xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 2004 Tim J. Robbins
3  * Copyright (c) 2002 Doug Rabson
4  * Copyright (c) 2000 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/imgact.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mman.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/resource.h>
44 #include <sys/resourcevar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/sysproto.h>
47 #include <sys/unistd.h>
48 
49 #include <machine/frame.h>
50 
51 #include <vm/vm.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_map.h>
56 
57 #include <amd64/linux32/linux.h>
58 #include <amd64/linux32/linux32_proto.h>
59 #include <compat/linux/linux_ipc.h>
60 #include <compat/linux/linux_signal.h>
61 #include <compat/linux/linux_util.h>
62 
63 struct l_old_select_argv {
64 	l_int		nfds;
65 	l_uintptr_t	readfds;
66 	l_uintptr_t	writefds;
67 	l_uintptr_t	exceptfds;
68 	l_uintptr_t	timeout;
69 } __packed;
70 
71 int
72 linux_to_bsd_sigaltstack(int lsa)
73 {
74 	int bsa = 0;
75 
76 	if (lsa & LINUX_SS_DISABLE)
77 		bsa |= SS_DISABLE;
78 	if (lsa & LINUX_SS_ONSTACK)
79 		bsa |= SS_ONSTACK;
80 	return (bsa);
81 }
82 
83 int
84 bsd_to_linux_sigaltstack(int bsa)
85 {
86 	int lsa = 0;
87 
88 	if (bsa & SS_DISABLE)
89 		lsa |= LINUX_SS_DISABLE;
90 	if (bsa & SS_ONSTACK)
91 		lsa |= LINUX_SS_ONSTACK;
92 	return (lsa);
93 }
94 
95 /*
96  * Custom version of exec_copyin_args() so that we can translate
97  * the pointers.
98  */
99 static int
100 linux_exec_copyin_args(struct image_args *args, char *fname,
101     enum uio_seg segflg, char **argv, char **envv)
102 {
103 	char *argp, *envp;
104 	u_int32_t *p32, arg;
105 	size_t length;
106 	int error;
107 
108 	bzero(args, sizeof(*args));
109 	if (argv == NULL)
110 		return (EFAULT);
111 
112 	/*
113 	 * Allocate temporary demand zeroed space for argument and
114 	 *	environment strings
115 	 */
116 	args->buf = (char *) kmem_alloc_wait(exec_map,
117 	    PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
118 	if (args->buf == NULL)
119 		return (ENOMEM);
120 	args->begin_argv = args->buf;
121 	args->endp = args->begin_argv;
122 	args->stringspace = ARG_MAX;
123 
124 	args->fname = args->buf + ARG_MAX;
125 
126 	/*
127 	 * Copy the file name.
128 	 */
129 	error = (segflg == UIO_SYSSPACE) ?
130 	    copystr(fname, args->fname, PATH_MAX, &length) :
131 	    copyinstr(fname, args->fname, PATH_MAX, &length);
132 	if (error != 0)
133 		goto err_exit;
134 
135 	/*
136 	 * extract arguments first
137 	 */
138 	p32 = (u_int32_t *)argv;
139 	for (;;) {
140 		error = copyin(p32++, &arg, sizeof(arg));
141 		if (error)
142 			goto err_exit;
143 		if (arg == 0)
144 			break;
145 		argp = PTRIN(arg);
146 		error = copyinstr(argp, args->endp, args->stringspace, &length);
147 		if (error) {
148 			if (error == ENAMETOOLONG)
149 				error = E2BIG;
150 
151 			goto err_exit;
152 		}
153 		args->stringspace -= length;
154 		args->endp += length;
155 		args->argc++;
156 	}
157 
158 	args->begin_envv = args->endp;
159 
