xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision fc7510aef78781b0068da1a6ba190a636a54d6e7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_compat.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/clock.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/imgact.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/syscallsubr.h>
55 #include <sys/sysproto.h>
56 #include <sys/systm.h>
57 #include <sys/unistd.h>
58 #include <sys/wait.h>
59 
60 #include <machine/frame.h>
61 #include <machine/md_var.h>
62 #include <machine/pcb.h>
63 #include <machine/psl.h>
64 #include <machine/segments.h>
65 #include <machine/specialreg.h>
66 #include <x86/ifunc.h>
67 
68 #include <vm/pmap.h>
69 #include <vm/vm.h>
70 #include <vm/vm_map.h>
71 
72 #include <compat/freebsd32/freebsd32_util.h>
73 #include <amd64/linux32/linux.h>
74 #include <amd64/linux32/linux32_proto.h>
75 #include <compat/linux/linux_emul.h>
76 #include <compat/linux/linux_ipc.h>
77 #include <compat/linux/linux_misc.h>
78 #include <compat/linux/linux_mmap.h>
79 #include <compat/linux/linux_signal.h>
80 #include <compat/linux/linux_util.h>
81 
82 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
83 
84 struct l_old_select_argv {
85 	l_int		nfds;
86 	l_uintptr_t	readfds;
87 	l_uintptr_t	writefds;
88 	l_uintptr_t	exceptfds;
89 	l_uintptr_t	timeout;
90 } __packed;
91 
92 
93 static void
94 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
95 {
96 
97 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
98 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
99 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
100 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
101 	lru->ru_maxrss = ru->ru_maxrss;
102 	lru->ru_ixrss = ru->ru_ixrss;
103 	lru->ru_idrss = ru->ru_idrss;
104 	lru->ru_isrss = ru->ru_isrss;
105 	lru->ru_minflt = ru->ru_minflt;
106 	lru->ru_majflt = ru->ru_majflt;
107 	lru->ru_nswap = ru->ru_nswap;
108 	lru->ru_inblock = ru->ru_inblock;
109 	lru->ru_oublock = ru->ru_oublock;
110 	lru->ru_msgsnd = ru->ru_msgsnd;
111 	lru->ru_msgrcv = ru->ru_msgrcv;
112 	lru->ru_nsignals = ru->ru_nsignals;
113 	lru->ru_nvcsw = ru->ru_nvcsw;
114 	lru->ru_nivcsw = ru->ru_nivcsw;
115 }
116 
117 int
118 linux_copyout_rusage(struct rusage *ru, void *uaddr)
119 {
120 	struct l_rusage lru;
121 
122 	bsd_to_linux_rusage(ru, &lru);
123 
124 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
125 }
126 
127 int
128 linux_execve(struct thread *td, struct linux_execve_args *args)
129 {
130 	struct image_args eargs;
131 	char *path;
132 	int error;
133 
134 	LCONVPATHEXIST(td, args->path, &path);
135 
136 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
137 	    args->argp, args->envp);
138 	free(path, M_TEMP);
139 	if (error == 0)
140 		error = linux_common_execve(td, &eargs);
141 	return (error);
142 }
143 
144 CTASSERT(sizeof(struct l_iovec32) == 8);
145 
146 int
147 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
148 {
149 	struct l_iovec32 iov32;
150 	struct iovec *iov;
151 	struct uio *uio;
152 	uint32_t iovlen;
153 	int error, i;
154 
155 	*uiop = NULL;
156 	if (iovcnt > UIO_MAXIOV)
157 		return (EINVAL);
158 	iovlen = iovcnt * sizeof(struct iovec);
159 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
160 	iov = (struct iovec *)(uio + 1);
161 	for (i = 0; i < iovcnt; i++) {
162 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
