xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision bfe691b2f75de2224c7ceb304ebcdef2b42d4179)
1 /*-
2  * Copyright (c) 2004 Tim J. Robbins
3  * Copyright (c) 2002 Doug Rabson
4  * Copyright (c) 2000 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/file.h>
38 #include <sys/fcntl.h>
39 #include <sys/clock.h>
40 #include <sys/imgact.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysproto.h>
53 #include <sys/unistd.h>
54 
55 #include <machine/frame.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/segments.h>
59 #include <machine/specialreg.h>
60 
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_map.h>
66 
67 #include <amd64/linux32/linux.h>
68 #include <amd64/linux32/linux32_proto.h>
69 #include <compat/linux/linux_ipc.h>
70 #include <compat/linux/linux_signal.h>
71 #include <compat/linux/linux_util.h>
72 #include <compat/linux/linux_emul.h>
73 
74 struct l_old_select_argv {
75 	l_int		nfds;
76 	l_uintptr_t	readfds;
77 	l_uintptr_t	writefds;
78 	l_uintptr_t	exceptfds;
79 	l_uintptr_t	timeout;
80 } __packed;
81 
82 int
83 linux_to_bsd_sigaltstack(int lsa)
84 {
85 	int bsa = 0;
86 
87 	if (lsa & LINUX_SS_DISABLE)
88 		bsa |= SS_DISABLE;
89 	if (lsa & LINUX_SS_ONSTACK)
90 		bsa |= SS_ONSTACK;
91 	return (bsa);
92 }
93 
94 int
95 bsd_to_linux_sigaltstack(int bsa)
96 {
97 	int lsa = 0;
98 
99 	if (bsa & SS_DISABLE)
100 		lsa |= LINUX_SS_DISABLE;
101 	if (bsa & SS_ONSTACK)
102 		lsa |= LINUX_SS_ONSTACK;
103 	return (lsa);
104 }
105 
106 /*
107  * Custom version of exec_copyin_args() so that we can translate
108  * the pointers.
109  */
110 static int
111 linux_exec_copyin_args(struct image_args *args, char *fname,
112     enum uio_seg segflg, char **argv, char **envv)
113 {
114 	char *argp, *envp;
115 	u_int32_t *p32, arg;
116 	size_t length;
117 	int error;
118 
119 	bzero(args, sizeof(*args));
120 	if (argv == NULL)
121 		return (EFAULT);
122 
123 	/*
124 	 * Allocate temporary demand zeroed space for argument and
125 	 *	environment strings
126 	 */
127 	args->buf = (char *)kmem_alloc_wait(exec_map,
128 	    PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
129 	if (args->buf == NULL)
130 		return (ENOMEM);
131 	args->begin_argv = args->buf;
132 	args->endp = args->begin_argv;
133 	args->stringspace = ARG_MAX;
134 
135 	args->fname = args->buf + ARG_MAX;
136 
137 	/*
138 	 * Copy the file name.
139 	 */
140 	error = (segflg == UIO_SYSSPACE) ?
141 	    copystr(fname, args->fname, PATH_MAX, &length) :
142 	    copyinstr(fname, args->fname, PATH_MAX, &length);
143 	if (error != 0)
144 		goto err_exit;
145 
146 	/*
147 	 * extract arguments first
148 	 */
149 	p32 = (u_int32_t *)argv;
150 	for (;;) {
151 		error = copyin(p32++, &arg, sizeof(arg));
152 		if (error)
153 			goto err_exit;
154 		if (arg == 0)
155 			break;
156 		argp = PTRIN(arg);
157 		error = copyinstr(argp, args->endp, args->stringspace, &length);
158 		if (error) {
159 			if (error == ENAMETOOLONG)
160 				error = E2BIG;
161 
162 			goto err_exit;
163 		}
164 		args->stringspace -= length;
165 		args->endp += length;
166 		args->argc++;
167 	}
168 
169 	args->begin_envv = args->endp;
170 
171 	/*
172 	 * extract environment strings
173 	 */
174 	if (envv) {
175 		p32 = (u_int32_t *)envv;
176 		for (;;) {
177 			error = copyin(p32++, &arg, sizeof(arg));
178 			if (error)
179 				goto err_exit;
180 			if (arg == 0)
181 				break;
182 			envp = PTRIN(arg);
183 			error = copyinstr(envp, args->endp, args->stringspace,
184 			    &length);
185 			if (error) {
186 				if (error == ENAMETOOLONG)
187 					error = E2BIG;
188 				goto err_exit;
189 			}
190 			args->stringspace -= length;
191 			args->endp += length;
192 			args->envc++;
193 		}
194 	}
195 
196 	return (0);
197 
198 err_exit:
199 	kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
200 	    PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
201 	args->buf = NULL;
202 	return (error);
203 }
204 
205 int
206 linux_execve(struct thread *td, struct linux_execve_args *args)
207 {
208 	struct image_args eargs;
209 	char *path;
210 	int error;
211 
212 	LCONVPATHEXIST(td, args->path, &path);
213 
214 #ifdef DEBUG
215 	if (ldebug(execve))
216 		printf(ARGS(execve, "%s"), path);
217 #endif
218 
219 	error = linux_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
220 	    args->envp);
221 	free(path, M_TEMP);
222 	if (error == 0)
223 		error = kern_execve(td, &eargs, NULL);
224 	if (error == 0)
225 		/* Linux process can execute FreeBSD one, do not attempt
226 		 * to create emuldata for such process using
227 		 * linux_proc_init, this leads to a panic on KASSERT
228 		 * because such process has p->p_emuldata == NULL.
