1 /*- 2 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/smp.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/pcpu.h> 36 #include <sys/proc.h> 37 #include <sys/sysctl.h> 38 39 #include <vm/vm.h> 40 #include <vm/pmap.h> 41 42 #include <machine/cpufunc.h> 43 #include <machine/psl.h> 44 #include <machine/md_var.h> 45 #include <machine/specialreg.h> 46 #include <machine/smp.h> 47 #include <machine/vmm.h> 48 #include <machine/vmm_dev.h> 49 #include <machine/vmm_instruction_emul.h> 50 51 #include "vmm_lapic.h" 52 #include "vmm_stat.h" 53 #include "vmm_ktr.h" 54 #include "vmm_ioport.h" 55 #include "vatpic.h" 56 #include "vlapic.h" 57 #include "vlapic_priv.h" 58 59 #include "x86.h" 60 #include "vmcb.h" 61 #include "svm.h" 62 #include "svm_softc.h" 63 #include "svm_msr.h" 64 #include "npt.h" 65 66 SYSCTL_DECL(_hw_vmm); 67 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL); 68 69 /* 70 * SVM CPUID function 0x8000_000A, edx bit decoding. 71 */ 72 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 73 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 74 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 75 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 76 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 77 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 78 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 79 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 80 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 81 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 82 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 83 84 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 85 VMCB_CACHE_IOPM | \ 86 VMCB_CACHE_I | \ 87 VMCB_CACHE_TPR | \ 88 VMCB_CACHE_CR2 | \ 89 VMCB_CACHE_CR | \ 90 VMCB_CACHE_DT | \ 91 VMCB_CACHE_SEG | \ 92 VMCB_CACHE_NP) 93 94 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 95 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 96 0, NULL); 97 98 static MALLOC_DEFINE(M_SVM, "svm", "svm"); 99 static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); 100 101 /* Per-CPU context area. */ 102 extern struct pcpu __pcpu[]; 103 104 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 105 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0, 106 "SVM features advertised by CPUID.8000000AH:EDX"); 107 108 static int disable_npf_assist; 109 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, 110 &disable_npf_assist, 0, NULL); 111 112 /* Maximum ASIDs supported by the processor */ 113 static uint32_t nasid; 114 SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0, 115 "Number of ASIDs supported by this processor"); 116 117 /* Current ASID generation for each host cpu */ 118 static struct asid asid[MAXCPU]; 119 120 /* 121 * SVM host state saved area of size 4KB for each core. 122 */ 123 static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 124 125 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 126 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 127 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 128 129 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 130 131 static __inline int 132 flush_by_asid(void) 133 { 134 135 return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); 136 } 137 138 static __inline int 139 decode_assist(void) 140 { 141 142 return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); 143 } 144 145 static void 146 svm_disable(void *arg __unused) 147 { 148 uint64_t efer; 149 150 efer = rdmsr(MSR_EFER); 151 efer &= ~EFER_SVM; 152 wrmsr(MSR_EFER, efer); 153 } 154 155 /* 156 * Disable SVM on all CPUs. 157 */ 158 static int 159 svm_cleanup(void) 160 { 161 162 smp_rendezvous(NULL, svm_disable, NULL, NULL); 163 return (0); 164 } 165 166 /* 167 * Verify that all the features required by bhyve are available. 168 */ 169 static int 170 check_svm_features(void) 171 { 172 u_int regs[4]; 173 174 /* CPUID Fn8000_000A is for SVM */ 175 do_cpuid(0x8000000A, regs); 176 svm_feature &= regs[3]; 177 178 /* 179 * The number of ASIDs can be configured to be less than what is 180 * supported by the hardware but not more. 181 */ 182 if (nasid == 0 || nasid > regs[1]) 183 nasid = regs[1]; 184 KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); 185 186 /* bhyve requires the Nested Paging feature */ 187 if (!(svm_feature & AMD_CPUID_SVM_NP)) { 188 printf("SVM: Nested Paging feature not available.\n"); 189 return (ENXIO); 190 } 191 192 /* bhyve requires the NRIP Save feature */ 193 if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { 194 printf("SVM: NRIP Save feature not available.\n"); 195 return (ENXIO); 196 } 197 198 return (0); 199 } 200 201 static void 202 svm_enable(void *arg __unused) 203 { 204 uint64_t efer; 205 206 efer = rdmsr(MSR_EFER); 207 efer |= EFER_SVM; 208 wrmsr(MSR_EFER, efer); 209 210 wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); 211 } 212 213 /* 214 * Return 1 if SVM is enabled on this processor and 0 otherwise. 215 */ 216 static int 217 svm_available(void) 218 { 219 uint64_t msr; 220 221 /* Section 15.4 Enabling SVM from APM2. */ 222 if ((amd_feature2 & AMDID2_SVM) == 0) { 223 printf("SVM: not available.\n"); 224 return (0); 225 } 226 227 msr = rdmsr(MSR_VM_CR); 228 if ((msr & VM_CR_SVMDIS) != 0) { 229 printf("SVM: disabled by BIOS.\n"); 230 return (0); 231 } 232 233 return (1); 234 } 235 236 static int 237 svm_init(int ipinum) 238 { 239 int error, cpu; 240 241 if (!svm_available()) 242 return (ENXIO); 243 244 error = check_svm_features(); 245 if (error) 246 return (error); 247 248 vmcb_clean &= VMCB_CACHE_DEFAULT; 249 250 for (cpu = 0; cpu < MAXCPU; cpu++) { 251 /* 252 * Initialize the host ASIDs to their "highest" valid values. 253 * 254 * The next ASID allocation will rollover both 'gen' and 'num' 255 * and start off the sequence at {1,1}. 256 */ 257 asid[cpu].gen = ~0UL; 258 asid[cpu].num = nasid - 1; 259 } 260 261 svm_msr_init(); 262 svm_npt_init(ipinum); 263 264 /* Enable SVM on all CPUs */ 265 smp_rendezvous(NULL, svm_enable, NULL, NULL); 266 267 return (0); 268 } 269 270 static void 271 svm_restore(void) 272 { 273 274 svm_enable(NULL); 275 } 276 277 /* Pentium compatible MSRs */ 278 #define MSR_PENTIUM_START 0 279 #define MSR_PENTIUM_END 0x1FFF 280 /* AMD 6th generation and Intel compatible MSRs */ 281 #define MSR_AMD6TH_START 0xC0000000UL 282 #define MSR_AMD6TH_END 0xC0001FFFUL 283 /* AMD 7th and 8th generation compatible MSRs */ 284 #define MSR_AMD7TH_START 0xC0010000UL 285 #define MSR_AMD7TH_END 0xC0011FFFUL 286 287 /* 288 * Get the index and bit position for a MSR in permission bitmap. 289 * Two bits are used for each MSR: lower bit for read and higher bit for write. 290 */ 291 static int 292 svm_msr_index(uint64_t msr, int *index, int *bit) 293 { 294 uint32_t base, off; 295 296 *index = -1; 297 *bit = (msr % 4) * 2; 298 base = 0; 299 300 if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { 301 *index = msr / 4; 302 return (0); 303 } 304 305 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 306 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 307 off = (msr - MSR_AMD6TH_START); 308 *index = (off + base) / 4; 309 return (0); 310 } 311 312 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 313 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 314 off = (msr - MSR_AMD7TH_START); 315 *index = (off + base) / 4; 316 return (0); 317 } 318 319 return (EINVAL); 320 } 321 322 /* 323 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 324 */ 325 static void 326 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 327 { 328 int index, bit, error; 329 330 error = svm_msr_index(msr, &index, &bit); 331 KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); 332 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 333 ("%s: invalid index %d for msr %#lx", __func__, index, msr)); 334 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 335 "msr %#lx", __func__, bit, msr)); 336 337 if (read) 338 perm_bitmap[index] &= ~(1UL << bit); 339 340 if (write) 341 perm_bitmap[index] &= ~(2UL << bit); 342 } 343 344 static void 345 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 346 { 347 348 svm_msr_perm(perm_bitmap, msr, true, true); 349 } 350 351 static void 352 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 353 { 354 355 svm_msr_perm(perm_bitmap, msr, true, false); 356 } 357 358 static __inline int 359 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 360 { 361 struct vmcb_ctrl *ctrl; 362 363 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 364 365 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 366 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 367 } 368 369 static __inline void 370 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 371 int enabled) 372 { 373 struct vmcb_ctrl *ctrl; 374 uint32_t oldval; 375 376 KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); 377 378 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 379 oldval = ctrl->intercept[idx]; 380 381 if (enabled) 382 ctrl->intercept[idx] |= bitmask; 383 else 384 ctrl->intercept[idx] &= ~bitmask; 385 386 if (ctrl->intercept[idx] != oldval) { 387 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 388 VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " 389 "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); 390 } 391 } 392 393 static __inline void 394 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 395 { 396 397 svm_set_intercept(sc, vcpu, off, bitmask, 0); 398 } 399 400 static __inline void 401 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 402 { 403 404 svm_set_intercept(sc, vcpu, off, bitmask, 1); 405 } 406 407 static void 408 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 409 uint64_t msrpm_base_pa, uint64_t np_pml4) 410 { 411 struct vmcb_ctrl *ctrl; 412 struct vmcb_state *state; 413 uint32_t mask; 414 int n; 415 416 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 417 state = svm_get_vmcb_state(sc, vcpu); 418 419 ctrl->iopm_base_pa = iopm_base_pa; 420 ctrl->msrpm_base_pa = msrpm_base_pa; 421 422 /* Enable nested paging */ 423 ctrl->np_enable = 1; 424 ctrl->n_cr3 = np_pml4; 425 426 /* 427 * Intercept accesses to the control registers that are not shadowed 428 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 429 */ 430 for (n = 0; n < 16; n++) { 431 mask = (BIT(n) << 16) | BIT(n); 432 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 433 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 434 else 435 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 436 } 437 438 439 /* 440 * Intercept everything when tracing guest exceptions otherwise 441 * just intercept machine check exception. 442 */ 443 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 444 for (n = 0; n < 32; n++) { 445 /* 446 * Skip unimplemented vectors in the exception bitmap. 447 */ 448 if (n == 2 || n == 9) { 449 continue; 450 } 451 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 452 } 453 } else { 454 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 455 } 456 457 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 458 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 459 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 460 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 461 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 462 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 463 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 464 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 465 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 466 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 467 VMCB_INTCPT_FERR_FREEZE); 468 469 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 470 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 471 472 /* 473 * From section "Canonicalization and Consistency Checks" in APMv2 474 * the VMRUN intercept bit must be set to pass the consistency check. 475 */ 476 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 477 478 /* 479 * The ASID will be set to a non-zero value just before VMRUN. 480 */ 481 ctrl->asid = 0; 482 483 /* 484 * Section 15.21.1, Interrupt Masking in EFLAGS 485 * Section 15.21.2, Virtualizing APIC.TPR 486 * 487 * This must be set for %rflag and %cr8 isolation of guest and host. 488 */ 489 ctrl->v_intr_masking = 1; 490 491 /* Enable Last Branch Record aka LBR for debugging */ 492 ctrl->lbr_virt_en = 1; 493 state->dbgctl = BIT(0); 494 495 /* EFER_SVM must always be set when the guest is executing */ 496 state->efer = EFER_SVM; 497 498 /* Set up the PAT to power-on state */ 499 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 500 PAT_VALUE(1, PAT_WRITE_THROUGH) | 501 PAT_VALUE(2, PAT_UNCACHED) | 502 PAT_VALUE(3, PAT_UNCACHEABLE) | 503 PAT_VALUE(4, PAT_WRITE_BACK) | 504 PAT_VALUE(5, PAT_WRITE_THROUGH) | 505 PAT_VALUE(6, PAT_UNCACHED) | 506 PAT_VALUE(7, PAT_UNCACHEABLE); 507 } 508 509 /* 510 * Initialize a virtual machine. 511 */ 512 static void * 513 svm_vminit(struct vm *vm, pmap_t pmap) 514 { 515 struct svm_softc *svm_sc; 516 struct svm_vcpu *vcpu; 517 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 518 int i; 519 520 svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO); 521 svm_sc->vm = vm; 522 svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); 523 524 /* 525 * Intercept read and write accesses to all MSRs. 526 */ 527 memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap)); 528 529 /* 530 * Access to the following MSRs is redirected to the VMCB when the 531 * guest is executing. Therefore it is safe to allow the guest to 532 * read/write these MSRs directly without hypervisor involvement. 533 */ 534 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 535 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 536 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 537 538 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 539 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 540 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 541 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 542 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 543 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 544 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 545 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 546 547 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 548 549 /* 550 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 551 */ 552 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 553 554 /* Intercept access to all I/O ports. */ 555 memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap)); 556 557 iopm_pa = vtophys(svm_sc->iopm_bitmap); 558 msrpm_pa = vtophys(svm_sc->msr_bitmap); 559 pml4_pa = svm_sc->nptp; 560 for (i = 0; i < VM_MAXCPU; i++) { 561 vcpu = svm_get_vcpu(svm_sc, i); 562 vcpu->nextrip = ~0; 563 vcpu->lastcpu = NOCPU; 564 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 565 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 566 svm_msr_guest_init(svm_sc, i); 567 } 568 return (svm_sc); 569 } 570 571 /* 572 * Collateral for a generic SVM VM-exit. 573 */ 574 static void 575 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 576 { 577 578 vme->exitcode = VM_EXITCODE_SVM; 579 vme->u.svm.exitcode = code; 580 vme->u.svm.exitinfo1 = info1; 581 vme->u.svm.exitinfo2 = info2; 582 } 583 584 static int 585 svm_cpl(struct vmcb_state *state) 586 { 587 588 /* 589 * From APMv2: 590 * "Retrieve the CPL from the CPL field in the VMCB, not 591 * from any segment DPL" 592 */ 593 return (state->cpl); 594 } 595 596 static enum vm_cpu_mode 597 svm_vcpu_mode(struct vmcb *vmcb) 598 { 599 struct vmcb_segment seg; 600 struct vmcb_state *state; 601 int error; 602 603 state = &vmcb->state; 604 605 if (state->efer & EFER_LMA) { 606 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 607 KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, 608 error)); 609 610 /* 611 * Section 4.8.1 for APM2, check if Code Segment has 612 * Long attribute set in descriptor. 