xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision cc1a53bc1aea0675d64e9547cdca241612906592)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_compat.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/clock.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/imgact.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/reg.h>
53 #include <sys/resource.h>
54 #include <sys/resourcevar.h>
55 #include <sys/syscallsubr.h>
56 #include <sys/sysproto.h>
57 #include <sys/systm.h>
58 #include <sys/unistd.h>
59 #include <sys/wait.h>
60 
61 #include <machine/frame.h>
62 #include <machine/md_var.h>
63 #include <machine/pcb.h>
64 #include <machine/psl.h>
65 #include <machine/segments.h>
66 #include <machine/specialreg.h>
67 #include <x86/ifunc.h>
68 
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_map.h>
72 
73 #include <security/audit/audit.h>
74 
75 #include <compat/freebsd32/freebsd32_util.h>
76 #include <amd64/linux32/linux.h>
77 #include <amd64/linux32/linux32_proto.h>
78 #include <compat/linux/linux_emul.h>
79 #include <compat/linux/linux_fork.h>
80 #include <compat/linux/linux_ipc.h>
81 #include <compat/linux/linux_misc.h>
82 #include <compat/linux/linux_mmap.h>
83 #include <compat/linux/linux_signal.h>
84 #include <compat/linux/linux_util.h>
85 
86 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
87 
88 struct l_old_select_argv {
89 	l_int		nfds;
90 	l_uintptr_t	readfds;
91 	l_uintptr_t	writefds;
92 	l_uintptr_t	exceptfds;
93 	l_uintptr_t	timeout;
94 } __packed;
95 
96 static void
97 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
98 {
99 
100 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
101 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
102 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
103 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
104 	lru->ru_maxrss = ru->ru_maxrss;
105 	lru->ru_ixrss = ru->ru_ixrss;
106 	lru->ru_idrss = ru->ru_idrss;
107 	lru->ru_isrss = ru->ru_isrss;
108 	lru->ru_minflt = ru->ru_minflt;
109 	lru->ru_majflt = ru->ru_majflt;
110 	lru->ru_nswap = ru->ru_nswap;
111 	lru->ru_inblock = ru->ru_inblock;
112 	lru->ru_oublock = ru->ru_oublock;
113 	lru->ru_msgsnd = ru->ru_msgsnd;
114 	lru->ru_msgrcv = ru->ru_msgrcv;
115 	lru->ru_nsignals = ru->ru_nsignals;
116 	lru->ru_nvcsw = ru->ru_nvcsw;
117 	lru->ru_nivcsw = ru->ru_nivcsw;
118 }
119 
120 int
121 linux_copyout_rusage(struct rusage *ru, void *uaddr)
122 {
123 	struct l_rusage lru;
124 
125 	bsd_to_linux_rusage(ru, &lru);
126 
127 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
128 }
129 
130 int
131 linux_execve(struct thread *td, struct linux_execve_args *args)
132 {
133 	struct image_args eargs;
134 	char *path;
135 	int error;
136 
137 	LCONVPATHEXIST(args->path, &path);
138 
139 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
140 	    args->argp, args->envp);
141 	free(path, M_TEMP);
142 	if (error == 0)
143 		error = linux_common_execve(td, &eargs);
144 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
145 	return (error);
146 }
147 
148 CTASSERT(sizeof(struct l_iovec32) == 8);
149 
150 int
151 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
152 {
153 	struct l_iovec32 iov32;
154 	struct iovec *iov;
155 	struct uio *uio;
156 	uint32_t iovlen;
157 	int error, i;
158 
159 	*uiop = NULL;
160 	if (iovcnt > UIO_MAXIOV)
161 		return (EINVAL);
162 	iovlen = iovcnt * sizeof(struct iovec);
163 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