160 	/*
161 	 * extract environment strings
162 	 */
163 	if (envv) {
164 		p32 = (u_int32_t *)envv;
165 		for (;;) {
166 			error = copyin(p32++, &arg, sizeof(arg));
167 			if (error)
168 				goto err_exit;
169 			if (arg == 0)
170 				break;
171 			envp = PTRIN(arg);
172 			error = copyinstr(envp, args->endp, args->stringspace,
173 			    &length);
174 			if (error) {
175 				if (error == ENAMETOOLONG)
176 					error = E2BIG;
177 				goto err_exit;
178 			}
179 			args->stringspace -= length;
180 			args->endp += length;
181 			args->envc++;
182 		}
183 	}
184 
185 	return (0);
186 
187 err_exit:
188 	kmem_free_wakeup(exec_map, (vm_offset_t)args->buf,
189 	    PATH_MAX + ARG_MAX + MAXSHELLCMDLEN);
190 	args->buf = NULL;
191 	return (error);
192 }
193 
194 int
195 linux_execve(struct thread *td, struct linux_execve_args *args)
196 {
197 	struct image_args eargs;
198 	char *path;
199 	int error;
200 
201 	LCONVPATHEXIST(td, args->path, &path);
202 
203 #ifdef DEBUG
204 	if (ldebug(execve))
205 		printf(ARGS(execve, "%s"), path);
206 #endif
207 
208 	error = linux_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp,
209 	    args->envp);
210 	free(path, M_TEMP);
211 	if (error == 0)
212 		error = kern_execve(td, &eargs, NULL);
213 	return (error);
214 }
215 
216 struct iovec32 {
217 	u_int32_t iov_base;
218 	int	iov_len;
219 };
220 
221 CTASSERT(sizeof(struct iovec32) == 8);
222 
223 static int
224 linux32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
225 {
226 	struct iovec32 iov32;
227 	struct iovec *iov;
228 	struct uio *uio;
229 	u_int iovlen;
230 	int error, i;
231 
232 	*uiop = NULL;
233 	if (iovcnt > UIO_MAXIOV)
234 		return (EINVAL);
235 	iovlen = iovcnt * sizeof(struct iovec);
236 	uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK);
237 	iov = (struct iovec *)(uio + 1);
238 	for (i = 0; i < iovcnt; i++) {
239 		error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
240 		if (error) {
241 			free(uio, M_IOV);
242 			return (error);
243 		}
244 		iov[i].iov_base = PTRIN(iov32.iov_base);
245 		iov[i].iov_len = iov32.iov_len;
246 	}
247 	uio->uio_iov = iov;
248 	uio->uio_iovcnt = iovcnt;
249 	uio->uio_segflg = UIO_USERSPACE;
250 	uio->uio_offset = -1;
251 	uio->uio_resid = 0;
252 	for (i = 0; i < iovcnt; i++) {
253 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
254 			free(uio, M_IOV);
255 			return (EINVAL);
256 		}
257 		uio->uio_resid += iov->iov_len;
258 		iov++;
259 	}
260 	*uiop = uio;
261 	return (0);
262 }
263 
264 int
265 linux_readv(struct thread *td, struct linux_readv_args *uap)
266 {
267 	struct uio *auio;
268 	int error;
269 
270 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
271 	if (error)
272 		return (error);
273 	error = kern_readv(td, uap->fd, auio);
274 	free(auio, M_IOV);
275 	return (error);
276 }
277 
278 int
279 linux_writev(struct thread *td, struct linux_writev_args *uap)
280 {
281 	struct uio *auio;
282 	int error;
283 
284 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
285 	if (error)