163 		if (error) {
164 			free(uio, M_IOV);
165 			return (error);
166 		}
167 		iov[i].iov_base = PTRIN(iov32.iov_base);
168 		iov[i].iov_len = iov32.iov_len;
169 	}
170 	uio->uio_iov = iov;
171 	uio->uio_iovcnt = iovcnt;
172 	uio->uio_segflg = UIO_USERSPACE;
173 	uio->uio_offset = -1;
174 	uio->uio_resid = 0;
175 	for (i = 0; i < iovcnt; i++) {
176 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
177 			free(uio, M_IOV);
178 			return (EINVAL);
179 		}
180 		uio->uio_resid += iov->iov_len;
181 		iov++;
182 	}
183 	*uiop = uio;
184 	return (0);
185 }
186 
187 int
188 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
189     int error)
190 {
191 	struct l_iovec32 iov32;
192 	struct iovec *iov;
193 	uint32_t iovlen;
194 	int i;
195 
196 	*iovp = NULL;
197 	if (iovcnt > UIO_MAXIOV)
198 		return (error);
199 	iovlen = iovcnt * sizeof(struct iovec);
200 	iov = malloc(iovlen, M_IOV, M_WAITOK);
201 	for (i = 0; i < iovcnt; i++) {
202 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
203 		if (error) {
204 			free(iov, M_IOV);
205 			return (error);
206 		}
207 		iov[i].iov_base = PTRIN(iov32.iov_base);
208 		iov[i].iov_len = iov32.iov_len;
209 	}
210 	*iovp = iov;
211 	return(0);
212 
213 }
214 
215 int
216 linux_readv(struct thread *td, struct linux_readv_args *uap)
217 {
218 	struct uio *auio;
219 	int error;
220 
221 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
222 	if (error)
223 		return (error);
224 	error = kern_readv(td, uap->fd, auio);
225 	free(auio, M_IOV);
226 	return (error);
227 }
228 
229 int
230 linux_writev(struct thread *td, struct linux_writev_args *uap)
231 {
232 	struct uio *auio;
233 	int error;
234 
235 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
236 	if (error)
237 		return (error);
238 	error = kern_writev(td, uap->fd, auio);
239 	free(auio, M_IOV);
240 	return (error);
241 }
242 
243 struct l_ipc_kludge {
244 	l_uintptr_t msgp;
245 	l_long msgtyp;
246 } __packed;
247 
248 int
249 linux_ipc(struct thread *td, struct linux_ipc_args *args)
250 {
251 
252 	switch (args->what & 0xFFFF) {
253 	case LINUX_SEMOP: {
254 		struct linux_semop_args a;
255 
256 		a.semid = args->arg1;
257 		a.tsops = PTRIN(args->ptr);
258 		a.nsops = args->arg2;
259 		return (linux_semop(td, &a));
260 	}
261 	case LINUX_SEMGET: {
262 		struct linux_semget_args a;
263 
264 		a.key = args->arg1;
265 		a.nsems = args->arg2;
266 		a.semflg = args->arg3;
267 		return (linux_semget(td, &a));
268 	}
269 	case LINUX_SEMCTL: {
270 		struct linux_semctl_args a;
271 		int error;
272 
273 		a.semid = args->arg1;
274 		a.semnum = args->arg2;
275 		a.cmd = args->arg3;
276 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
277 		if (error)
278 			return (error);
279 		return (linux_semctl(td, &a));
280 	}
281 	case LINUX_MSGSND: {
282 		struct linux_msgsnd_args a;
283 
284 		a.msqid = args->arg1;
285 		a.msgp = PTRIN(args->ptr);
286 		a.msgsz = args->arg2;
287 		a.msgflg = args->arg3;
288 		return (linux_msgsnd(td, &a));
289 	}
290 	case LINUX_MSGRCV: {
291 		struct linux_msgrcv_args a;
292 
293 		a.msqid = args->arg1;
294 		a.msgsz = args->arg2;
295 		a.msgflg = args->arg3;
296 		if ((args->what >> 16) == 0) {
297 			struct l_ipc_kludge tmp;
298 			int error;
299 
300 			if (args->ptr == 0)
301 				return (EINVAL);
302 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
303 			if (error)