229 		 */
230 	   	if (td->td_proc->p_sysent == &elf_linux_sysvec)
231 			error = linux_proc_init(td, 0, 0);
232 	return (error);
233 }
234 
235 struct iovec32 {
236 	u_int32_t iov_base;
237 	int	iov_len;
238 };
239 
240 CTASSERT(sizeof(struct iovec32) == 8);
241 
242 static int
243 linux32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
244 {
245 	struct iovec32 iov32;
246 	struct iovec *iov;
247 	struct uio *uio;
248 	u_int iovlen;
249 	int error, i;
250 
251 	*uiop = NULL;
252 	if (iovcnt > UIO_MAXIOV)
253 		return (EINVAL);
254 	iovlen = iovcnt * sizeof(struct iovec);
255 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
256 	iov = (struct iovec *)(uio + 1);
257 	for (i = 0; i < iovcnt; i++) {
258 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
259 		if (error) {
260 			free(uio, M_IOV);
261 			return (error);
262 		}
263 		iov[i].iov_base = PTRIN(iov32.iov_base);
264 		iov[i].iov_len = iov32.iov_len;
265 	}
266 	uio->uio_iov = iov;
267 	uio->uio_iovcnt = iovcnt;
268 	uio->uio_segflg = UIO_USERSPACE;
269 	uio->uio_offset = -1;
270 	uio->uio_resid = 0;
271 	for (i = 0; i < iovcnt; i++) {
272 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
273 			free(uio, M_IOV);
274 			return (EINVAL);
275 		}
276 		uio->uio_resid += iov->iov_len;
277 		iov++;
278 	}
279 	*uiop = uio;
280 	return (0);
281 }
282 
283 int
284 linux_readv(struct thread *td, struct linux_readv_args *uap)
285 {
286 	struct uio *auio;
287 	int error;
288 
289 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
290 	if (error)
291 		return (error);
292 	error = kern_readv(td, uap->fd, auio);
293 	free(auio, M_IOV);
294 	return (error);
295 }
296 
297 int
298 linux_writev(struct thread *td, struct linux_writev_args *uap)
299 {
300 	struct uio *auio;
301 	int error;
302 
303 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
304 	if (error)
305 		return (error);
306 	error = kern_writev(td, uap->fd, auio);
307 	free(auio, M_IOV);
308 	return (error);
309 }
310 
311 struct l_ipc_kludge {
312 	l_uintptr_t msgp;
313 	l_long msgtyp;
314 } __packed;
315 
316 int
317 linux_ipc(struct thread *td, struct linux_ipc_args *args)
318 {
319 
320 	switch (args->what & 0xFFFF) {
321 	case LINUX_SEMOP: {
322 		struct linux_semop_args a;
323 
324 		a.semid = args->arg1;
325 		a.tsops = args->ptr;
326 		a.nsops = args->arg2;
327 		return (linux_semop(td, &a));
328 	}
329 	case LINUX_SEMGET: {
330 		struct linux_semget_args a;
331 
332 		a.key = args->arg1;
333 		a.nsems = args->arg2;
334 		a.semflg = args->arg3;
335 		return (linux_semget(td, &a));
336 	}
337 	case LINUX_SEMCTL: {
338 		struct linux_semctl_args a;
339 		int error;
340 
341 		a.semid = args->arg1;
342 		a.semnum = args->arg2;
343 		a.cmd = args->arg3;
344 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
345 		if (error)
346 			return (error);
347 		return (linux_semctl(td, &a));
348 	}
349 	case LINUX_MSGSND: {
350 		struct linux_msgsnd_args a;
351 
352 		a.msqid = args->arg1;
353 		a.msgp = args->ptr;
354 		a.msgsz = args->arg2;
355 		a.msgflg = args->arg3;
356 		return (linux_msgsnd(td, &a));
357 	}
358 	case LINUX_MSGRCV: {
359 		struct linux_msgrcv_args a;
360 
361 		a.msqid = args->arg1;
362 		a.msgsz = args->arg2;
363 		a.msgflg = args->arg3;
364 		if ((args->what >> 16) == 0) {
365 			struct l_ipc_kludge tmp;
366 			int error;
367 
368 			if (args->ptr == 0)
369 				return (EINVAL);
370 			error = copyin(args->ptr, &tmp, sizeof(tmp));
371 			if (error)
372 				return (error);
373 			a.msgp = PTRIN(tmp.msgp);
374 			a.msgtyp = tmp.msgtyp;
375 		} else {
376 			a.msgp = args->ptr;
377 			a.msgtyp = args->arg5;
378 		}
379 		return (linux_msgrcv(td, &a));
380 	}
381 	case LINUX_MSGGET: {
382 		struct linux_msgget_args a;
383 
384 		a.key = args->arg1;
385 		a.msgflg = args->arg2;
386 		return (linux_msgget(td, &a));
387 	}
388 	case LINUX_MSGCTL: {
389 		struct linux_msgctl_args a;
390 
391 		a.msqid = args->arg1;
392 		a.cmd = args->arg2;
393 		a.buf = args->ptr;
394 		return (linux_msgctl(td, &a));
395 	}
396 	case LINUX_SHMAT: {
397 		struct linux_shmat_args a;
398 
399 		a.shmid = args->arg1;
400 		a.shmaddr = args->ptr;
401 		a.shmflg = args->arg2;
402 		a.raddr = PTRIN((l_uint)args->arg3);
403 		return (linux_shmat(td, &a));
404 	}
405 	case LINUX_SHMDT: {
406 		struct linux_shmdt_args a;