613 */ 614 if (seg.attrib & VMCB_CS_ATTRIB_L) 615 return (CPU_MODE_64BIT); 616 else 617 return (CPU_MODE_COMPATIBILITY); 618 } else if (state->cr0 & CR0_PE) { 619 return (CPU_MODE_PROTECTED); 620 } else { 621 return (CPU_MODE_REAL); 622 } 623 } 624 625 static enum vm_paging_mode 626 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 627 { 628 629 if ((cr0 & CR0_PG) == 0) 630 return (PAGING_MODE_FLAT); 631 if ((cr4 & CR4_PAE) == 0) 632 return (PAGING_MODE_32); 633 if (efer & EFER_LME) 634 return (PAGING_MODE_64); 635 else 636 return (PAGING_MODE_PAE); 637 } 638 639 /* 640 * ins/outs utility routines 641 */ 642 static uint64_t 643 svm_inout_str_index(struct svm_regctx *regs, int in) 644 { 645 uint64_t val; 646 647 val = in ? regs->sctx_rdi : regs->sctx_rsi; 648 649 return (val); 650 } 651 652 static uint64_t 653 svm_inout_str_count(struct svm_regctx *regs, int rep) 654 { 655 uint64_t val; 656 657 val = rep ? regs->sctx_rcx : 1; 658 659 return (val); 660 } 661 662 static void 663 svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, 664 int in, struct vm_inout_str *vis) 665 { 666 int error, s; 667 668 if (in) { 669 vis->seg_name = VM_REG_GUEST_ES; 670 } else { 671 /* The segment field has standard encoding */ 672 s = (info1 >> 10) & 0x7; 673 vis->seg_name = vm_segment_name(s); 674 } 675 676 error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); 677 KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); 678 } 679 680 static int 681 svm_inout_str_addrsize(uint64_t info1) 682 { 683 uint32_t size; 684 685 size = (info1 >> 7) & 0x7; 686 switch (size) { 687 case 1: 688 return (2); /* 16 bit */ 689 case 2: 690 return (4); /* 32 bit */ 691 case 4: 692 return (8); /* 64 bit */ 693 default: 694 panic("%s: invalid size encoding %d", __func__, size); 695 } 696 } 697 698 static void 699 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 700 { 701 struct vmcb_state *state; 702 703 state = &vmcb->state; 704 paging->cr3 = state->cr3; 705 paging->cpl = svm_cpl(state); 706 paging->cpu_mode = svm_vcpu_mode(vmcb); 707 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 708 state->efer); 709 } 710 711 #define UNHANDLED 0 712 713 /* 714 * Handle guest I/O intercept. 715 */ 716 static int 717 svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 718 { 719 struct vmcb_ctrl *ctrl; 720 struct vmcb_state *state; 721 struct svm_regctx *regs; 722 struct vm_inout_str *vis; 723 uint64_t info1; 724 int inout_string; 725 726 state = svm_get_vmcb_state(svm_sc, vcpu); 727 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 728 regs = svm_get_guest_regctx(svm_sc, vcpu); 729 730 info1 = ctrl->exitinfo1; 731 inout_string = info1 & BIT(2) ? 1 : 0; 732 733 /* 734 * The effective segment number in EXITINFO1[12:10] is populated 735 * only if the processor has the DecodeAssist capability. 736 * 737 * XXX this is not specified explicitly in APMv2 but can be verified 738 * empirically. 739 */ 740 if (inout_string && !decode_assist()) 741 return (UNHANDLED); 742 743 vmexit->exitcode = VM_EXITCODE_INOUT; 744 vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; 745 vmexit->u.inout.string = inout_string; 746 vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; 747 vmexit->u.inout.bytes = (info1 >> 4) & 0x7; 748 vmexit->u.inout.port = (uint16_t)(info1 >> 16); 749 vmexit->u.inout.eax = (uint32_t)(state->rax); 750 751 if (inout_string) { 752 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 753 vis = &vmexit->u.inout_str; 754 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); 755 vis->rflags = state->rflags; 756 vis->cr0 = state->cr0; 757 vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); 758 vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); 759 vis->addrsize = svm_inout_str_addrsize(info1); 760 svm_inout_str_seginfo(svm_sc, vcpu, info1, 761 vmexit->u.inout.in, vis); 762 } 763 764 return (UNHANDLED); 765 } 766 767 static int 768 npf_fault_type(uint64_t exitinfo1) 769 { 770 771 if (exitinfo1 & VMCB_NPF_INFO1_W) 772 return (VM_PROT_WRITE); 773 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 774 return (VM_PROT_EXECUTE); 775 else 776 return (VM_PROT_READ); 777 } 778 779 static bool 780 svm_npf_emul_fault(uint64_t exitinfo1) 781 { 782 783 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 784 return (false); 785 } 786 787 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 788 return (false); 789 } 790 791 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 792 return (false); 793 } 794 795 return (true); 796 } 797 798 static void 799 svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) 800 { 801 struct vm_guest_paging *paging; 802 struct vmcb_segment seg; 803 struct vmcb_ctrl *ctrl; 804 char *inst_bytes; 805 int error, inst_len; 806 807 ctrl = &vmcb->ctrl; 808 paging = &vmexit->u.inst_emul.paging; 809 810 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 811 vmexit->u.inst_emul.gpa = gpa; 812 vmexit->u.inst_emul.gla = VIE_INVALID_GLA; 813 svm_paging_info(vmcb, paging); 814 815 error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); 816 KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); 817 818 switch(paging->cpu_mode) { 819 case CPU_MODE_REAL: 820 vmexit->u.inst_emul.cs_base = seg.base; 821 vmexit->u.inst_emul.cs_d = 0; 822 break; 823 case CPU_MODE_PROTECTED: 824 case CPU_MODE_COMPATIBILITY: 825 vmexit->u.inst_emul.cs_base = seg.base; 826 827 /* 828 * Section 4.8.1 of APM2, Default Operand Size or D bit. 829 */ 830 vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 831 1 : 0; 832 break; 833 default: 834 vmexit->u.inst_emul.cs_base = 0; 835 vmexit->u.inst_emul.cs_d = 0; 836 break; 837 } 838 839 /* 840 * Copy the instruction bytes into 'vie' if available. 841 */ 842 if (decode_assist() && !disable_npf_assist) { 843 inst_len = ctrl->inst_len; 844 inst_bytes = ctrl->inst_bytes; 845 } else { 846 inst_len = 0; 847 inst_bytes = NULL; 848 } 849 vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); 850 } 851 852 #ifdef KTR 853 static const char * 854 intrtype_to_str(int intr_type) 855 { 856 switch (intr_type) { 857 case VMCB_EVENTINJ_TYPE_INTR: 858 return ("hwintr"); 859 case VMCB_EVENTINJ_TYPE_NMI: 860 return ("nmi"); 861 case VMCB_EVENTINJ_TYPE_INTn: 862 return ("swintr"); 863 case VMCB_EVENTINJ_TYPE_EXCEPTION: 864 return ("exception"); 865 default: 866 panic("%s: unknown intr_type %d", __func__, intr_type); 867 } 868 } 869 #endif 870 871 /* 872 * Inject an event to vcpu as described in section 15.20, "Event injection". 873 */ 874 static void 875 svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, 876 uint32_t error, bool ec_valid) 877 { 878 struct vmcb_ctrl *ctrl; 879 880 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 881 882 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, 883 ("%s: event already pending %#lx", __func__, ctrl->eventinj)); 884 885 KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", 886 __func__, vector)); 887 888 switch (intr_type) { 889 case VMCB_EVENTINJ_TYPE_INTR: 890 case VMCB_EVENTINJ_TYPE_NMI: 891 case VMCB_EVENTINJ_TYPE_INTn: 892 break; 893 case VMCB_EVENTINJ_TYPE_EXCEPTION: 894 if (vector >= 0 && vector <= 31 && vector != 2) 895 break; 896 /* FALLTHROUGH */ 897 default: 898 panic("%s: invalid intr_type/vector: %d/%d", __func__, 899 intr_type, vector); 900 } 901 ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; 902 if (ec_valid) { 903 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 904 ctrl->eventinj |= (uint64_t)error << 32; 905 VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", 906 intrtype_to_str(intr_type), vector, error); 907 } else { 908 VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", 909 intrtype_to_str(intr_type), vector); 910 } 911 } 912 913 static void 914 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 915 { 916 struct vm *vm; 917 struct vlapic *vlapic; 918 struct vmcb_ctrl *ctrl; 919 int pending; 920 921 vm = sc->vm; 922 vlapic = vm_lapic(vm, vcpu); 923 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 924 925 /* Update %cr8 in the emulated vlapic */ 926 vlapic_set_cr8(vlapic, ctrl->v_tpr); 927 928 /* 929 * If V_IRQ indicates that the interrupt injection attempted on then 930 * last VMRUN was successful then update the vlapic accordingly. 