164 	iov = (struct iovec *)(uio + 1);
165 	for (i = 0; i < iovcnt; i++) {
166 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
167 		if (error) {
168 			free(uio, M_IOV);
169 			return (error);
170 		}
171 		iov[i].iov_base = PTRIN(iov32.iov_base);
172 		iov[i].iov_len = iov32.iov_len;
173 	}
174 	uio->uio_iov = iov;
175 	uio->uio_iovcnt = iovcnt;
176 	uio->uio_segflg = UIO_USERSPACE;
177 	uio->uio_offset = -1;
178 	uio->uio_resid = 0;
179 	for (i = 0; i < iovcnt; i++) {
180 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
181 			free(uio, M_IOV);
182 			return (EINVAL);
183 		}
184 		uio->uio_resid += iov->iov_len;
185 		iov++;
186 	}
187 	*uiop = uio;
188 	return (0);
189 }
190 
191 int
192 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
193     int error)
194 {
195 	struct l_iovec32 iov32;
196 	struct iovec *iov;
197 	uint32_t iovlen;
198 	int i;
199 
200 	*iovp = NULL;
201 	if (iovcnt > UIO_MAXIOV)
202 		return (error);
203 	iovlen = iovcnt * sizeof(struct iovec);
204 	iov = malloc(iovlen, M_IOV, M_WAITOK);
205 	for (i = 0; i < iovcnt; i++) {
206 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
207 		if (error) {
208 			free(iov, M_IOV);
209 			return (error);
210 		}
211 		iov[i].iov_base = PTRIN(iov32.iov_base);
212 		iov[i].iov_len = iov32.iov_len;
213 	}
214 	*iovp = iov;
215 	return(0);
216 
217 }
218 
219 int
220 linux_readv(struct thread *td, struct linux_readv_args *uap)
221 {
222 	struct uio *auio;
223 	int error;
224 
225 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
226 	if (error)
227 		return (error);
228 	error = kern_readv(td, uap->fd, auio);
229 	free(auio, M_IOV);
230 	return (error);
231 }
232 
233 int
234 linux_writev(struct thread *td, struct linux_writev_args *uap)
235 {
236 	struct uio *auio;
237 	int error;
238 
239 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
240 	if (error)
241 		return (error);
242 	error = kern_writev(td, uap->fd, auio);
243 	free(auio, M_IOV);
244 	return (error);
245 }
246 
247 struct l_ipc_kludge {
248 	l_uintptr_t msgp;
249 	l_long msgtyp;
250 } __packed;
251 
252 int
253 linux_ipc(struct thread *td, struct linux_ipc_args *args)
254 {
255 
256 	switch (args->what & 0xFFFF) {
257 	case LINUX_SEMOP: {
258 
259 		return (kern_semop(td, args->arg1, PTRIN(args->ptr),
260 		    args->arg2, NULL));
261 	}
262 	case LINUX_SEMGET: {
263 		struct linux_semget_args a;
264 
265 		a.key = args->arg1;
266 		a.nsems = args->arg2;
267 		a.semflg = args->arg3;
268 		return (linux_semget(td, &a));
269 	}
270 	case LINUX_SEMCTL: {
271 		struct linux_semctl_args a;
272 		int error;
273 
274 		a.semid = args->arg1;
275 		a.semnum = args->arg2;
276 		a.cmd = args->arg3;
277 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
278 		if (error)
279 			return (error);
280 		return (linux_semctl(td, &a));
281 	}
282 	case LINUX_SEMTIMEDOP: {
283 		struct linux_semtimedop_args a;
284 
285 		a.semid = args->arg1;
286 		a.tsops = PTRIN(args->ptr);
287 		a.nsops = args->arg2;
288 		a.timeout = PTRIN(args->arg5);
289 		return (linux_semtimedop(td, &a));
290 	}
291 	case LINUX_MSGSND: {
292 		struct linux_msgsnd_args a;
293 
294 		a.msqid = args->arg1;
295 		a.msgp = PTRIN(args->ptr);
296 		a.msgsz = args->arg2;
297 		a.msgflg = args->arg3;
298 		return (linux_msgsnd(td, &a));
299 	}
300 	case LINUX_MSGRCV: {
301 		struct linux_msgrcv_args a;
302 
303 		a.msqid = args->arg1;
304 		a.msgsz = args->arg2;