407 
408 		a.shmaddr = args->ptr;
409 		return (linux_shmdt(td, &a));
410 	}
411 	case LINUX_SHMGET: {
412 		struct linux_shmget_args a;
413 
414 		a.key = args->arg1;
415 		a.size = args->arg2;
416 		a.shmflg = args->arg3;
417 		return (linux_shmget(td, &a));
418 	}
419 	case LINUX_SHMCTL: {
420 		struct linux_shmctl_args a;
421 
422 		a.shmid = args->arg1;
423 		a.cmd = args->arg2;
424 		a.buf = args->ptr;
425 		return (linux_shmctl(td, &a));
426 	}
427 	default:
428 		break;
429 	}
430 
431 	return (EINVAL);
432 }
433 
434 int
435 linux_old_select(struct thread *td, struct linux_old_select_args *args)
436 {
437 	struct l_old_select_argv linux_args;
438 	struct linux_select_args newsel;
439 	int error;
440 
441 #ifdef DEBUG
442 	if (ldebug(old_select))
443 		printf(ARGS(old_select, "%p"), args->ptr);
444 #endif
445 
446 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
447 	if (error)
448 		return (error);
449 
450 	newsel.nfds = linux_args.nfds;
451 	newsel.readfds = PTRIN(linux_args.readfds);
452 	newsel.writefds = PTRIN(linux_args.writefds);
453 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
454 	newsel.timeout = PTRIN(linux_args.timeout);
455 	return (linux_select(td, &newsel));
456 }
457 
458 int
459 linux_fork(struct thread *td, struct linux_fork_args *args)
460 {
461 	int error;
462 	struct proc *p2;
463 	struct thread *td2;
464 
465 #ifdef DEBUG
466 	if (ldebug(fork))
467 		printf(ARGS(fork, ""));
468 #endif
469 
470 	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
471 		return (error);
472 
473 	if (error == 0) {
474 		td->td_retval[0] = p2->p_pid;
475 		td->td_retval[1] = 0;
476 	}
477 
478 	if (td->td_retval[1] == 1)
479 		td->td_retval[0] = 0;
480 	error = linux_proc_init(td, td->td_retval[0], 0);
481 	if (error)
482 		return (error);
483 
484 	td2 = FIRST_THREAD_IN_PROC(p2);
485 
486 	/*
487 	 * Make this runnable after we are finished with it.
488 	 */
489 	mtx_lock_spin(&sched_lock);
490 	TD_SET_CAN_RUN(td2);
491 	sched_add(td2, SRQ_BORING);
492 	mtx_unlock_spin(&sched_lock);
493 
494 	return (0);
495 }
496 
497 int
498 linux_vfork(struct thread *td, struct linux_vfork_args *args)
499 {
500 	int error;
501 	struct proc *p2;
502 	struct thread *td2;
503 
504 #ifdef DEBUG
505 	if (ldebug(vfork))
506 		printf(ARGS(vfork, ""));
507 #endif
508 
509 	/* Exclude RFPPWAIT */
510 	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
511 		return (error);
512 	if (error == 0) {
513 	   	td->td_retval[0] = p2->p_pid;
514 		td->td_retval[1] = 0;
515 	}
516 	/* Are we the child? */
517 	if (td->td_retval[1] == 1)
518 		td->td_retval[0] = 0;
519 	error = linux_proc_init(td, td->td_retval[0], 0);
520 	if (error)
521 		return (error);
522 
523 	PROC_LOCK(p2);
524 	p2->p_flag |= P_PPWAIT;
525 	PROC_UNLOCK(p2);
526 
527 	td2 = FIRST_THREAD_IN_PROC(p2);
528 
529 	/* make it run */
530 	mtx_lock_spin(&sched_lock);
531 	TD_SET_CAN_RUN(td2);
532 	sched_add(td2, SRQ_BORING);
533 	mtx_unlock_spin(&sched_lock);
534 
535 	/* wait for the children to exit, ie. emulate vfork */
536 	PROC_LOCK(p2);
537 	while (p2->p_flag & P_PPWAIT)
538 	   	msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
539 	PROC_UNLOCK(p2);
540 
541 	return (0);
542 }
543 
544 int
545 linux_clone(struct thread *td, struct linux_clone_args *args)
546 {
547 	int error, ff = RFPROC | RFSTOPPED;
548 	struct proc *p2;
549 	struct thread *td2;
550 	int exit_signal;
551 	struct linux_emuldata *em;
552 
553 #ifdef DEBUG
554 	if (ldebug(clone)) {
555 		printf(ARGS(clone, "flags %x, stack %p, parent tid: %p, "
556 		    "child tid: %p"), (unsigned)args->flags,
557 		    args->stack, args->parent_tidptr, args->child_tidptr);
558 	}
559 #endif
560 
561 	exit_signal = args->flags & 0x000000ff;
562 	if (!LINUX_SIG_VALID(exit_signal) && exit_signal != 0)
563 		return (EINVAL);
564 
565 	if (exit_signal <= LINUX_SIGTBLSZ)
566 		exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
567 
568 	if (args->flags & LINUX_CLONE_VM)
569 		ff |= RFMEM;
570 	if (args->flags & LINUX_CLONE_SIGHAND)
571 		ff |= RFSIGSHARE;
572 	/*
573 	 * XXX: In Linux, sharing of fs info (chroot/cwd/umask)
574 	 * and open files is independant.  In FreeBSD, its in one
575 	 * structure but in reality it does not make any problems
576 	 * because both of these flags are set at once usually.
