 		if (vcpu_suspended(evinfo)) {
1997 			enable_gintr();
1998 			vm_exit_suspended(vm, vcpu, state->rip);
1999 			break;
2000 		}
2001 
2002 		if (vcpu_rendezvous_pending(evinfo)) {
2003 			enable_gintr();
2004 			vm_exit_rendezvous(vm, vcpu, state->rip);
2005 			break;
2006 		}
2007 
2008 		if (vcpu_reqidle(evinfo)) {
2009 			enable_gintr();
2010 			vm_exit_reqidle(vm, vcpu, state->rip);
2011 			break;
2012 		}
2013 
2014 		/* We are asked to give the cpu by scheduler. */
2015 		if (vcpu_should_yield(vm, vcpu)) {
2016 			enable_gintr();
2017 			vm_exit_astpending(vm, vcpu, state->rip);
2018 			break;
2019 		}
2020 
2021 		if (vcpu_debugged(vm, vcpu)) {
2022 			enable_gintr();
2023 			vm_exit_debug(vm, vcpu, state->rip);
2024 			break;
2025 		}
2026 
2027 		/*
2028 		 * #VMEXIT resumes the host with the guest LDTR, so
2029 		 * save the current LDT selector so it can be restored
2030 		 * after an exit.  The userspace hypervisor probably
2031 		 * doesn't use a LDT, but save and restore it to be
2032 		 * safe.
2033 		 */
2034 		ldt_sel = sldt();
2035 
2036 		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2037 
2038 		/* Activate the nested pmap on 'curcpu' */
2039 		CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active);
2040 
2041 		/*
2042 		 * Check the pmap generation and the ASID generation to
2043 		 * ensure that the vcpu does not use stale TLB mappings.
2044 		 */
2045 		check_asid(svm_sc, vcpu, pmap, curcpu);
2046 
2047 		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2048 		vcpustate->dirty = 0;
2049 		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2050 
2051 		/* Launch Virtual Machine. */
2052 		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2053 		svm_dr_enter_guest(gctx);
2054 		svm_launch(vmcb_pa, gctx, get_pcpu());
2055 		svm_dr_leave_guest(gctx);
2056 
2057 		CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2058 
2059 		/*
2060 		 * The host GDTR and IDTR is saved by VMRUN and restored
2061 		 * automatically on #VMEXIT. However, the host TSS needs
2062 		 * to be restored explicitly.
2063 		 */
2064 		restore_host_tss();
2065 
2066 		/* Restore host LDTR. */
2067 		lldt(ldt_sel);
2068 
2069 		/* #VMEXIT disables interrupts so re-enable them here. */
2070 		enable_gintr();
2071 
2072 		/* Update 'nextrip' */
2073 		vcpustate->nextrip = state->rip;
2074 
2075 		/* Handle #VMEXIT and if required return to user space. */
2076 		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2077 	} while (handled);
2078 
2079 	svm_msr_guest_exit(svm_sc, vcpu);
2080 
2081 	return (0);
2082 }
2083 
2084 static void
2085 svm_vmcleanup(void *arg)
2086 {
2087 	struct svm_softc *sc = arg;
2088 
2089 	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2090 	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2091 	free(sc, M_SVM);
2092 }
2093 
2094 static register_t *
2095 swctx_regptr(struct svm_regctx *regctx, int reg)
2096 {
2097 
2098 	switch (reg) {
2099 	case VM_REG_GUEST_RBX:
2100 		return (&regctx->sctx_rbx);
2101 	case VM_REG_GUEST_RCX:
2102 		return (&regctx->sctx_rcx);
2103 	case VM_REG_GUEST_RDX:
2104 		return (&regctx->sctx_rdx);
2105 	case VM_REG_GUEST_RDI:
2106 		return (&regctx->sctx_rdi);
2107 	case VM_REG_GUEST_RSI:
2108 		return (&regctx->sctx_rsi);
2109 	case VM_REG_GUEST_RBP:
2110 		return (&regctx->sctx_rbp);
2111 	case VM_REG_GUEST_R8:
2112 		return (&regctx->sctx_r8);
2113 	case VM_REG_GUEST_R9:
2114 		return (&regctx->sctx_r9);
2115 	case VM_REG_GUEST_R10:
2116 		return (&regctx->sctx_r10);
2117 	case VM_REG_GUEST_R11:
2118 		return (&regctx->sctx_r11);
2119 	case VM_REG_GUEST_R12:
2120 		return (&regctx->sctx_r12);
2121 	case VM_REG_GUEST_R13:
2122 		return (&regctx->sctx_r13);
2123 	case VM_REG_GUEST_R14:
2124 		return (&regctx->sctx_r14);
2125 	case VM_REG_GUEST_R15:
2126 		return (&regctx->sctx_r15);
2127 	case VM_REG_GUEST_DR0:
2128 		return (&regctx->sctx_dr0);
2129 	case VM_REG_GUEST_DR1:
2130 		return (&regctx->sctx_dr1);
2131 	case VM_REG_GUEST_DR2:
2132 		return (&regctx->sctx_dr2);
2133 	case VM_REG_GUEST_DR3:
2134 		return (&regctx->sctx_dr3);
2135 	default:
2136 		return (NULL);
2137 	}