931 */ 932 if (ctrl->v_intr_vector != 0) { 933 pending = ctrl->v_irq; 934 KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid " 935 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 936 KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 937 VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector, 938 pending ? "pending" : "accepted"); 939 if (!pending) 940 vlapic_intr_accepted(vlapic, ctrl->v_intr_vector); 941 } 942 } 943 944 static void 945 svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) 946 { 947 struct vmcb_ctrl *ctrl; 948 uint64_t intinfo; 949 950 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 951 intinfo = ctrl->exitintinfo; 952 if (!VMCB_EXITINTINFO_VALID(intinfo)) 953 return; 954 955 /* 956 * From APMv2, Section "Intercepts during IDT interrupt delivery" 957 * 958 * If a #VMEXIT happened during event delivery then record the event 959 * that was being delivered. 960 */ 961 VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", 962 intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); 963 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 964 vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); 965 } 966 967 static __inline int 968 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 969 { 970 971 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 972 VMCB_INTCPT_VINTR)); 973 } 974 975 static __inline void 976 enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 977 { 978 struct vmcb_ctrl *ctrl; 979 980 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 981 982 if (ctrl->v_irq && ctrl->v_intr_vector == 0) { 983 KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); 984 KASSERT(vintr_intercept_enabled(sc, vcpu), 985 ("%s: vintr intercept should be enabled", __func__)); 986 return; 987 } 988 989 VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); 990 ctrl->v_irq = 1; 991 ctrl->v_ign_tpr = 1; 992 ctrl->v_intr_vector = 0; 993 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 994 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 995 } 996 997 static __inline void 998 disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 999 { 1000 struct vmcb_ctrl *ctrl; 1001 1002 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1003 1004 if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { 1005 KASSERT(!vintr_intercept_enabled(sc, vcpu), 1006 ("%s: vintr intercept should be disabled", __func__)); 1007 return; 1008 } 1009 1010 #ifdef KTR 1011 if (ctrl->v_intr_vector == 0) 1012 VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); 1013 else 1014 VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection"); 1015 #endif 1016 ctrl->v_irq = 0; 1017 ctrl->v_intr_vector = 0; 1018 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1019 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1020 } 1021 1022 static int 1023 svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val) 1024 { 1025 struct vmcb_ctrl *ctrl; 1026 int oldval, newval; 1027 1028 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1029 oldval = ctrl->intr_shadow; 1030 newval = val ? 1 : 0; 1031 if (newval != oldval) { 1032 ctrl->intr_shadow = newval; 1033 VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval); 1034 } 1035 return (0); 1036 } 1037 1038 static int 1039 svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val) 1040 { 1041 struct vmcb_ctrl *ctrl; 1042 1043 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1044 *val = ctrl->intr_shadow; 1045 return (0); 1046 } 1047 1048 /* 1049 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1050 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1051 * to track when the vcpu is done handling the NMI. 1052 */ 1053 static int 1054 nmi_blocked(struct svm_softc *sc, int vcpu) 1055 { 1056 int blocked; 1057 1058 blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1059 VMCB_INTCPT_IRET); 1060 return (blocked); 1061 } 1062 1063 static void 1064 enable_nmi_blocking(struct svm_softc *sc, int vcpu) 1065 { 1066 1067 KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked")); 1068 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled"); 1069 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1070 } 1071 1072 static void 1073 clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1074 { 1075 int error; 1076 1077 KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1078 VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared"); 1079 /* 1080 * When the IRET intercept is cleared the vcpu will attempt to execute 1081 * the "iret" when it runs next. However, it is possible to inject 1082 * another NMI into the vcpu before the "iret" has actually executed. 1083 * 1084 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1085 * it will trap back into the hypervisor. If an NMI is pending for 1086 * the vcpu it will be injected into the guest. 1087 * 1088 * XXX this needs to be fixed 1089 */ 1090 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1091 1092 /* 1093 * Set 'intr_shadow' to prevent an NMI from being injected on the 1094 * immediate VMRUN. 1095 */ 1096 error = svm_modify_intr_shadow(sc, vcpu, 1); 1097 KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); 1098 } 1099 1100 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1101 1102 static int 1103 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu) 1104 { 1105 struct vm_exit *vme; 1106 struct vmcb_state *state; 1107 uint64_t changed, lma, oldval; 1108 int error; 1109 1110 state = svm_get_vmcb_state(sc, vcpu); 1111 1112 oldval = state->efer; 1113 VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval); 1114 1115 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1116 changed = oldval ^ newval; 1117 1118 if (newval & EFER_MBZ_BITS) 1119 goto gpf; 1120 1121 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1122 if (changed & EFER_LME) { 1123 if (state->cr0 & CR0_PG) 1124 goto gpf; 1125 } 1126 1127 /* EFER.LMA = EFER.LME & CR0.PG */ 1128 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) 1129 lma = EFER_LMA; 1130 else 1131 lma = 0; 1132 1133 if ((newval & EFER_LMA) != lma) 1134 goto gpf; 1135 1136 if (newval & EFER_NXE) { 1137 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) 1138 goto gpf; 1139 } 1140 1141 /* 1142 * XXX bhyve does not enforce segment limits in 64-bit mode. Until 1143 * this is fixed flag guest attempt to set EFER_LMSLE as an error. 