305 		a.msgflg = args->arg3;
306 		if ((args->what >> 16) == 0) {
307 			struct l_ipc_kludge tmp;
308 			int error;
309 
310 			if (args->ptr == 0)
311 				return (EINVAL);
312 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
313 			if (error)
314 				return (error);
315 			a.msgp = PTRIN(tmp.msgp);
316 			a.msgtyp = tmp.msgtyp;
317 		} else {
318 			a.msgp = PTRIN(args->ptr);
319 			a.msgtyp = args->arg5;
320 		}
321 		return (linux_msgrcv(td, &a));
322 	}
323 	case LINUX_MSGGET: {
324 		struct linux_msgget_args a;
325 
326 		a.key = args->arg1;
327 		a.msgflg = args->arg2;
328 		return (linux_msgget(td, &a));
329 	}
330 	case LINUX_MSGCTL: {
331 		struct linux_msgctl_args a;
332 
333 		a.msqid = args->arg1;
334 		a.cmd = args->arg2;
335 		a.buf = PTRIN(args->ptr);
336 		return (linux_msgctl(td, &a));
337 	}
338 	case LINUX_SHMAT: {
339 		struct linux_shmat_args a;
340 		l_uintptr_t addr;
341 		int error;
342 
343 		a.shmid = args->arg1;
344 		a.shmaddr = PTRIN(args->ptr);
345 		a.shmflg = args->arg2;
346 		error = linux_shmat(td, &a);
347 		if (error != 0)
348 			return (error);
349 		addr = td->td_retval[0];
350 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
351 		td->td_retval[0] = 0;
352 		return (error);
353 	}
354 	case LINUX_SHMDT: {
355 		struct linux_shmdt_args a;
356 
357 		a.shmaddr = PTRIN(args->ptr);
358 		return (linux_shmdt(td, &a));
359 	}
360 	case LINUX_SHMGET: {
361 		struct linux_shmget_args a;
362 
363 		a.key = args->arg1;
364 		a.size = args->arg2;
365 		a.shmflg = args->arg3;
366 		return (linux_shmget(td, &a));
367 	}
368 	case LINUX_SHMCTL: {
369 		struct linux_shmctl_args a;
370 
371 		a.shmid = args->arg1;
372 		a.cmd = args->arg2;
373 		a.buf = PTRIN(args->ptr);
374 		return (linux_shmctl(td, &a));
375 	}
376 	default:
377 		break;
378 	}
379 
380 	return (EINVAL);
381 }
382 
383 int
384 linux_old_select(struct thread *td, struct linux_old_select_args *args)
385 {
386 	struct l_old_select_argv linux_args;
387 	struct linux_select_args newsel;
388 	int error;
389 
390 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
391 	if (error)
392 		return (error);
393 
394 	newsel.nfds = linux_args.nfds;
395 	newsel.readfds = PTRIN(linux_args.readfds);
396 	newsel.writefds = PTRIN(linux_args.writefds);
397 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
398 	newsel.timeout = PTRIN(linux_args.timeout);
399 	return (linux_select(td, &newsel));
400 }
401 
402 int
403 linux_set_cloned_tls(struct thread *td, void *desc)
404 {
405 	struct l_user_desc info;
406 	struct pcb *pcb;
407 	int error;
408 
409 	error = copyin(desc, &info, sizeof(struct l_user_desc));
410 	if (error) {
411 		linux_msg(td, "set_cloned_tls copyin info failed!");
412 	} else {
413 		/* We might copy out the entry_number as GUGS32_SEL. */
414 		info.entry_number = GUGS32_SEL;
415 		error = copyout(&info, desc, sizeof(struct l_user_desc));
416 		if (error)
417 			linux_msg(td, "set_cloned_tls copyout info failed!");
418 
419 		pcb = td->td_pcb;
420 		update_pcb_bases(pcb);
421 		pcb->pcb_gsbase = (register_t)info.base_addr;
422 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
423 	}
424 
425 	return (error);
426 }
427 
428 int
429 linux_set_upcall(struct thread *td, register_t stack)
430 {
431 
432 	if (stack)
433 		td->td_frame->tf_rsp = stack;
434 
435 	/*
436 	 * The newly created Linux thread returns
437 	 * to the user space by the same path that a parent do.