577 	 */
578 	if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
579 		ff |= RFFDG;
580 
581 	/*
582 	 * Attempt to detect when linux_clone(2) is used for creating
583 	 * kernel threads. Unfortunately despite the existence of the
584 	 * CLONE_THREAD flag, version of linuxthreads package used in
585 	 * most popular distros as of beginning of 2005 doesn't make
586 	 * any use of it. Therefore, this detection relies on
587 	 * empirical observation that linuxthreads sets certain
588 	 * combination of flags, so that we can make more or less
589 	 * precise detection and notify the FreeBSD kernel that several
590 	 * processes are in fact part of the same threading group, so
591 	 * that special treatment is necessary for signal delivery
592 	 * between those processes and fd locking.
593 	 */
594 	if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
595 		ff |= RFTHREAD;
596 
597 	if (args->flags & LINUX_CLONE_PARENT_SETTID)
598 		if (args->parent_tidptr == NULL)
599 			return (EINVAL);
600 
601 	error = fork1(td, ff, 0, &p2);
602 	if (error)
603 		return (error);
604 
605 	if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
606 	   	sx_xlock(&proctree_lock);
607 		PROC_LOCK(p2);
608 		proc_reparent(p2, td->td_proc->p_pptr);
609 		PROC_UNLOCK(p2);
610 		sx_xunlock(&proctree_lock);
611 	}
612 
613 	/* create the emuldata */
614 	error = linux_proc_init(td, p2->p_pid, args->flags);
615 	/* reference it - no need to check this */
616 	em = em_find(p2, EMUL_DOLOCK);
617 	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
618 	/* and adjust it */
619 
620 	if (args->flags & LINUX_CLONE_THREAD) {
621 #ifdef notyet
622 	   	PROC_LOCK(p2);
623 	   	p2->p_pgrp = td->td_proc->p_pgrp;
624 	   	PROC_UNLOCK(p2);
625 #endif
626 		exit_signal = 0;
627 	}
628 
629 	if (args->flags & LINUX_CLONE_CHILD_SETTID)
630 		em->child_set_tid = args->child_tidptr;
631 	else
632 	   	em->child_set_tid = NULL;
633 
634 	if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
635 		em->child_clear_tid = args->child_tidptr;
636 	else
637 	   	em->child_clear_tid = NULL;
638 
639 	EMUL_UNLOCK(&emul_lock);
640 
641 	if (args->flags & LINUX_CLONE_PARENT_SETTID) {
642 		error = copyout(&p2->p_pid, args->parent_tidptr,
643 		    sizeof(p2->p_pid));
644 		if (error)
645 			printf(LMSG("copyout failed!"));
646 	}
647 
648 	PROC_LOCK(p2);
649 	p2->p_sigparent = exit_signal;
650 	PROC_UNLOCK(p2);
651 	td2 = FIRST_THREAD_IN_PROC(p2);
652 	/*
653 	 * In a case of stack = NULL, we are supposed to COW calling process
654 	 * stack. This is what normal fork() does, so we just keep tf_rsp arg
655 	 * intact.
656 	 */
657 	if (args->stack)
658 		td2->td_frame->tf_rsp = PTROUT(args->stack);
659 
660 	if (args->flags & LINUX_CLONE_SETTLS) {
661 		struct user_segment_descriptor sd;
662 		struct l_user_desc info;
663 	   	int a[2];
664 
665 	   	error = copyin((void *)td->td_frame->tf_rsi, &info,
666 		    sizeof(struct l_user_desc));
667 		if (error) {
668 			printf(LMSG("copyin failed!"));
669 		} else {
670 			/* We might copy out the entry_number as GUGS32_SEL. */
671 		   	info.entry_number = GUGS32_SEL;
672 			error = copyout(&info, (void *)td->td_frame->tf_rsi,
673 			    sizeof(struct l_user_desc));
674 			if (error)
675 				printf(LMSG("copyout failed!"));
676 
677 			a[0] = LINUX_LDT_entry_a(&info);
678 			a[1] = LINUX_LDT_entry_b(&info);
679 
680 			memcpy(&sd, &a, sizeof(a));
681 #ifdef DEBUG
682 			if (ldebug(clone))
683 				printf("Segment created in clone with "
684 				    "CLONE_SETTLS: lobase: %x, hibase: %x, "
685 				    "lolimit: %x, hilimit: %x, type: %i, "
686 				    "dpl: %i, p: %i, xx: %i, long: %i, "
687 				    "def32: %i, gran: %i\n", sd.sd_lobase,
688 				    sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
689 				    sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
690 				    sd.sd_long, sd.sd_def32, sd.sd_gran);
691 #endif
692 			td2->td_pcb->pcb_gsbase = (register_t)info.base_addr;
693 			td2->td_pcb->pcb_gs32sd = sd;
694 			td2->td_pcb->pcb_gs32p = &gdt[GUGS32_SEL];
695 			td2->td_pcb->pcb_gs = GSEL(GUGS32_SEL, SEL_UPL);
696 			td2->td_pcb->pcb_flags |= PCB_32BIT;
697 		}
698 	}
699 
700 #ifdef DEBUG
701 	if (ldebug(clone))
702 		printf(LMSG("clone: successful rfork to %d, "
703 		    "stack %p sig = %d"), (int)p2->p_pid, args->stack,
704 		    exit_signal);
705 #endif
706 	if (args->flags & LINUX_CLONE_VFORK) {
707 	   	PROC_LOCK(p2);
708 	   	p2->p_flag |= P_PPWAIT;
709 	   	PROC_UNLOCK(p2);
710 	}
711 
712 	/*
713 	 * Make this runnable after we are finished with it.