304 				return (error);
305 			a.msgp = PTRIN(tmp.msgp);
306 			a.msgtyp = tmp.msgtyp;
307 		} else {
308 			a.msgp = PTRIN(args->ptr);
309 			a.msgtyp = args->arg5;
310 		}
311 		return (linux_msgrcv(td, &a));
312 	}
313 	case LINUX_MSGGET: {
314 		struct linux_msgget_args a;
315 
316 		a.key = args->arg1;
317 		a.msgflg = args->arg2;
318 		return (linux_msgget(td, &a));
319 	}
320 	case LINUX_MSGCTL: {
321 		struct linux_msgctl_args a;
322 
323 		a.msqid = args->arg1;
324 		a.cmd = args->arg2;
325 		a.buf = PTRIN(args->ptr);
326 		return (linux_msgctl(td, &a));
327 	}
328 	case LINUX_SHMAT: {
329 		struct linux_shmat_args a;
330 		l_uintptr_t addr;
331 		int error;
332 
333 		a.shmid = args->arg1;
334 		a.shmaddr = PTRIN(args->ptr);
335 		a.shmflg = args->arg2;
336 		error = linux_shmat(td, &a);
337 		if (error != 0)
338 			return (error);
339 		addr = td->td_retval[0];
340 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
341 		td->td_retval[0] = 0;
342 		return (error);
343 	}
344 	case LINUX_SHMDT: {
345 		struct linux_shmdt_args a;
346 
347 		a.shmaddr = PTRIN(args->ptr);
348 		return (linux_shmdt(td, &a));
349 	}
350 	case LINUX_SHMGET: {
351 		struct linux_shmget_args a;
352 
353 		a.key = args->arg1;
354 		a.size = args->arg2;
355 		a.shmflg = args->arg3;
356 		return (linux_shmget(td, &a));
357 	}
358 	case LINUX_SHMCTL: {
359 		struct linux_shmctl_args a;
360 
361 		a.shmid = args->arg1;
362 		a.cmd = args->arg2;
363 		a.buf = PTRIN(args->ptr);
364 		return (linux_shmctl(td, &a));
365 	}
366 	default:
367 		break;
368 	}
369 
370 	return (EINVAL);
371 }
372 
373 int
374 linux_old_select(struct thread *td, struct linux_old_select_args *args)
375 {
376 	struct l_old_select_argv linux_args;
377 	struct linux_select_args newsel;
378 	int error;
379 
380 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
381 	if (error)
382 		return (error);
383 
384 	newsel.nfds = linux_args.nfds;
385 	newsel.readfds = PTRIN(linux_args.readfds);
386 	newsel.writefds = PTRIN(linux_args.writefds);
387 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
388 	newsel.timeout = PTRIN(linux_args.timeout);
389 	return (linux_select(td, &newsel));
390 }
391 
392 int
393 linux_set_cloned_tls(struct thread *td, void *desc)
394 {
395 	struct user_segment_descriptor sd;
396 	struct l_user_desc info;
397 	struct pcb *pcb;
398 	int error;
399 	int a[2];
400 
401 	error = copyin(desc, &info, sizeof(struct l_user_desc));
402 	if (error) {
403 		linux_msg(td, "set_cloned_tls copyin info failed!");
404 	} else {
405 
406 		/* We might copy out the entry_number as GUGS32_SEL. */
407 		info.entry_number = GUGS32_SEL;
408 		error = copyout(&info, desc, sizeof(struct l_user_desc));
409 		if (error)
410 			linux_msg(td, "set_cloned_tls copyout info failed!");
411 
412 		a[0] = LINUX_LDT_entry_a(&info);
413 		a[1] = LINUX_LDT_entry_b(&info);
414 
415 		memcpy(&sd, &a, sizeof(a));
416 		pcb = td->td_pcb;
417 		pcb->pcb_gsbase = (register_t)info.base_addr;
418 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
419 		set_pcb_flags(pcb, PCB_32BIT);
420 	}
421 
422 	return (error);
423 }
424 
425 int
426 linux_set_upcall_kse(struct thread *td, register_t stack)
427 {
428 
429 	if (stack)
430 		td->td_frame->tf_rsp = stack;
431 
432 	/*
433 	 * The newly created Linux thread returns
434 	 * to the user space by the same path that a parent do.