438 	 */
439 	td->td_frame->tf_rax = 0;
440 	return (0);
441 }
442 
443 int
444 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
445 {
446 
447 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
448 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
449 		PAGE_SIZE));
450 }
451 
452 int
453 linux_mmap(struct thread *td, struct linux_mmap_args *args)
454 {
455 	int error;
456 	struct l_mmap_argv linux_args;
457 
458 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
459 	if (error)
460 		return (error);
461 
462 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
463 	    linux_args.prot, linux_args.flags, linux_args.fd,
464 	    (uint32_t)linux_args.pgoff));
465 }
466 
467 int
468 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
469 {
470 
471 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
472 }
473 
474 int
475 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
476 {
477 
478 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
479 }
480 
481 int
482 linux_iopl(struct thread *td, struct linux_iopl_args *args)
483 {
484 	int error;
485 
486 	if (args->level < 0 || args->level > 3)
487 		return (EINVAL);
488 	if ((error = priv_check(td, PRIV_IO)) != 0)
489 		return (error);
490 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
491 		return (error);
492 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
493 	    (args->level * (PSL_IOPL / 3));
494 
495 	return (0);
496 }
497 
498 int
499 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
500 {
501 	l_osigaction_t osa;
502 	l_sigaction_t act, oact;
503 	int error;
504 
505 	if (args->nsa != NULL) {
506 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
507 		if (error)
508 			return (error);
509 		act.lsa_handler = osa.lsa_handler;
510 		act.lsa_flags = osa.lsa_flags;
511 		act.lsa_restorer = osa.lsa_restorer;
512 		LINUX_SIGEMPTYSET(act.lsa_mask);
513 		act.lsa_mask.__mask = osa.lsa_mask;
514 	}
515 
516 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
517 	    args->osa ? &oact : NULL);
518 
519 	if (args->osa != NULL && !error) {
520 		osa.lsa_handler = oact.lsa_handler;
521 		osa.lsa_flags = oact.lsa_flags;
522 		osa.lsa_restorer = oact.lsa_restorer;
523 		osa.lsa_mask = oact.lsa_mask.__mask;
524 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
525 	}
526 
527 	return (error);
528 }
529 
530 /*
531  * Linux has two extra args, restart and oldmask.  We don't use these,
532  * but it seems that "restart" is actually a context pointer that
533  * enables the signal to happen with a different register set.
534  */
535 int
536 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
537 {
538 	sigset_t sigmask;
539 	l_sigset_t mask;
540 
541 	LINUX_SIGEMPTYSET(mask);
542 	mask.__mask = args->mask;
543 	linux_to_bsd_sigset(&mask, &sigmask);
544 	return (kern_sigsuspend(td, sigmask));
545 }
546 
547 int
548 linux_pause(struct thread *td, struct linux_pause_args *args)
549 {
550 	struct proc *p = td->td_proc;
551 	sigset_t sigmask;
552 
553 	PROC_LOCK(p);
554 	sigmask = td->td_sigmask;
555 	PROC_UNLOCK(p);
556 	return (kern_sigsuspend(td, sigmask));
557 }
558 
559 int
560 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
561 {
562 	struct timeval atv;
563 	l_timeval atv32;
564 	struct timezone rtz;
565 	int error = 0;
566 
567 	if (uap->tp) {
568 		microtime(&atv);
569 		atv32.tv_sec = atv.tv_sec;
570 		atv32.tv_usec = atv.tv_usec;
571 		error = copyout(&atv32, uap->tp, sizeof(atv32));
572 	}
573 	if (error == 0 && uap->tzp != NULL) {
574 		rtz.tz_minuteswest = 0;
575 		rtz.tz_dsttime = 0;
576 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
577 	}
578 	return (error);
579 }
580 
581 int
582 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
583 {
584 	l_timeval atv32;
585 	struct timeval atv, *tvp;
586 	struct timezone atz, *tzp;
587 	int error;
588 
589 	if (uap->tp) {
590 		error = copyin(uap->tp, &atv32, sizeof(atv32));
591 		if (error)
592 			return (error);
593 		atv.tv_sec = atv32.tv_sec;
594 		atv.tv_usec = atv32.tv_usec;
595 		tvp = &atv;
596 	} else
597 		tvp = NULL;
598 	if (uap->tzp) {
599 		error = copyin(uap->tzp, &atz, sizeof(atz));
600 		if (error)
601 			return (error);
602 		tzp = &atz;
603 	} else
604 		tzp = NULL;
605 	return (kern_settimeofday(td, tvp, tzp));
606 }
607 
608 int
609 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
610 {
611 	struct rusage s;
612 	int error;
613 
614 	error = kern_getrusage(td, uap->who, &s);
615 	if (error != 0)
616 		return (error);
617 	if (uap->rusage != NULL)
618 		error = linux_copyout_rusage(&s, uap->rusage);
619 	return (error);
620 }
621 
622 int
623 linux_set_thread_area(struct thread *td,
624     struct linux_set_thread_area_args *args)
625 {
626 	struct l_user_desc info;
627 	struct pcb *pcb;
628 	int error;
629 
630 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
631 	if (error)
632 		return (error);
633 
634 	/*
635 	 * Semantics of Linux version: every thread in the system has array
636 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
637 	 * This syscall loads one of the selected TLS decriptors with a value
638 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
639 	 * the per-thread descriptors.