286 		return (error);
287 	error = kern_writev(td, uap->fd, auio);
288 	free(auio, M_IOV);
289 	return (error);
290 }
291 
292 struct l_ipc_kludge {
293 	l_uintptr_t msgp;
294 	l_long msgtyp;
295 } __packed;
296 
297 int
298 linux_ipc(struct thread *td, struct linux_ipc_args *args)
299 {
300 
301 	switch (args->what & 0xFFFF) {
302 	case LINUX_SEMOP: {
303 		struct linux_semop_args a;
304 
305 		a.semid = args->arg1;
306 		a.tsops = args->ptr;
307 		a.nsops = args->arg2;
308 		return (linux_semop(td, &a));
309 	}
310 	case LINUX_SEMGET: {
311 		struct linux_semget_args a;
312 
313 		a.key = args->arg1;
314 		a.nsems = args->arg2;
315 		a.semflg = args->arg3;
316 		return (linux_semget(td, &a));
317 	}
318 	case LINUX_SEMCTL: {
319 		struct linux_semctl_args a;
320 		int error;
321 
322 		a.semid = args->arg1;
323 		a.semnum = args->arg2;
324 		a.cmd = args->arg3;
325 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
326 		if (error)
327 			return (error);
328 		return (linux_semctl(td, &a));
329 	}
330 	case LINUX_MSGSND: {
331 		struct linux_msgsnd_args a;
332 
333 		a.msqid = args->arg1;
334 		a.msgp = args->ptr;
335 		a.msgsz = args->arg2;
336 		a.msgflg = args->arg3;
337 		return (linux_msgsnd(td, &a));
338 	}
339 	case LINUX_MSGRCV: {
340 		struct linux_msgrcv_args a;
341 
342 		a.msqid = args->arg1;
343 		a.msgsz = args->arg2;
344 		a.msgflg = args->arg3;
345 		if ((args->what >> 16) == 0) {
346 			struct l_ipc_kludge tmp;
347 			int error;
348 
349 			if (args->ptr == 0)
350 				return (EINVAL);
351 			error = copyin(args->ptr, &tmp, sizeof(tmp));
352 			if (error)
353 				return (error);
354 			a.msgp = PTRIN(tmp.msgp);
355 			a.msgtyp = tmp.msgtyp;
356 		} else {
357 			a.msgp = args->ptr;
358 			a.msgtyp = args->arg5;
359 		}
360 		return (linux_msgrcv(td, &a));
361 	}
362 	case LINUX_MSGGET: {
363 		struct linux_msgget_args a;
364 
365 		a.key = args->arg1;
366 		a.msgflg = args->arg2;
367 		return (linux_msgget(td, &a));
368 	}
369 	case LINUX_MSGCTL: {
370 		struct linux_msgctl_args a;
371 
372 		a.msqid = args->arg1;
373 		a.cmd = args->arg2;
374 		a.buf = args->ptr;
375 		return (linux_msgctl(td, &a));
376 	}
377 	case LINUX_SHMAT: {
378 		struct linux_shmat_args a;
379 
380 		a.shmid = args->arg1;
381 		a.shmaddr = args->ptr;
382 		a.shmflg = args->arg2;
383 		a.raddr = PTRIN((l_uint)args->arg3);
384 		return (linux_shmat(td, &a));
385 	}
386 	case LINUX_SHMDT: {
387 		struct linux_shmdt_args a;
388 
389 		a.shmaddr = args->ptr;
390 		return (linux_shmdt(td, &a));
391 	}
392 	case LINUX_SHMGET: {
393 		struct linux_shmget_args a;
394 
395 		a.key = args->arg1;
396 		a.size = args->arg2;
397 		a.shmflg = args->arg3;
398 		return (linux_shmget(td, &a));
399 	}
400 	case LINUX_SHMCTL: {
401 		struct linux_shmctl_args a;
402 
403 		a.shmid = args->arg1;
404 		a.cmd = args->arg2;
405 		a.buf = args->ptr;
406 		return (linux_shmctl(td, &a));
407 	}
408 	default:
409 		break;
410 	}
411 
412 	return (EINVAL);
413 }
414 
415 int