714 	 */
715 	mtx_lock_spin(&sched_lock);
716 	TD_SET_CAN_RUN(td2);
717 	sched_add(td2, SRQ_BORING);
718 	mtx_unlock_spin(&sched_lock);
719 
720 	td->td_retval[0] = p2->p_pid;
721 	td->td_retval[1] = 0;
722 
723 	if (args->flags & LINUX_CLONE_VFORK) {
724 		/* wait for the children to exit, ie. emulate vfork */
725 		PROC_LOCK(p2);
726 		while (p2->p_flag & P_PPWAIT)
727 			msleep(td->td_proc, &p2->p_mtx, PWAIT, "ppwait", 0);
728 		PROC_UNLOCK(p2);
729 	}
730 
731 	return (0);
732 }
733 
734 #define STACK_SIZE  (2 * 1024 * 1024)
735 #define GUARD_SIZE  (4 * PAGE_SIZE)
736 
737 static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
738 
739 int
740 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
741 {
742 	struct l_mmap_argv linux_args;
743 
744 #ifdef DEBUG
745 	if (ldebug(mmap2))
746 		printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
747 		    args->addr, args->len, args->prot,
748 		    args->flags, args->fd, args->pgoff);
749 #endif
750 
751 	linux_args.addr = PTROUT(args->addr);
752 	linux_args.len = args->len;
753 	linux_args.prot = args->prot;
754 	linux_args.flags = args->flags;
755 	linux_args.fd = args->fd;
756 	linux_args.pgoff = args->pgoff;
757 
758 	return (linux_mmap_common(td, &linux_args));
759 }
760 
761 int
762 linux_mmap(struct thread *td, struct linux_mmap_args *args)
763 {
764 	int error;
765 	struct l_mmap_argv linux_args;
766 
767 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
768 	if (error)
769 		return (error);
770 
771 #ifdef DEBUG
772 	if (ldebug(mmap))
773 		printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
774 		    linux_args.addr, linux_args.len, linux_args.prot,
775 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
776 #endif
777 	if ((linux_args.pgoff % PAGE_SIZE) != 0)
778 		return (EINVAL);
779 	linux_args.pgoff /= PAGE_SIZE;
780 
781 	return (linux_mmap_common(td, &linux_args));
782 }
783 
784 static int
785 linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
786 {
787 	struct proc *p = td->td_proc;
788 	struct mmap_args /* {
789 		caddr_t addr;
790 		size_t len;
791 		int prot;
792 		int flags;
793 		int fd;
794 		long pad;
795 		off_t pos;
796 	} */ bsd_args;
797 	int error;
798 	struct file *fp;
799 
800 	error = 0;
801 	bsd_args.flags = 0;
802 	fp = NULL;
803 
804 	/*
805 	 * Linux mmap(2):
806 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
807 	 */
808 	if (! ((linux_args->flags & LINUX_MAP_SHARED) ^
809 	    (linux_args->flags & LINUX_MAP_PRIVATE)))
810 		return (EINVAL);
811 
812 	if (linux_args->flags & LINUX_MAP_SHARED)
813 		bsd_args.flags |= MAP_SHARED;
814 	if (linux_args->flags & LINUX_MAP_PRIVATE)
815 		bsd_args.flags |= MAP_PRIVATE;
816 	if (linux_args->flags & LINUX_MAP_FIXED)
817 		bsd_args.flags |= MAP_FIXED;
818 	if (linux_args->flags & LINUX_MAP_ANON)
819 		bsd_args.flags |= MAP_ANON;
820 	else
821 		bsd_args.flags |= MAP_NOSYNC;
822 	if (linux_args->flags & LINUX_MAP_GROWSDOWN)
823 		bsd_args.flags |= MAP_STACK;
824 
825 	/*
826 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
827 	 * on Linux/i386. We do this to ensure maximum compatibility.
828 	 * Linux/ia64 does the same in i386 emulation mode.
829 	 */
830 	bsd_args.prot = linux_args->prot;
831 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
832 		bsd_args.prot |= PROT_READ | PROT_EXEC;
833 
834 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
835 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : linux_args->fd;
836 	if (bsd_args.fd != -1) {
837 		/*
838 		 * Linux follows Solaris mmap(2) description:
839 		 * The file descriptor fildes is opened with
840 		 * read permission, regardless of the
841 		 * protection options specified.
842 		 */
843 
844 		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
845 			return (error);
846 		if (fp->f_type != DTYPE_VNODE) {
847 			fdrop(fp, td);
848 			return (EINVAL);
849 		}
850 
851 		/* Linux mmap() just fails for O_WRONLY files */
852 		if (!(fp->f_flag & FREAD)) {
853 			fdrop(fp, td);
854 			return (EACCES);
855 		}
856 
857 		fdrop(fp, td);
858 	}
859 
860 	if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
861 		/*
862 		 * The Linux MAP_GROWSDOWN option does not limit auto
863 		 * growth of the region.  Linux mmap with this option
864 		 * takes as addr the inital BOS, and as len, the initial
865 		 * region size.  It can then grow down from addr without
866 		 * limit.  However, Linux threads has an implicit internal
867 		 * limit to stack size of STACK_SIZE.  Its just not
868 		 * enforced explicitly in Linux.  But, here we impose
869 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
870 		 * region, since we can do this with our mmap.