435 	 */
436 	td->td_frame->tf_rax = 0;
437 	return (0);
438 }
439 
440 int
441 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
442 {
443 
444 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
445 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
446 		PAGE_SIZE));
447 }
448 
449 int
450 linux_mmap(struct thread *td, struct linux_mmap_args *args)
451 {
452 	int error;
453 	struct l_mmap_argv linux_args;
454 
455 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
456 	if (error)
457 		return (error);
458 
459 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
460 	    linux_args.prot, linux_args.flags, linux_args.fd,
461 	    (uint32_t)linux_args.pgoff));
462 }
463 
464 int
465 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
466 {
467 
468 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
469 }
470 
471 int
472 linux_iopl(struct thread *td, struct linux_iopl_args *args)
473 {
474 	int error;
475 
476 	if (args->level < 0 || args->level > 3)
477 		return (EINVAL);
478 	if ((error = priv_check(td, PRIV_IO)) != 0)
479 		return (error);
480 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
481 		return (error);
482 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
483 	    (args->level * (PSL_IOPL / 3));
484 
485 	return (0);
486 }
487 
488 int
489 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
490 {
491 	l_osigaction_t osa;
492 	l_sigaction_t act, oact;
493 	int error;
494 
495 	if (args->nsa != NULL) {
496 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
497 		if (error)
498 			return (error);
499 		act.lsa_handler = osa.lsa_handler;
500 		act.lsa_flags = osa.lsa_flags;
501 		act.lsa_restorer = osa.lsa_restorer;
502 		LINUX_SIGEMPTYSET(act.lsa_mask);
503 		act.lsa_mask.__mask = osa.lsa_mask;
504 	}
505 
506 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
507 	    args->osa ? &oact : NULL);
508 
509 	if (args->osa != NULL && !error) {
510 		osa.lsa_handler = oact.lsa_handler;
511 		osa.lsa_flags = oact.lsa_flags;
512 		osa.lsa_restorer = oact.lsa_restorer;
513 		osa.lsa_mask = oact.lsa_mask.__mask;
514 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
515 	}
516 
517 	return (error);
518 }
519 
520 /*
521  * Linux has two extra args, restart and oldmask.  We don't use these,
522  * but it seems that "restart" is actually a context pointer that
523  * enables the signal to happen with a different register set.
524  */
525 int
526 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
527 {
528 	sigset_t sigmask;
529 	l_sigset_t mask;
530 
531 	LINUX_SIGEMPTYSET(mask);
532 	mask.__mask = args->mask;
533 	linux_to_bsd_sigset(&mask, &sigmask);
534 	return (kern_sigsuspend(td, sigmask));
535 }
536 
537 int
538 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
539 {
540 	l_sigset_t lmask;
541 	sigset_t sigmask;
542 	int error;
543 
544 	if (uap->sigsetsize != sizeof(l_sigset_t))
545 		return (EINVAL);
546 
547 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
548 	if (error)
549 		return (error);
550 
551 	linux_to_bsd_sigset(&lmask, &sigmask);
552 	return (kern_sigsuspend(td, sigmask));
553 }
554 
555 int
556 linux_pause(struct thread *td, struct linux_pause_args *args)
557 {
558 	struct proc *p = td->td_proc;
559 	sigset_t sigmask;
560 
561 	PROC_LOCK(p);
562 	sigmask = td->td_sigmask;
563 	PROC_UNLOCK(p);
564 	return (kern_sigsuspend(td, sigmask));
565 }
566 
567 int
568 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
569 {
570 	stack_t ss, oss;
571 	l_stack_t lss;
572 	int error;
573 
574 	if (uap->uss != NULL) {
575 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
576 		if (error)
577 			return (error);
578 
579 		ss.ss_sp = PTRIN(lss.ss_sp);
580 		ss.ss_size = lss.ss_size;
581 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
582 	}
583 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
584 	    (uap->uoss != NULL) ? &oss : NULL);
585 	if (!error && uap->uoss != NULL) {
586 		lss.ss_sp = PTROUT(oss.ss_sp);
587 		lss.ss_size = oss.ss_size;
588 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
589 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
590 	}
591 
592 	return (error);
593 }
594 
595 int
596 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
597 {
598 	struct timeval atv;
599 	l_timeval atv32;
600 	struct timezone rtz;
601 	int error = 0;
602 
603 	if (uap->tp) {
604 		microtime(&atv);
605 		atv32.tv_sec = atv.tv_sec;
606 		atv32.tv_usec = atv.tv_usec;
607 		error = copyout(&atv32, uap->tp, sizeof(atv32));
608 	}
609 	if (error == 0 && uap->tzp != NULL) {
610 		rtz.tz_minuteswest = 0;
611 		rtz.tz_dsttime = 0;
612 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
613 	}