416 linux_old_select(struct thread *td, struct linux_old_select_args *args)
417 {
418 	struct l_old_select_argv linux_args;
419 	struct linux_select_args newsel;
420 	int error;
421 
422 #ifdef DEBUG
423 	if (ldebug(old_select))
424 		printf(ARGS(old_select, "%p"), args->ptr);
425 #endif
426 
427 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
428 	if (error)
429 		return (error);
430 
431 	newsel.nfds = linux_args.nfds;
432 	newsel.readfds = PTRIN(linux_args.readfds);
433 	newsel.writefds = PTRIN(linux_args.writefds);
434 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
435 	newsel.timeout = PTRIN(linux_args.timeout);
436 	return (linux_select(td, &newsel));
437 }
438 
439 int
440 linux_fork(struct thread *td, struct linux_fork_args *args)
441 {
442 	int error;
443 
444 #ifdef DEBUG
445 	if (ldebug(fork))
446 		printf(ARGS(fork, ""));
447 #endif
448 
449 	if ((error = fork(td, (struct fork_args *)args)) != 0)
450 		return (error);
451 
452 	if (td->td_retval[1] == 1)
453 		td->td_retval[0] = 0;
454 	return (0);
455 }
456 
457 int
458 linux_vfork(struct thread *td, struct linux_vfork_args *args)
459 {
460 	int error;
461 
462 #ifdef DEBUG
463 	if (ldebug(vfork))
464 		printf(ARGS(vfork, ""));
465 #endif
466 
467 	if ((error = vfork(td, (struct vfork_args *)args)) != 0)
468 		return (error);
469 	/* Are we the child? */
470 	if (td->td_retval[1] == 1)
471 		td->td_retval[0] = 0;
472 	return (0);
473 }
474 
475 #define CLONE_VM	0x100
476 #define CLONE_FS	0x200
477 #define CLONE_FILES	0x400
478 #define CLONE_SIGHAND	0x800
479 #define CLONE_PID	0x1000
480 
481 int
482 linux_clone(struct thread *td, struct linux_clone_args *args)
483 {
484 	int error, ff = RFPROC | RFSTOPPED;
485 	struct proc *p2;
486 	struct thread *td2;
487 	int exit_signal;
488 
489 #ifdef DEBUG
490 	if (ldebug(clone)) {
491 		printf(ARGS(clone, "flags %x, stack %x"),
492 		    (unsigned int)(uintptr_t)args->flags,
493 		    (unsigned int)(uintptr_t)args->stack);
494 		if (args->flags & CLONE_PID)
495 			printf(LMSG("CLONE_PID not yet supported"));
496 	}
497 #endif
498 
499 	if (!args->stack)
500 		return (EINVAL);
501 
502 	exit_signal = args->flags & 0x000000ff;
503 	if (exit_signal >= LINUX_NSIG)
504 		return (EINVAL);
505 
506 	if (exit_signal <= LINUX_SIGTBLSZ)
507 		exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)];
508 
509 	if (args->flags & CLONE_VM)
510 		ff |= RFMEM;
511 	if (args->flags & CLONE_SIGHAND)
512 		ff |= RFSIGSHARE;
513 	if (!(args->flags & CLONE_FILES))
514 		ff |= RFFDG;
515 
516 	error = fork1(td, ff, 0, &p2);
517 	if (error)
518 		return (error);
519 
520 
521 	PROC_LOCK(p2);
522 	p2->p_sigparent = exit_signal;
523 	PROC_UNLOCK(p2);
524 	td2 = FIRST_THREAD_IN_PROC(p2);
525 	td2->td_frame->tf_rsp = PTROUT(args->stack);
526 
527 #ifdef DEBUG
528 	if (ldebug(clone))
529 		printf(LMSG("clone: successful rfork to %ld, stack %p sig = %d"),
530 		    (long)p2->p_pid, args->stack, exit_signal);
531 #endif
532 
533 	/*
534 	 * Make this runnable after we are finished with it.