871 		 *
872 		 * Our mmap with MAP_STACK takes addr as the maximum
873 		 * downsize limit on BOS, and as len the max size of
874 		 * the region.  It them maps the top SGROWSIZ bytes,
875 		 * and auto grows the region down, up to the limit
876 		 * in addr.
877 		 *
878 		 * If we don't use the MAP_STACK option, the effect
879 		 * of this code is to allocate a stack region of a
880 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
881 		 */
882 
883 		if ((caddr_t)PTRIN(linux_args->addr) + linux_args->len >
884 		    p->p_vmspace->vm_maxsaddr) {
885 			/*
886 			 * Some Linux apps will attempt to mmap
887 			 * thread stacks near the top of their
888 			 * address space.  If their TOS is greater
889 			 * than vm_maxsaddr, vm_map_growstack()
890 			 * will confuse the thread stack with the
891 			 * process stack and deliver a SEGV if they
892 			 * attempt to grow the thread stack past their
893 			 * current stacksize rlimit.  To avoid this,
894 			 * adjust vm_maxsaddr upwards to reflect
895 			 * the current stacksize rlimit rather
896 			 * than the maximum possible stacksize.
897 			 * It would be better to adjust the
898 			 * mmap'ed region, but some apps do not check
899 			 * mmap's return value.
900 			 */
901 			PROC_LOCK(p);
902 			p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
903 			    lim_cur(p, RLIMIT_STACK);
904 			PROC_UNLOCK(p);
905 		}
906 
907 		/* This gives us our maximum stack size */
908 		if (linux_args->len > STACK_SIZE - GUARD_SIZE)
909 			bsd_args.len = linux_args->len;
910 		else
911 			bsd_args.len  = STACK_SIZE - GUARD_SIZE;
912 
913 		/*
914 		 * This gives us a new BOS.  If we're using VM_STACK, then
915 		 * mmap will just map the top SGROWSIZ bytes, and let
916 		 * the stack grow down to the limit at BOS.  If we're
917 		 * not using VM_STACK we map the full stack, since we
918 		 * don't have a way to autogrow it.
919 		 */
920 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) -
921 		    bsd_args.len;
922 	} else {
923 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
924 		bsd_args.len  = linux_args->len;
925 	}
926 	bsd_args.pos = (off_t)linux_args->pgoff * PAGE_SIZE;
927 	bsd_args.pad = 0;
928 
929 #ifdef DEBUG
930 	if (ldebug(mmap))
931 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
932 		    __func__,
933 		    (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
934 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
935 #endif
936 	error = mmap(td, &bsd_args);
937 #ifdef DEBUG
938 	if (ldebug(mmap))
939 		printf("-> %s() return: 0x%x (0x%08x)\n",
940 			__func__, error, (u_int)td->td_retval[0]);
941 #endif
942 	return (error);
943 }
944 
945 int
946 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
947 {
948 	struct mprotect_args bsd_args;
949 
950 	bsd_args.addr = uap->addr;
951 	bsd_args.len = uap->len;
952 	bsd_args.prot = uap->prot;
953 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
954 		bsd_args.prot |= PROT_READ | PROT_EXEC;
955 	return (mprotect(td, &bsd_args));
956 }
957 
958 int
959 linux_iopl(struct thread *td, struct linux_iopl_args *args)
960 {
961 	int error;
962 
963 	if (args->level < 0 || args->level > 3)
964 		return (EINVAL);
965 	if ((error = priv_check(td, PRIV_IO)) != 0)
966 		return (error);
967 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
968 		return (error);
969 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
970 	    (args->level * (PSL_IOPL / 3));
971 
972 	return (0);
973 }
974 
975 int
976 linux_pipe(struct thread *td, struct linux_pipe_args *args)
977 {
978 	int pip[2];
979 	int error;
980 	register_t reg_rdx;
981 
982 #ifdef DEBUG
983 	if (ldebug(pipe))
984 		printf(ARGS(pipe, "*"));
985 #endif
986 
987 	reg_rdx = td->td_retval[1];
988 	error = pipe(td, 0);
989 	if (error) {
990 		td->td_retval[1] = reg_rdx;
991 		return (error);
992 	}
993 
994 	pip[0] = td->td_retval[0];
995 	pip[1] = td->td_retval[1];
996 	error = copyout(pip, args->pipefds, 2 * sizeof(int));
997 	if (error) {
998 		td->td_retval[1] = reg_rdx;
999 		return (error);
1000 	}
1001 
1002 	td->td_retval[1] = reg_rdx;
1003 	td->td_retval[0] = 0;
1004 	return (0);
1005 }
1006 
1007 int
1008 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
1009 {
1010 	l_osigaction_t osa;
1011 	l_sigaction_t act, oact;
1012 	int error;
1013 
1014 #ifdef DEBUG
1015 	if (ldebug(sigaction))
1016 		printf(ARGS(sigaction, "%d, %p, %p"),
1017 		    args->sig, (void *)args->nsa, (void *)args->osa);
1018 #endif
1019 
1020 	if (args->nsa != NULL) {
1021 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
1022 		if (error)
1023 			return (error);
1024 		act.lsa_handler = osa.lsa_handler;
1025 		act.lsa_flags = osa.lsa_flags;
1026 		act.lsa_restorer = osa.lsa_restorer;
1027 		LINUX_SIGEMPTYSET(act.lsa_mask);
1028 		act.lsa_mask.__bits[0] = osa.lsa_mask;
1029 	}
1030 
1031 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
1032 	    args->osa ? &oact : NULL);
1033 
1034 	if (args->osa != NULL && !error) {
1035 		osa.lsa_handler = oact.lsa_handler;
1036 		osa.lsa_flags = oact.lsa_flags;
1037 		osa.lsa_restorer = oact.lsa_restorer;
1038 		osa.lsa_mask = oact.lsa_mask.__bits[0];
1039 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
1040 	}
1041 
1042 	return (error);
1043 }
1044 
1045 /*
1046  * Linux has two extra args, restart and oldmask.  We don't use these,
1047  * but it seems that "restart" is actually a context pointer that
1048  * enables the signal to happen with a different register set.