614 	return (error);
615 }
616 
617 int
618 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
619 {
620 	l_timeval atv32;
621 	struct timeval atv, *tvp;
622 	struct timezone atz, *tzp;
623 	int error;
624 
625 	if (uap->tp) {
626 		error = copyin(uap->tp, &atv32, sizeof(atv32));
627 		if (error)
628 			return (error);
629 		atv.tv_sec = atv32.tv_sec;
630 		atv.tv_usec = atv32.tv_usec;
631 		tvp = &atv;
632 	} else
633 		tvp = NULL;
634 	if (uap->tzp) {
635 		error = copyin(uap->tzp, &atz, sizeof(atz));
636 		if (error)
637 			return (error);
638 		tzp = &atz;
639 	} else
640 		tzp = NULL;
641 	return (kern_settimeofday(td, tvp, tzp));
642 }
643 
644 int
645 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
646 {
647 	struct rusage s;
648 	int error;
649 
650 	error = kern_getrusage(td, uap->who, &s);
651 	if (error != 0)
652 		return (error);
653 	if (uap->rusage != NULL)
654 		error = linux_copyout_rusage(&s, uap->rusage);
655 	return (error);
656 }
657 
658 int
659 linux_set_thread_area(struct thread *td,
660     struct linux_set_thread_area_args *args)
661 {
662 	struct l_user_desc info;
663 	struct user_segment_descriptor sd;
664 	struct pcb *pcb;
665 	int a[2];
666 	int error;
667 
668 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
669 	if (error)
670 		return (error);
671 
672 	/*
673 	 * Semantics of Linux version: every thread in the system has array
674 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
675 	 * This syscall loads one of the selected TLS decriptors with a value
676 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
677 	 * the per-thread descriptors.
678 	 *
679 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
680 	 * three per-thread descriptors and use just the first one.
681 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
682 	 * for loading the GDT descriptors. We use just one GDT descriptor
683 	 * for TLS, so we will load just one.
684 	 *
685 	 * XXX: This doesn't work when a user space process tries to use more
686 	 * than one TLS segment. Comment in the Linux source says wine might
687 	 * do this.
688 	 */
689 
690 	/*
691 	 * GLIBC reads current %gs and call set_thread_area() with it.
692 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
693 	 * we use these segments.
694 	 */
695 	switch (info.entry_number) {
696 	case GUGS32_SEL:
697 	case GUDATA_SEL:
698 	case 6:
699 	case -1:
700 		info.entry_number = GUGS32_SEL;
701 		break;
702 	default:
703 		return (EINVAL);
704 	}
705 
706 	/*
707 	 * We have to copy out the GDT entry we use.
708 	 *
709 	 * XXX: What if a user space program does not check the return value
710 	 * and tries to use 6, 7 or 8?
711 	 */
712 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
713 	if (error)
714 		return (error);
715 
716 	if (LINUX_LDT_empty(&info)) {
717 		a[0] = 0;
718 		a[1] = 0;
719 	} else {
720 		a[0] = LINUX_LDT_entry_a(&info);
721 		a[1] = LINUX_LDT_entry_b(&info);
722 	}
723 
724 	memcpy(&sd, &a, sizeof(a));
725 	pcb = td->td_pcb;
726 	pcb->pcb_gsbase = (register_t)info.base_addr;
727 	set_pcb_flags(pcb, PCB_32BIT);
728 	update_gdt_gsbase(td, info.base_addr);
729 
730 	return (0);
731 }
732 
733 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
734 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
735 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
736 {
737 
738 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
739 	    futex_xchgl_smap : futex_xchgl_nosmap);
740 }
741 
742 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
743 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
744 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
745 {
746 
747 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
748 	    futex_addl_smap : futex_addl_nosmap);
749 }
750 
751 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
752 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
753 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
754 {
755 
756 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
757 	    futex_orl_smap : futex_orl_nosmap);
758 }
759 
760 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
761 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
762 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
763 {
764 
765 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
766 	    futex_andl_smap : futex_andl_nosmap);
767 }
768 
769 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
770 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
771 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
772 {
773 
774 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
775 	    futex_xorl_smap : futex_xorl_nosmap);
776 }
777