535 	 */
536 	mtx_lock_spin(&sched_lock);
537 	TD_SET_CAN_RUN(td2);
538 	setrunqueue(td2, SRQ_BORING);
539 	mtx_unlock_spin(&sched_lock);
540 
541 	td->td_retval[0] = p2->p_pid;
542 	td->td_retval[1] = 0;
543 	return (0);
544 }
545 
546 /* XXX move */
547 struct l_mmap_argv {
548 	l_ulong		addr;
549 	l_ulong		len;
550 	l_ulong		prot;
551 	l_ulong		flags;
552 	l_ulong		fd;
553 	l_ulong		pgoff;
554 };
555 
556 #define STACK_SIZE  (2 * 1024 * 1024)
557 #define GUARD_SIZE  (4 * PAGE_SIZE)
558 
559 static int linux_mmap_common(struct thread *, struct l_mmap_argv *);
560 
561 int
562 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
563 {
564 	struct l_mmap_argv linux_args;
565 
566 #ifdef DEBUG
567 	if (ldebug(mmap2))
568 		printf(ARGS(mmap2, "%p, %d, %d, 0x%08x, %d, %d"),
569 		    (void *)(intptr_t)args->addr, args->len, args->prot,
570 		    args->flags, args->fd, args->pgoff);
571 #endif
572 
573 	linux_args.addr = PTROUT(args->addr);
574 	linux_args.len = args->len;
575 	linux_args.prot = args->prot;
576 	linux_args.flags = args->flags;
577 	linux_args.fd = args->fd;
578 	linux_args.pgoff = args->pgoff;
579 
580 	return (linux_mmap_common(td, &linux_args));
581 }
582 
583 int
584 linux_mmap(struct thread *td, struct linux_mmap_args *args)
585 {
586 	int error;
587 	struct l_mmap_argv linux_args;
588 
589 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
590 	if (error)
591 		return (error);
592 
593 #ifdef DEBUG
594 	if (ldebug(mmap))
595 		printf(ARGS(mmap, "%p, %d, %d, 0x%08x, %d, %d"),
596 		    (void *)(intptr_t)linux_args.addr, linux_args.len,
597 		    linux_args.prot, linux_args.flags, linux_args.fd,
598 		    linux_args.pgoff);
599 #endif
600 	if ((linux_args.pgoff % PAGE_SIZE) != 0)
601 		return (EINVAL);
602 	linux_args.pgoff /= PAGE_SIZE;
603 
604 	return (linux_mmap_common(td, &linux_args));
605 }
606 
607 static int
608 linux_mmap_common(struct thread *td, struct l_mmap_argv *linux_args)
609 {
610 	struct proc *p = td->td_proc;
611 	struct mmap_args /* {
612 		caddr_t addr;
613 		size_t len;
614 		int prot;
615 		int flags;
616 		int fd;
617 		long pad;
618 		off_t pos;
619 	} */ bsd_args;
620 	int error;
621 
622 	error = 0;
623 	bsd_args.flags = 0;
624 	if (linux_args->flags & LINUX_MAP_SHARED)
625 		bsd_args.flags |= MAP_SHARED;
626 	if (linux_args->flags & LINUX_MAP_PRIVATE)
627 		bsd_args.flags |= MAP_PRIVATE;
628 	if (linux_args->flags & LINUX_MAP_FIXED)
629 		bsd_args.flags |= MAP_FIXED;
630 	if (linux_args->flags & LINUX_MAP_ANON)
631 		bsd_args.flags |= MAP_ANON;
632 	else
633 		bsd_args.flags |= MAP_NOSYNC;
634 	if (linux_args->flags & LINUX_MAP_GROWSDOWN) {
635 		bsd_args.flags |= MAP_STACK;
636 
637 		/* The linux MAP_GROWSDOWN option does not limit auto
638 		 * growth of the region.  Linux mmap with this option
639 		 * takes as addr the inital BOS, and as len, the initial
640 		 * region size.  It can then grow down from addr without
641 		 * limit.  However, linux threads has an implicit internal
642 		 * limit to stack size of STACK_SIZE.  Its just not
643 		 * enforced explicitly in linux.  But, here we impose
644 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
645 		 * region, since we can do this with our mmap.
646 		 *
647 		 * Our mmap with MAP_STACK takes addr as the maximum
648 		 * downsize limit on BOS, and as len the max size of
649 		 * the region.  It them maps the top SGROWSIZ bytes,
650 		 * and autgrows the region down, up to the limit
651 		 * in addr.