640 	 *
641 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
642 	 * three per-thread descriptors and use just the first one.
643 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
644 	 * for loading the GDT descriptors. We use just one GDT descriptor
645 	 * for TLS, so we will load just one.
646 	 *
647 	 * XXX: This doesn't work when a user space process tries to use more
648 	 * than one TLS segment. Comment in the Linux source says wine might
649 	 * do this.
650 	 */
651 
652 	/*
653 	 * GLIBC reads current %gs and call set_thread_area() with it.
654 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
655 	 * we use these segments.
656 	 */
657 	switch (info.entry_number) {
658 	case GUGS32_SEL:
659 	case GUDATA_SEL:
660 	case 6:
661 	case -1:
662 		info.entry_number = GUGS32_SEL;
663 		break;
664 	default:
665 		return (EINVAL);
666 	}
667 
668 	/*
669 	 * We have to copy out the GDT entry we use.
670 	 *
671 	 * XXX: What if a user space program does not check the return value
672 	 * and tries to use 6, 7 or 8?
673 	 */
674 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
675 	if (error)
676 		return (error);
677 
678 	pcb = td->td_pcb;
679 	update_pcb_bases(pcb);
680 	pcb->pcb_gsbase = (register_t)info.base_addr;
681 	update_gdt_gsbase(td, info.base_addr);
682 
683 	return (0);
684 }
685 
686 void
687 bsd_to_linux_regset32(const struct reg32 *b_reg,
688     struct linux_pt_regset32 *l_regset)
689 {
690 
691 	l_regset->ebx = b_reg->r_ebx;
692 	l_regset->ecx = b_reg->r_ecx;
693 	l_regset->edx = b_reg->r_edx;
694 	l_regset->esi = b_reg->r_esi;
695 	l_regset->edi = b_reg->r_edi;
696 	l_regset->ebp = b_reg->r_ebp;
697 	l_regset->eax = b_reg->r_eax;
698 	l_regset->ds = b_reg->r_ds;
699 	l_regset->es = b_reg->r_es;
700 	l_regset->fs = b_reg->r_fs;
701 	l_regset->gs = b_reg->r_gs;
702 	l_regset->orig_eax = b_reg->r_eax;
703 	l_regset->eip = b_reg->r_eip;
704 	l_regset->cs = b_reg->r_cs;
705 	l_regset->eflags = b_reg->r_eflags;
706 	l_regset->esp = b_reg->r_esp;
707 	l_regset->ss = b_reg->r_ss;
708 }
709 
710 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
711 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
712 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
713 {
714 
715 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
716 	    futex_xchgl_smap : futex_xchgl_nosmap);
717 }
718 
719 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
720 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
721 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
722 {
723 
724 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
725 	    futex_addl_smap : futex_addl_nosmap);
726 }
727 
728 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
729 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
730 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
731 {
732 
733 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
734 	    futex_orl_smap : futex_orl_nosmap);
735 }
736 
737 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
738 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
739 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
740 {
741 
742 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
743 	    futex_andl_smap : futex_andl_nosmap);
744 }
745 
746 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
747 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
748 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
749 {
750 
751 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
752 	    futex_xorl_smap : futex_xorl_nosmap);
753 }
754