1144 */ 1145 if (newval & EFER_LMSLE) { 1146 vme = vm_exitinfo(sc->vm, vcpu); 1147 vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0); 1148 *retu = true; 1149 return (0); 1150 } 1151 1152 if (newval & EFER_FFXSR) { 1153 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) 1154 goto gpf; 1155 } 1156 1157 if (newval & EFER_TCE) { 1158 if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) 1159 goto gpf; 1160 } 1161 1162 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); 1163 KASSERT(error == 0, ("%s: error %d updating efer", __func__, error)); 1164 return (0); 1165 gpf: 1166 vm_inject_gp(sc->vm, vcpu); 1167 return (0); 1168 } 1169 1170 static int 1171 emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val, 1172 bool *retu) 1173 { 1174 int error; 1175 1176 if (lapic_msr(num)) 1177 error = lapic_wrmsr(sc->vm, vcpu, num, val, retu); 1178 else if (num == MSR_EFER) 1179 error = svm_write_efer(sc, vcpu, val, retu); 1180 else 1181 error = svm_wrmsr(sc, vcpu, num, val, retu); 1182 1183 return (error); 1184 } 1185 1186 static int 1187 emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu) 1188 { 1189 struct vmcb_state *state; 1190 struct svm_regctx *ctx; 1191 uint64_t result; 1192 int error; 1193 1194 if (lapic_msr(num)) 1195 error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu); 1196 else 1197 error = svm_rdmsr(sc, vcpu, num, &result, retu); 1198 1199 if (error == 0) { 1200 state = svm_get_vmcb_state(sc, vcpu); 1201 ctx = svm_get_guest_regctx(sc, vcpu); 1202 state->rax = result & 0xffffffff; 1203 ctx->sctx_rdx = result >> 32; 1204 } 1205 1206 return (error); 1207 } 1208 1209 #ifdef KTR 1210 static const char * 1211 exit_reason_to_str(uint64_t reason) 1212 { 1213 static char reasonbuf[32]; 1214 1215 switch (reason) { 1216 case VMCB_EXIT_INVALID: 1217 return ("invalvmcb"); 1218 case VMCB_EXIT_SHUTDOWN: 1219 return ("shutdown"); 1220 case VMCB_EXIT_NPF: 1221 return ("nptfault"); 1222 case VMCB_EXIT_PAUSE: 1223 return ("pause"); 1224 case VMCB_EXIT_HLT: 1225 return ("hlt"); 1226 case VMCB_EXIT_CPUID: 1227 return ("cpuid"); 1228 case VMCB_EXIT_IO: 1229 return ("inout"); 1230 case VMCB_EXIT_MC: 1231 return ("mchk"); 1232 case VMCB_EXIT_INTR: 1233 return ("extintr"); 1234 case VMCB_EXIT_NMI: 1235 return ("nmi"); 1236 case VMCB_EXIT_VINTR: 1237 return ("vintr"); 1238 case VMCB_EXIT_MSR: 1239 return ("msr"); 1240 case VMCB_EXIT_IRET: 1241 return ("iret"); 1242 case VMCB_EXIT_MONITOR: 1243 return ("monitor"); 1244 case VMCB_EXIT_MWAIT: 1245 return ("mwait"); 1246 default: 1247 snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); 1248 return (reasonbuf); 1249 } 1250 } 1251 #endif /* KTR */ 1252 1253 /* 1254 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1255 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1256 * and exceptions caused by INT3, INTO and BOUND instructions. 1257 * 1258 * Return 1 if the nRIP is valid and 0 otherwise. 1259 */ 1260 static int 1261 nrip_valid(uint64_t exitcode) 1262 { 1263 switch (exitcode) { 1264 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1265 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1266 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1267 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1268 case 0x43: /* INT3 */ 1269 case 0x44: /* INTO */ 1270 case 0x45: /* BOUND */ 1271 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1272 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1273 return (1); 1274 default: 1275 return (0); 1276 } 1277 } 1278 1279 static int 1280 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1281 { 1282 struct vmcb *vmcb; 1283 struct vmcb_state *state; 1284 struct vmcb_ctrl *ctrl; 1285 struct svm_regctx *ctx; 1286 uint64_t code, info1, info2, val; 1287 uint32_t eax, ecx, edx; 1288 int error, errcode_valid, handled, idtvec, reflect; 1289 bool retu; 1290 1291 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1292 vmcb = svm_get_vmcb(svm_sc, vcpu); 1293 state = &vmcb->state; 1294 ctrl = &vmcb->ctrl; 1295 1296 handled = 0; 1297 code = ctrl->exitcode; 1298 info1 = ctrl->exitinfo1; 1299 info2 = ctrl->exitinfo2; 1300 1301 vmexit->exitcode = VM_EXITCODE_BOGUS; 1302 vmexit->rip = state->rip; 1303 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1304 1305 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1306 1307 /* 1308 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1309 * in an inconsistent state and can trigger assertions that would 1310 * never happen otherwise. 1311 */ 1312 if (code == VMCB_EXIT_INVALID) { 1313 vm_exit_svm(vmexit, code, info1, info2); 1314 return (0); 1315 } 1316 1317 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1318 "injection valid bit is set %#lx", __func__, ctrl->eventinj)); 1319 1320 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1321 ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", 1322 vmexit->inst_length, code, info1, info2)); 1323 1324 svm_update_virqinfo(svm_sc, vcpu); 1325 svm_save_intinfo(svm_sc, vcpu); 1326 1327 switch (code) { 1328 case VMCB_EXIT_IRET: 1329 /* 1330 * Restart execution at "iret" but with the intercept cleared. 1331 */ 1332 vmexit->inst_length = 0; 1333 clear_nmi_blocking(svm_sc, vcpu); 1334 handled = 1; 1335 break; 1336 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1337 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1338 handled = 1; 1339 break; 1340 case VMCB_EXIT_INTR: /* external interrupt */ 1341 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1342 handled = 1; 1343 break; 1344 case VMCB_EXIT_NMI: /* external NMI */ 1345 handled = 1; 1346 break; 1347 case 0x40 ... 0x5F: 1348 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1349 reflect = 1; 1350 idtvec = code - 0x40; 1351 switch (idtvec) { 1352 case IDT_MC: 1353 /* 1354 * Call the machine check handler by hand. Also don't 1355 * reflect the machine check back into the guest. 1356 */ 1357 reflect = 0; 1358 VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler"); 1359 __asm __volatile("int $18"); 1360 break; 1361 case IDT_PF: 1362 error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1363 info2); 1364 KASSERT(error == 0, ("%s: error %d updating cr2", 1365 __func__, error)); 1366 /* fallthru */ 1367 case IDT_NP: 1368 case IDT_SS: 1369 case IDT_GP: 1370 case IDT_AC: 1371 case IDT_TS: 1372 errcode_valid = 1; 1373 break; 1374 1375 case IDT_DF: 1376 errcode_valid = 1; 1377 info1 = 0; 1378 break; 1379 1380 case IDT_BP: 1381 case IDT_OF: 1382 case IDT_BR: 1383 /* 1384 * The 'nrip' field is populated for INT3, INTO and 1385 * BOUND exceptions and this also implies that 1386 * 'inst_length' is non-zero. 1387 * 1388 * Reset 'inst_length' to zero so the guest %rip at 1389 * event injection is identical to what it was when 1390 * the exception originally happened. 1391 */ 1392 VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d " 1393 "to zero before injecting exception %d", 1394 vmexit->inst_length, idtvec); 1395 vmexit->inst_length = 0; 1396 /* fallthru */ 1397 default: 1398 errcode_valid = 0; 1399 info1 = 0; 1400 break; 1401 } 1402 KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " 1403 "when reflecting exception %d into guest", 1404 vmexit->inst_length, idtvec)); 1405 1406 if (reflect) { 1407 /* Reflect the exception back into the guest */ 1408 VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception " 1409 "%d/%#x into the guest", idtvec, (int)info1); 1410 error = vm_inject_exception(svm_sc->vm, vcpu, idtvec, 1411 errcode_valid, info1, 0); 1412 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 1413 __func__, error)); 1414 } 1415 handled = 1; 1416 break; 1417 case VMCB_EXIT_MSR: /* MSR access. */ 1418 eax = state->rax; 1419 ecx = ctx->sctx_rcx; 1420 edx = ctx->sctx_rdx; 1421 retu = false; 1422 1423 if (info1) { 1424 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1425 val = (uint64_t)edx << 32 | eax; 1426 VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx", 1427 ecx, val); 1428 if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { 1429 vmexit->exitcode = VM_EXITCODE_WRMSR; 1430 vmexit->u.msr.code = ecx; 1431 vmexit->u.msr.wval = val; 1432 } else if (!retu) { 1433 handled = 1; 1434 } else { 1435 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1436 ("emulate_wrmsr retu with bogus exitcode")); 1437 } 1438 } else { 1439 VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx); 1440 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1441 if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) { 1442 vmexit->exitcode = VM_EXITCODE_RDMSR; 1443 vmexit->u.msr.code = ecx; 1444 } else if (!retu) { 1445 handled = 1; 1446 } else { 1447 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1448 ("emulate_rdmsr retu with bogus exitcode")); 1449 } 1450 } 1451 break; 1452 case VMCB_EXIT_IO: 1453 handled = svm_handle_io(svm_sc, vcpu, vmexit); 1454 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1455 