1049  */
1050 int
1051 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
1052 {
1053 	sigset_t sigmask;
1054 	l_sigset_t mask;
1055 
1056 #ifdef DEBUG
1057 	if (ldebug(sigsuspend))
1058 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
1059 #endif
1060 
1061 	LINUX_SIGEMPTYSET(mask);
1062 	mask.__bits[0] = args->mask;
1063 	linux_to_bsd_sigset(&mask, &sigmask);
1064 	return (kern_sigsuspend(td, sigmask));
1065 }
1066 
1067 int
1068 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
1069 {
1070 	l_sigset_t lmask;
1071 	sigset_t sigmask;
1072 	int error;
1073 
1074 #ifdef DEBUG
1075 	if (ldebug(rt_sigsuspend))
1076 		printf(ARGS(rt_sigsuspend, "%p, %d"),
1077 		    (void *)uap->newset, uap->sigsetsize);
1078 #endif
1079 
1080 	if (uap->sigsetsize != sizeof(l_sigset_t))
1081 		return (EINVAL);
1082 
1083 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
1084 	if (error)
1085 		return (error);
1086 
1087 	linux_to_bsd_sigset(&lmask, &sigmask);
1088 	return (kern_sigsuspend(td, sigmask));
1089 }
1090 
1091 int
1092 linux_pause(struct thread *td, struct linux_pause_args *args)
1093 {
1094 	struct proc *p = td->td_proc;
1095 	sigset_t sigmask;
1096 
1097 #ifdef DEBUG
1098 	if (ldebug(pause))
1099 		printf(ARGS(pause, ""));
1100 #endif
1101 
1102 	PROC_LOCK(p);
1103 	sigmask = td->td_sigmask;
1104 	PROC_UNLOCK(p);
1105 	return (kern_sigsuspend(td, sigmask));
1106 }
1107 
1108 int
1109 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1110 {
1111 	stack_t ss, oss;
1112 	l_stack_t lss;
1113 	int error;
1114 
1115 #ifdef DEBUG
1116 	if (ldebug(sigaltstack))
1117 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1118 #endif
1119 
1120 	if (uap->uss != NULL) {
1121 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1122 		if (error)
1123 			return (error);
1124 
1125 		ss.ss_sp = PTRIN(lss.ss_sp);
1126 		ss.ss_size = lss.ss_size;
1127 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1128 	}
1129 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1130 	    (uap->uoss != NULL) ? &oss : NULL);
1131 	if (!error && uap->uoss != NULL) {
1132 		lss.ss_sp = PTROUT(oss.ss_sp);
1133 		lss.ss_size = oss.ss_size;
1134 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1135 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1136 	}
1137 
1138 	return (error);
1139 }
1140 
1141 int
1142 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1143 {
1144 	struct ftruncate_args sa;
1145 
1146 #ifdef DEBUG
1147 	if (ldebug(ftruncate64))
1148 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1149 		    (intmax_t)args->length);
1150 #endif
1151 
1152 	sa.fd = args->fd;
1153 	sa.pad = 0;
1154 	sa.length = args->length;
1155 	return ftruncate(td, &sa);
1156 }
1157 
1158 int
1159 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
1160 {
1161 	struct timeval atv;
1162 	l_timeval atv32;
1163 	struct timezone rtz;
1164 	int error = 0;
1165 
1166 	if (uap->tp) {
1167 		microtime(&atv);
1168 		atv32.tv_sec = atv.tv_sec;
1169 		atv32.tv_usec = atv.tv_usec;
1170 		error = copyout(&atv32, uap->tp, sizeof (atv32));
1171 	}
1172 	if (error == 0 && uap->tzp != NULL) {
1173 		rtz.tz_minuteswest = tz_minuteswest;
1174 		rtz.tz_dsttime = tz_dsttime;
1175 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
1176 	}
1177 	return (error);
1178 }
1179 
1180 int
1181 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
1182 {
1183 	struct l_rusage s32;
1184 	struct rusage s;
1185 	int error;
1186 
1187 	error = kern_getrusage(td, uap->who, &s);
1188 	if (error != 0)
1189 		return (error);
1190 	if (uap->rusage != NULL) {
1191 		s32.ru_utime.tv_sec = s.ru_utime.tv_sec;
1192 		s32.ru_utime.tv_usec = s.ru_utime.tv_usec;
1193 		s32.ru_stime.tv_sec = s.ru_stime.tv_sec;
1194 		s32.ru_stime.tv_usec = s.ru_stime.tv_usec;
1195 		s32.ru_maxrss = s.ru_maxrss;
1196 		s32.ru_ixrss = s.ru_ixrss;
1197 		s32.ru_idrss = s.ru_idrss;
1198 		s32.ru_isrss = s.ru_isrss;
1199 		s32.ru_minflt = s.ru_minflt;
1200 		s32.ru_majflt = s.ru_majflt;
1201 		s32.ru_nswap = s.ru_nswap;
1202 		s32.ru_inblock = s.ru_inblock;