2138 }
2139 
2140 static int
2141 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2142 {
2143 	struct svm_softc *svm_sc;
2144 	register_t *reg;
2145 
2146 	svm_sc = arg;
2147 
2148 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2149 		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2150 	}
2151 
2152 	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2153 		return (0);
2154 	}
2155 
2156 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2157 
2158 	if (reg != NULL) {
2159 		*val = *reg;
2160 		return (0);
2161 	}
2162 
2163 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2164 	return (EINVAL);
2165 }
2166 
2167 static int
2168 svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2169 {
2170 	struct svm_softc *svm_sc;
2171 	register_t *reg;
2172 
2173 	svm_sc = arg;
2174 
2175 	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2176 		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2177 	}
2178 
2179 	if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2180 		return (0);
2181 	}
2182 
2183 	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2184 
2185 	if (reg != NULL) {
2186 		*reg = val;
2187 		return (0);
2188 	}
2189 
2190 	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2191 		/* Ignore. */
2192 		return (0);
2193 	}
2194 
2195 	/*
2196 	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2197 	 * vcpu's ASID. This needs to be treated differently depending on
2198 	 * whether 'running' is true/false.
2199 	 */
2200 
2201 	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2202 	return (EINVAL);
2203 }
2204 
2205 static int
2206 svm_setcap(void *arg, int vcpu, int type, int val)
2207 {
2208 	struct svm_softc *sc;
2209 	int error;
2210 
2211 	sc = arg;
2212 	error = 0;
2213 	switch (type) {
2214 	case VM_CAP_HALT_EXIT:
2215 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2216 		    VMCB_INTCPT_HLT, val);
2217 		break;
2218 	case VM_CAP_PAUSE_EXIT:
2219 		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2220 		    VMCB_INTCPT_PAUSE, val);
2221 		break;
2222 	case VM_CAP_UNRESTRICTED_GUEST:
2223 		/* Unrestricted guest execution cannot be disabled in SVM */
2224 		if (val == 0)
2225 			error = EINVAL;
2226 		break;
2227 	default:
2228 		error = ENOENT;
2229 		break;
2230 	}
2231 	return (error);
2232 }
2233 
2234 static int
2235 svm_getcap(void *arg, int vcpu, int type, int *retval)
2236 {
2237 	struct svm_softc *sc;
2238 	int error;
2239 
2240 	sc = arg;
2241 	error = 0;
2242 
2243 	switch (type) {
2244 	case VM_CAP_HALT_EXIT:
2245 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2246 		    VMCB_INTCPT_HLT);
2247 		break;
2248 	case VM_CAP_PAUSE_EXIT:
2249 		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2250 		    VMCB_INTCPT_PAUSE);
2251 		break;
2252 	case VM_CAP_UNRESTRICTED_GUEST:
2253 		*retval = 1;	/* unrestricted guest is always enabled */
2254 		break;
2255 	default:
2256 		error = ENOENT;
2257 		break;
2258 	}
2259 	return (error);
2260 }
2261 
2262 static struct vlapic *
2263 svm_vlapic_init(void *arg, int vcpuid)
2264 {
2265 	struct svm_softc *svm_sc;
2266 	struct vlapic *vlapic;
2267 
2268 	svm_sc = arg;
2269 	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2270 	vlapic->vm = svm_sc->vm;
2271 	vlapic->vcpuid = vcpuid;
2272 	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2273 
2274 	vlapic_init(vlapic);
2275 
2276 	return (vlapic);
2277 }
2278 
2279 static void
2280 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2281 {
2282 
2283         vlapic_cleanup(vlapic);
2284         free(vlapic, M_SVM_VLAPIC);
2285 }
2286 
2287 struct vmm_ops vmm_ops_amd = {
2288 	.init		= svm_init,
2289 	.cleanup	= svm_cleanup,
2290 	.resume		= svm_restore,
2291 	.vminit		= svm_vminit,
2292 	.vmrun		= svm_vmrun,
2293 	.vmcleanup	= svm_vmcleanup,
2294 	.vmgetreg	= svm_getreg,
2295 	.vmsetreg	= svm_setreg,
2296 	.vmgetdesc	= vmcb_getdesc,
2297 	.vmsetdesc	= vmcb_setdesc,
2298 	.vmgetcap	= svm_getcap,
2299 	.vmsetcap	= svm_setcap,
2300 	.vmspace_alloc	= svm_npt_alloc,
2301 	.vmspace_free	= svm_npt_free,
2302 	.vlapic_init	= svm_vlapic_init,
2303 	.vlapic_cleanup	= svm_vlapic_cleanup,
2304 };
2305