break; 1456 case VMCB_EXIT_CPUID: 1457 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1458 handled = x86_emulate_cpuid(svm_sc->vm, vcpu, 1459 (uint32_t *)&state->rax, 1460 (uint32_t *)&ctx->sctx_rbx, 1461 (uint32_t *)&ctx->sctx_rcx, 1462 (uint32_t *)&ctx->sctx_rdx); 1463 break; 1464 case VMCB_EXIT_HLT: 1465 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1466 vmexit->exitcode = VM_EXITCODE_HLT; 1467 vmexit->u.hlt.rflags = state->rflags; 1468 break; 1469 case VMCB_EXIT_PAUSE: 1470 vmexit->exitcode = VM_EXITCODE_PAUSE; 1471 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1472 break; 1473 case VMCB_EXIT_NPF: 1474 /* EXITINFO2 contains the faulting guest physical address */ 1475 if (info1 & VMCB_NPF_INFO1_RSV) { 1476 VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " 1477 "reserved bits set: info1(%#lx) info2(%#lx)", 1478 info1, info2); 1479 } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { 1480 vmexit->exitcode = VM_EXITCODE_PAGING; 1481 vmexit->u.paging.gpa = info2; 1482 vmexit->u.paging.fault_type = npf_fault_type(info1); 1483 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1484 VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " 1485 "on gpa %#lx/%#lx at rip %#lx", 1486 info2, info1, state->rip); 1487 } else if (svm_npf_emul_fault(info1)) { 1488 svm_handle_inst_emul(vmcb, info2, vmexit); 1489 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); 1490 VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " 1491 "for gpa %#lx/%#lx at rip %#lx", 1492 info2, info1, state->rip); 1493 } 1494 break; 1495 case VMCB_EXIT_MONITOR: 1496 vmexit->exitcode = VM_EXITCODE_MONITOR; 1497 break; 1498 case VMCB_EXIT_MWAIT: 1499 vmexit->exitcode = VM_EXITCODE_MWAIT; 1500 break; 1501 default: 1502 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1503 break; 1504 } 1505 1506 VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d", 1507 handled ? "handled" : "unhandled", exit_reason_to_str(code), 1508 vmexit->rip, vmexit->inst_length); 1509 1510 if (handled) { 1511 vmexit->rip += vmexit->inst_length; 1512 vmexit->inst_length = 0; 1513 state->rip = vmexit->rip; 1514 } else { 1515 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1516 /* 1517 * If this VM exit was not claimed by anybody then 1518 * treat it as a generic SVM exit. 1519 */ 1520 vm_exit_svm(vmexit, code, info1, info2); 1521 } else { 1522 /* 1523 * The exitcode and collateral have been populated. 1524 * The VM exit will be processed further in userland. 1525 */ 1526 } 1527 } 1528 return (handled); 1529 } 1530 1531 static void 1532 svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) 1533 { 1534 uint64_t intinfo; 1535 1536 if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) 1537 return; 1538 1539 KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " 1540 "valid: %#lx", __func__, intinfo)); 1541 1542 svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), 1543 VMCB_EXITINTINFO_VECTOR(intinfo), 1544 VMCB_EXITINTINFO_EC(intinfo), 1545 VMCB_EXITINTINFO_EC_VALID(intinfo)); 1546 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1547 VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); 1548 } 1549 1550 /* 1551 * Inject event to virtual cpu. 1552 */ 1553 static void 1554 svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) 1555 { 1556 struct vmcb_ctrl *ctrl; 1557 struct vmcb_state *state; 1558 struct svm_vcpu *vcpustate; 1559 uint8_t v_tpr; 1560 int vector, need_intr_window, pending_apic_vector; 1561 1562 state = svm_get_vmcb_state(sc, vcpu); 1563 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1564 vcpustate = svm_get_vcpu(sc, vcpu); 1565 1566 need_intr_window = 0; 1567 pending_apic_vector = 0; 1568 1569 if (vcpustate->nextrip != state->rip) { 1570 ctrl->intr_shadow = 0; 1571 VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking " 1572 "cleared due to rip change: %#lx/%#lx", 1573 vcpustate->nextrip, state->rip); 1574 } 1575 1576 /* 1577 * Inject pending events or exceptions for this vcpu. 1578 * 1579 * An event might be pending because the previous #VMEXIT happened 1580 * during event delivery (i.e. ctrl->exitintinfo). 1581 * 1582 * An event might also be pending because an exception was injected 1583 * by the hypervisor (e.g. #PF during instruction emulation). 1584 */ 1585 svm_inj_intinfo(sc, vcpu); 1586 1587 /* NMI event has priority over interrupts. */ 1588 if (vm_nmi_pending(sc->vm, vcpu)) { 1589 if (nmi_blocked(sc, vcpu)) { 1590 /* 1591 * Can't inject another NMI if the guest has not 1592 * yet executed an "iret" after the last NMI. 1593 */ 1594 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " 1595 "to NMI-blocking"); 1596 } else if (ctrl->intr_shadow) { 1597 /* 1598 * Can't inject an NMI if the vcpu is in an intr_shadow. 1599 */ 1600 VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to " 1601 "interrupt shadow"); 1602 need_intr_window = 1; 1603 goto done; 1604 } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1605 /* 1606 * If there is already an exception/interrupt pending 1607 * then defer the NMI until after that. 1608 */ 1609 VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " 1610 "eventinj %#lx", ctrl->eventinj); 1611 1612 /* 1613 * Use self-IPI to trigger a VM-exit as soon as 1614 * possible after the event injection is completed. 1615 * 1616 * This works only if the external interrupt exiting 1617 * is at a lower priority than the event injection. 1618 * 1619 * Although not explicitly specified in APMv2 the 1620 * relative priorities were verified empirically. 1621 */ 1622 ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ 1623 } else { 1624 vm_nmi_clear(sc->vm, vcpu); 1625 1626 /* Inject NMI, vector number is not used */ 1627 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, 1628 IDT_NMI, 0, false); 1629 1630 /* virtual NMI blocking is now in effect */ 1631 enable_nmi_blocking(sc, vcpu); 1632 1633 VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); 1634 } 1635 } 1636 1637 if (!vm_extint_pending(sc->vm, vcpu)) { 1638 /* 1639 * APIC interrupts are delivered using the V_IRQ offload. 1640 * 1641 * The primary benefit is that the hypervisor doesn't need to 1642 * deal with the various conditions that inhibit interrupts. 1643 * It also means that TPR changes via CR8 will be handled 1644 * without any hypervisor involvement. 1645 * 1646 * Note that the APIC vector must remain pending in the vIRR 1647 * until it is confirmed that it was delivered to the guest. 1648 * This can be confirmed based on the value of V_IRQ at the 1649 * next #VMEXIT (1 = pending, 0 = delivered). 1650 * 1651 * Also note that it is possible that another higher priority 1652 * vector can become pending before this vector is delivered 1653 * to the guest. This is alright because vcpu_notify_event() 1654 * will send an IPI and force the vcpu to trap back into the 1655 * hypervisor. The higher priority vector will be injected on 1656 * the next VMRUN. 1657 */ 1658 if (vlapic_pending_intr(vlapic, &vector)) { 1659 KASSERT(vector >= 16 && vector <= 255, 1660 ("invalid vector %d from local APIC", vector)); 1661 pending_apic_vector = vector; 1662 } 1663 goto done; 1664 } 1665 1666 /* Ask the legacy pic for a vector to inject */ 1667 vatpic_pending_intr(sc->vm, &vector); 1668 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR", 1669 vector)); 1670 1671 /* 1672 * If the guest has disabled interrupts or is in an interrupt shadow 1673 * then we cannot inject the pending interrupt. 1674 */ 1675 if ((state->rflags & PSL_I) == 0) { 1676 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1677 "rflags %#lx", vector, state->rflags); 1678 need_intr_window = 1; 1679 goto done; 1680 } 1681 1682 if (ctrl->intr_shadow) { 1683 VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " 1684 "interrupt shadow", vector); 1685 need_intr_window = 1; 1686 goto done; 1687 } 1688 1689 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1690 VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " 1691 "eventinj %#lx", vector, ctrl->eventinj); 1692 need_intr_window = 1; 1693 goto done; 1694 } 1695 1696 /* 1697 * Legacy PIC interrupts are delivered via the event injection 1698 * mechanism. 