1203 		s32.ru_oublock = s.ru_oublock;
1204 		s32.ru_msgsnd = s.ru_msgsnd;
1205 		s32.ru_msgrcv = s.ru_msgrcv;
1206 		s32.ru_nsignals = s.ru_nsignals;
1207 		s32.ru_nvcsw = s.ru_nvcsw;
1208 		s32.ru_nivcsw = s.ru_nivcsw;
1209 		error = copyout(&s32, uap->rusage, sizeof(s32));
1210 	}
1211 	return (error);
1212 }
1213 
1214 int
1215 linux_sched_rr_get_interval(struct thread *td,
1216     struct linux_sched_rr_get_interval_args *uap)
1217 {
1218 	struct timespec ts;
1219 	struct l_timespec ts32;
1220 	int error;
1221 
1222 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
1223 	if (error != 0)
1224 		return (error);
1225 	ts32.tv_sec = ts.tv_sec;
1226 	ts32.tv_nsec = ts.tv_nsec;
1227 	return (copyout(&ts32, uap->interval, sizeof(ts32)));
1228 }
1229 
1230 int
1231 linux_set_thread_area(struct thread *td,
1232     struct linux_set_thread_area_args *args)
1233 {
1234 	struct l_user_desc info;
1235 	struct user_segment_descriptor sd;
1236 	int a[2];
1237 	int error;
1238 
1239 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1240 	if (error)
1241 		return (error);
1242 
1243 #ifdef DEBUG
1244 	if (ldebug(set_thread_area))
1245 	   	printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
1246 		    "%i, %i, %i"), info.entry_number, info.base_addr,
1247 		    info.limit, info.seg_32bit, info.contents,
1248 		    info.read_exec_only, info.limit_in_pages,
1249 		    info.seg_not_present, info.useable);
1250 #endif
1251 
1252 	/*
1253 	 * Semantics of Linux version: every thread in the system has array
1254 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
1255 	 * This syscall loads one of the selected TLS decriptors with a value
1256 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
1257 	 * the per-thread descriptors.
1258 	 *
1259 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
1260 	 * three per-thread descriptors and use just the first one.
1261 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
1262 	 * for loading the GDT descriptors. We use just one GDT descriptor
1263 	 * for TLS, so we will load just one.
1264 	 * XXX: This doesnt work when user-space process tries to use more
1265 	 * than one TLS segment. Comment in the Linux source says wine might
1266 	 * do that.
1267 	 */
1268 
1269 	/*
1270 	 * GLIBC reads current %gs and call set_thread_area() with it.
1271 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
1272 	 * we use these segments.
1273 	 */
1274 	switch (info.entry_number) {
1275 	case GUGS32_SEL:
1276 	case GUDATA_SEL:
1277 	case 6:
1278 	case -1:
1279 		info.entry_number = GUGS32_SEL;
1280 		break;
1281 	default:
1282 		return (EINVAL);
1283 	}
1284 
1285 	/*
1286 	 * We have to copy out the GDT entry we use.
1287 	 * XXX: What if userspace program does not check return value and
1288 	 * tries to use 6, 7 or 8?
1289 	 */
1290 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1291 	if (error)
1292 		return (error);
1293 
1294 	if (LINUX_LDT_empty(&info)) {
1295 		a[0] = 0;
1296 		a[1] = 0;
1297 	} else {
1298 		a[0] = LINUX_LDT_entry_a(&info);
1299 		a[1] = LINUX_LDT_entry_b(&info);
1300 	}
1301 
1302 	memcpy(&sd, &a, sizeof(a));
1303 #ifdef DEBUG
1304 	if (ldebug(set_thread_area))
1305 		printf("Segment created in set_thread_area: "
1306 		    "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
1307 		    "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
1308 		    "def32: %i, gran: %i\n",
1309 		    sd.sd_lobase,
1310 		    sd.sd_hibase,
1311 		    sd.sd_lolimit,
1312 		    sd.sd_hilimit,
1313 		    sd.sd_type,
1314 		    sd.sd_dpl,
1315 		    sd.sd_p,
1316 		    sd.sd_xx,
1317 		    sd.sd_long,
1318 		    sd.sd_def32,
1319 		    sd.sd_gran);
1320 #endif
1321 
1322 	critical_enter();
1323 	td->td_pcb->pcb_gsbase = (register_t)info.base_addr;
1324 	td->td_pcb->pcb_gs32sd = gdt[GUGS32_SEL] = sd;
1325 	td->td_pcb->pcb_gs32p = &gdt[GUGS32_SEL];
1326 	td->td_pcb->pcb_flags |= PCB_32BIT;
1327 	wrmsr(MSR_KGSBASE, td->td_pcb->pcb_gsbase);
1328 	critical_exit();
1329 
1330 	return (0);
1331 }
1332