1699 */ 1700 svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); 1701 1702 vm_extint_clear(sc->vm, vcpu); 1703 vatpic_intr_accepted(sc->vm, vector); 1704 1705 /* 1706 * Force a VM-exit as soon as the vcpu is ready to accept another 1707 * interrupt. This is done because the PIC might have another vector 1708 * that it wants to inject. Also, if the APIC has a pending interrupt 1709 * that was preempted by the ExtInt then it allows us to inject the 1710 * APIC vector as soon as possible. 1711 */ 1712 need_intr_window = 1; 1713 done: 1714 /* 1715 * The guest can modify the TPR by writing to %CR8. In guest mode 1716 * the processor reflects this write to V_TPR without hypervisor 1717 * intervention. 1718 * 1719 * The guest can also modify the TPR by writing to it via the memory 1720 * mapped APIC page. In this case, the write will be emulated by the 1721 * hypervisor. For this reason V_TPR must be updated before every 1722 * VMRUN. 1723 */ 1724 v_tpr = vlapic_get_cr8(vlapic); 1725 KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); 1726 if (ctrl->v_tpr != v_tpr) { 1727 VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x", 1728 ctrl->v_tpr, v_tpr); 1729 ctrl->v_tpr = v_tpr; 1730 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1731 } 1732 1733 if (pending_apic_vector) { 1734 /* 1735 * If an APIC vector is being injected then interrupt window 1736 * exiting is not possible on this VMRUN. 1737 */ 1738 KASSERT(!need_intr_window, ("intr_window exiting impossible")); 1739 VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ", 1740 pending_apic_vector); 1741 1742 ctrl->v_irq = 1; 1743 ctrl->v_ign_tpr = 0; 1744 ctrl->v_intr_vector = pending_apic_vector; 1745 ctrl->v_intr_prio = pending_apic_vector >> 4; 1746 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1747 } else if (need_intr_window) { 1748 /* 1749 * We use V_IRQ in conjunction with the VINTR intercept to 1750 * trap into the hypervisor as soon as a virtual interrupt 1751 * can be delivered. 1752 * 1753 * Since injected events are not subject to intercept checks 1754 * we need to ensure that the V_IRQ is not actually going to 1755 * be delivered on VM entry. The KASSERT below enforces this. 1756 */ 1757 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1758 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, 1759 ("Bogus intr_window_exiting: eventinj (%#lx), " 1760 "intr_shadow (%u), rflags (%#lx)", 1761 ctrl->eventinj, ctrl->intr_shadow, state->rflags)); 1762 enable_intr_window_exiting(sc, vcpu); 1763 } else { 1764 disable_intr_window_exiting(sc, vcpu); 1765 } 1766 } 1767 1768 static __inline void 1769 restore_host_tss(void) 1770 { 1771 struct system_segment_descriptor *tss_sd; 1772 1773 /* 1774 * The TSS descriptor was in use prior to launching the guest so it 1775 * has been marked busy. 1776 * 1777 * 'ltr' requires the descriptor to be marked available so change the 1778 * type to "64-bit available TSS". 1779 */ 1780 tss_sd = PCPU_GET(tss); 1781 tss_sd->sd_type = SDT_SYSTSS; 1782 ltr(GSEL(GPROC0_SEL, SEL_KPL)); 1783 } 1784 1785 static void 1786 check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu) 1787 { 1788 struct svm_vcpu *vcpustate; 1789 struct vmcb_ctrl *ctrl; 1790 long eptgen; 1791 bool alloc_asid; 1792 1793 KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not " 1794 "active on cpu %u", __func__, thiscpu)); 1795 1796 vcpustate = svm_get_vcpu(sc, vcpuid); 1797 ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1798 1799 /* 1800 * The TLB entries associated with the vcpu's ASID are not valid 1801 * if either of the following conditions is true: 1802 * 1803 * 1. The vcpu's ASID generation is different than the host cpu's 1804 * ASID generation. This happens when the vcpu migrates to a new 1805 * host cpu. It can also happen when the number of vcpus executing 1806 * on a host cpu is greater than the number of ASIDs available. 1807 * 1808 * 2. The pmap generation number is different than the value cached in 1809 * the 'vcpustate'. This happens when the host invalidates pages 1810 * belonging to the guest. 1811 * 1812 * asidgen eptgen Action 1813 * mismatch mismatch 1814 * 0 0 (a) 1815 * 0 1 (b1) or (b2) 1816 * 1 0 (c) 1817 * 1 1 (d) 1818 * 1819 * (a) There is no mismatch in eptgen or ASID generation and therefore 1820 * no further action is needed. 1821 * 1822 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is 1823 * retained and the TLB entries associated with this ASID 1824 * are flushed by VMRUN. 1825 * 1826 * (b2) If the cpu does not support FlushByAsid then a new ASID is 1827 * allocated. 1828 * 1829 * (c) A new ASID is allocated. 1830 * 1831 * (d) A new ASID is allocated. 1832 */ 1833 1834 alloc_asid = false; 1835 eptgen = pmap->pm_eptgen; 1836 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; 1837 1838 if (vcpustate->asid.gen != asid[thiscpu].gen) { 1839 alloc_asid = true; /* (c) and (d) */ 1840 } else if (vcpustate->eptgen != eptgen) { 1841 if (flush_by_asid()) 1842 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ 1843 else 1844 alloc_asid = true; /* (b2) */ 1845 } else { 1846 /* 1847 * This is the common case (a). 1848 */ 1849 KASSERT(!alloc_asid, ("ASID allocation not necessary")); 1850 KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, 1851 ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); 1852 } 1853 1854 if (alloc_asid) { 1855 if (++asid[thiscpu].num >= nasid) { 1856 asid[thiscpu].num = 1; 1857 if (++asid[thiscpu].gen == 0) 1858 asid[thiscpu].gen = 1; 1859 /* 1860 * If this cpu does not support "flush-by-asid" 1861 * then flush the entire TLB on a generation 1862 * bump. Subsequent ASID allocation in this 1863 * generation can be done without a TLB flush. 1864 */ 1865 if (!flush_by_asid()) 1866 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; 1867 } 1868 vcpustate->asid.gen = asid[thiscpu].gen; 1869 vcpustate->asid.num = asid[thiscpu].num; 1870 1871 ctrl->asid = vcpustate->asid.num; 1872 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1873 /* 1874 * If this cpu supports "flush-by-asid" then the TLB 1875 * was not flushed after the generation bump. The TLB 1876 * is flushed selectively after every new ASID allocation. 1877 */ 1878 if (flush_by_asid()) 1879 ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; 1880 } 1881 vcpustate->eptgen = eptgen; 1882 1883 KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); 1884 KASSERT(ctrl->asid == vcpustate->asid.num, 1885 ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); 1886 } 1887 1888 static __inline void 1889 disable_gintr(void) 1890 { 1891 1892 __asm __volatile("clgi"); 1893 } 1894 1895 static __inline void 1896 enable_gintr(void) 1897 { 1898 1899 __asm __volatile("stgi"); 1900 } 1901 1902 /* 1903 * Start vcpu with specified RIP. 1904 */ 1905 static int 1906 svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, 1907 struct vm_eventinfo *evinfo) 1908 { 1909 struct svm_regctx *gctx; 1910 struct svm_softc *svm_sc; 1911 struct svm_vcpu *vcpustate; 1912 struct vmcb_state *state; 1913 struct vmcb_ctrl *ctrl; 1914 struct vm_exit *vmexit; 1915 struct vlapic *vlapic; 1916 struct vm *vm; 1917 uint64_t vmcb_pa; 1918 int handled; 1919 1920 svm_sc = arg; 1921 vm = svm_sc->vm; 1922 1923 vcpustate = svm_get_vcpu(svm_sc, vcpu); 1924 state = svm_get_vmcb_state(svm_sc, vcpu); 1925 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 1926 vmexit = vm_exitinfo(vm, vcpu); 1927 vlapic = vm_lapic(vm, vcpu); 1928 1929 gctx = svm_get_guest_regctx(svm_sc, vcpu); 1930 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 1931 1932 if (vcpustate->lastcpu != curcpu) { 1933 /* 1934 * Force new ASID allocation by invalidating the generation. 1935 */ 1936 vcpustate->asid.gen = 0; 1937 1938 /* 1939 * Invalidate the VMCB state cache by marking all fields dirty. 1940 */ 1941 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 1942 1943 /* 1944 * XXX 1945 * Setting 'vcpustate->lastcpu' here is bit premature because 1946 * we may return from this function without actually executing 1947 * the VMRUN instruction. This could happen if a rendezvous 1948 * or an AST is pending on the first time through the loop. 1949 * 1950 * This works for now but any new side-effects of vcpu 1951 * migration should take this case into account. 1952 */ 1953 vcpustate->lastcpu = curcpu; 1954 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 1955 } 1956 1957 svm_msr_guest_enter(svm_sc, vcpu); 1958 1959 /* Update Guest RIP */ 1960 state->rip = rip; 1961 1962 do { 1963 /* 1964 * Disable global interrupts to guarantee atomicity during 1965 * loading of guest state. This includes not only the state 1966 * loaded by the "vmrun" instruction but also software state 1967 * maintained by the hypervisor: suspended and rendezvous 1968 * state, NPT generation number, vlapic interrupts etc. 1969 */ 1970 disable_gintr(); 1971 1972 if (vcpu_suspended(evinfo)) { 1973 enable_gintr(); 1974 vm_exit_suspended(vm, vcpu, state->rip); 1975 break; 1976 } 1977 1978 if (vcpu_rendezvous_pending(evinfo)) { 1979 enable_gintr(); 1980 vm_exit_rendezvous(vm, vcpu, state->rip); 1981 break; 1982 } 1983 1984 if (vcpu_reqidle(evinfo)) { 1985 enable_gintr(); 1986 vm_exit_reqidle(vm, vcpu, state->rip); 1987 break; 1988 } 1989 1990 /* We are asked to give the cpu by scheduler. */ 1991 if (vcpu_should_yield(vm, vcpu)) { 1992 enable_gintr(); 1993 vm_exit_astpending(vm, vcpu, state->rip); 1994 break; 1995 } 1996 1997 svm_inj_interrupts(svm_sc, vcpu, vlapic); 1998 1999 /* Activate the nested pmap on 'curcpu' */ 2000 CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active); 2001 2002 /* 2003 * Check the pmap generation and the ASID generation to 2004 * ensure that the vcpu does not use stale TLB mappings. 2005 */ 2006 check_asid(svm_sc, vcpu, pmap, curcpu); 2007 2008 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 2009 vcpustate->dirty = 0; 2010 VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); 2011 2012 /* Launch Virtual Machine. */ 2013 VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); 2014 svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]); 2015 2016 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 2017 2018 /* 2019 * The host GDTR and IDTR is saved by VMRUN and restored 2020 * automatically on #VMEXIT. However, the host TSS needs 2021 * to be restored explicitly. 2022 */ 2023 restore_host_tss(); 2024 2025 /* #VMEXIT disables interrupts so re-enable them here. */ 2026 enable_gintr(); 2027 2028 /* Update 'nextrip' */ 2029 vcpustate->nextrip = state->rip; 2030 2031 /* Handle #VMEXIT and if required return to user space. */ 2032 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2033 } while (handled); 2034 2035 svm_msr_guest_exit(svm_sc, vcpu); 2036 2037 return (0); 2038 } 2039 2040 static void 2041 svm_vmcleanup(void *arg) 2042 { 2043 struct svm_softc *sc = arg; 2044 2045 free(sc, M_SVM); 2046 } 2047 2048 static register_t * 2049 swctx_regptr(struct svm_regctx *regctx, int reg) 2050 { 2051 2052 switch (reg) { 2053 case VM_REG_GUEST_RBX: 2054 return (®ctx->sctx_rbx); 2055 case VM_REG_GUEST_RCX: 2056 return (®ctx->sctx_rcx); 2057 case VM_REG_GUEST_RDX: 2058 return (®ctx->sctx_rdx); 2059 case VM_REG_GUEST_RDI: 2060 return (®ctx->sctx_rdi); 2061 case VM_REG_GUEST_RSI: 2062 return (®ctx->sctx_rsi); 2063 case VM_REG_GUEST_RBP: 2064 return (®ctx->sctx_rbp); 2065 case VM_REG_GUEST_R8: 2066 return (®ctx->sctx_r8); 2067 case VM_REG_GUEST_R9: 2068 return (®ctx->sctx_r9); 2069 case VM_REG_GUEST_R10: 2070 return (®ctx->sctx_r10); 2071 case VM_REG_GUEST_R11: 2072 return (®ctx->sctx_r11); 2073 case VM_REG_GUEST_R12: 2074 return (®ctx->sctx_r12); 2075 case VM_REG_GUEST_R13: 2076 return (®ctx->sctx_r13); 2077 case VM_REG_GUEST_R14: 2078 return (®ctx->sctx_r14); 2079 case VM_REG_GUEST_R15: 2080 return (®ctx->sctx_r15); 2081 default: 2082 return (NULL); 2083 } 2084 } 2085 2086 static int 2087 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2088 { 2089 struct svm_softc *svm_sc; 2090 register_t *reg; 2091 2092 svm_sc = arg; 2093 2094 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2095 return (svm_get_intr_shadow(svm_sc, vcpu, val)); 2096 } 2097 2098 if (vmcb_read(svm_sc, vcpu, ident, val) == 0) { 2099 return (0); 2100 } 2101 2102 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2103 2104 if (reg != NULL) { 2105 *val = *reg; 2106 return (0); 2107 } 2108 2109 VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident); 2110 return (EINVAL); 2111 } 2112 2113 static int 2114 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2115 { 2116 struct svm_softc *svm_sc; 2117 register_t *reg; 2118 2119 svm_sc = arg; 2120 2121 if (ident == VM_REG_GUEST_INTR_SHADOW) { 2122 return (svm_modify_intr_shadow(svm_sc, vcpu, val)); 2123 } 2124 2125 if (vmcb_write(svm_sc, vcpu, ident, val) == 0) { 2126 return (0); 2127 } 2128 2129 reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); 2130 2131 if (reg != NULL) { 2132 *reg = val; 2133 return (0); 2134 } 2135 2136 /* 2137 * XXX deal with CR3 and invalidate TLB entries tagged with the 2138 * vcpu's ASID. This needs to be treated differently depending on 2139 * whether 'running' is true/false. 2140 */ 2141 2142 VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident); 2143 return (EINVAL); 2144 } 2145 2146 static int 2147 svm_setcap(void *arg, int vcpu, int type, int val) 2148 { 2149 struct svm_softc *sc; 2150 int error; 2151 2152 sc = arg; 2153 error = 0; 2154 switch (type) { 2155 case VM_CAP_HALT_EXIT: 2156 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2157 VMCB_INTCPT_HLT, val); 2158 break; 2159 case VM_CAP_PAUSE_EXIT: 2160 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2161 VMCB_INTCPT_PAUSE, val); 2162 break; 2163 case VM_CAP_UNRESTRICTED_GUEST: 2164 /* Unrestricted guest execution cannot be disabled in SVM */ 2165 if (val == 0) 2166 error = EINVAL; 2167 break; 2168 default: 2169 error = ENOENT; 2170 break; 2171 } 2172 return (error); 2173 } 2174 2175 static int 2176 svm_getcap(void *arg, int vcpu, int type, int *retval) 2177 { 2178 struct svm_softc *sc; 2179 int error; 2180 2181 sc = arg; 2182 error = 0; 2183 2184 switch (type) { 2185 case VM_CAP_HALT_EXIT: 2186 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2187 VMCB_INTCPT_HLT); 2188 break; 2189 case VM_CAP_PAUSE_EXIT: 2190 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2191 VMCB_INTCPT_PAUSE); 2192 break; 2193 case VM_CAP_UNRESTRICTED_GUEST: 2194 *retval = 1; /* unrestricted guest is always enabled */ 2195 break; 2196 default: 2197 error = ENOENT; 2198 break; 2199 } 2200 return (error); 2201 } 2202 2203 static struct vlapic * 2204 svm_vlapic_init(void *arg, int vcpuid) 2205 { 2206 struct svm_softc *svm_sc; 2207 struct vlapic *vlapic; 2208 2209 svm_sc = arg; 2210 vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); 2211 vlapic->vm = svm_sc->vm; 2212 vlapic->vcpuid = vcpuid; 2213 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2214 2215 vlapic_init(vlapic); 2216 2217 return (vlapic); 2218 } 2219 2220 static void 2221 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2222 { 2223 2224 vlapic_cleanup(vlapic); 2225 free(vlapic, M_SVM_VLAPIC); 2226 } 2227 2228 struct vmm_ops vmm_ops_amd = { 2229 svm_init, 2230 svm_cleanup, 2231 svm_restore, 2232 svm_vminit, 2233 svm_vmrun, 2234 svm_vmcleanup, 2235 svm_getreg, 2236 svm_setreg, 2237 vmcb_getdesc, 2238 vmcb_setdesc, 2239 svm_getcap, 2240 svm_setcap, 2241 svm_npt_alloc, 2242 svm_npt_free, 2243 svm_vlapic_init, 2244 svm_vlapic_cleanup 2245 }; 2246