652 		 *
653 		 * If we don't use the MAP_STACK option, the effect
654 		 * of this code is to allocate a stack region of a
655 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
656 		 */
657 
658 		/* This gives us TOS */
659 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr) +
660 		    linux_args->len;
661 
662 		if ((caddr_t)PTRIN(bsd_args.addr) >
663 		    p->p_vmspace->vm_maxsaddr) {
664 			/* Some linux apps will attempt to mmap
665 			 * thread stacks near the top of their
666 			 * address space.  If their TOS is greater
667 			 * than vm_maxsaddr, vm_map_growstack()
668 			 * will confuse the thread stack with the
669 			 * process stack and deliver a SEGV if they
670 			 * attempt to grow the thread stack past their
671 			 * current stacksize rlimit.  To avoid this,
672 			 * adjust vm_maxsaddr upwards to reflect
673 			 * the current stacksize rlimit rather
674 			 * than the maximum possible stacksize.
675 			 * It would be better to adjust the
676 			 * mmap'ed region, but some apps do not check
677 			 * mmap's return value.
678 			 */
679 			PROC_LOCK(p);
680 			p->p_vmspace->vm_maxsaddr =
681 			    (char *)LINUX32_USRSTACK -
682 			    lim_cur(p, RLIMIT_STACK);
683 			PROC_UNLOCK(p);
684 		}
685 
686 		/* This gives us our maximum stack size */
687 		if (linux_args->len > STACK_SIZE - GUARD_SIZE)
688 			bsd_args.len = linux_args->len;
689 		else
690 			bsd_args.len  = STACK_SIZE - GUARD_SIZE;
691 
692 		/* This gives us a new BOS.  If we're using VM_STACK, then
693 		 * mmap will just map the top SGROWSIZ bytes, and let
694 		 * the stack grow down to the limit at BOS.  If we're
695 		 * not using VM_STACK we map the full stack, since we
696 		 * don't have a way to autogrow it.
697 		 */
698 		bsd_args.addr -= bsd_args.len;
699 	} else {
700 		bsd_args.addr = (caddr_t)PTRIN(linux_args->addr);
701 		bsd_args.len  = linux_args->len;
702 	}
703 	/*
704 	 * XXX i386 Linux always emulator forces PROT_READ on (why?)
705 	 * so we do the same. We add PROT_EXEC to work around buggy
706 	 * applications (e.g. Java) that take advantage of the fact
707 	 * that execute permissions are not enforced by x86 CPUs.
708 	 */
709 	bsd_args.prot = linux_args->prot | PROT_EXEC | PROT_READ;
710 	if (linux_args->flags & LINUX_MAP_ANON)
711 		bsd_args.fd = -1;
712 	else
713 		bsd_args.fd = linux_args->fd;
714 	bsd_args.pos = (off_t)linux_args->pgoff * PAGE_SIZE;
715 	bsd_args.pad = 0;
716 
717 #ifdef DEBUG
718 	if (ldebug(mmap))
719 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
720 		    __func__,
721 		    (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
722 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
723 #endif
724 	error = mmap(td, &bsd_args);
725 #ifdef DEBUG
726 	if (ldebug(mmap))
727 		printf("-> %s() return: 0x%x (0x%08x)\n",
728 			__func__, error, (u_int)td->td_retval[0]);
729 #endif
730 	return (error);
731 }
732 
733 int
734 linux_pipe(struct thread *td, struct linux_pipe_args *args)
735 {
736 	int pip[2];
737 	int error;
738 	register_t reg_rdx;
739 
740 #ifdef DEBUG
741 	if (ldebug(pipe))
742 		printf(ARGS(pipe, "*"));
743 #endif
744 
745 	reg_rdx = td->td_retval[1];
746 	error = pipe(td, 0);
747 	if (error) {
748 		td->td_retval[1] = reg_rdx;
749 		return (error);
750 	}
751 
752 	pip[0] = td->td_retval[0];
753 	pip[1] = td->td_retval[1];
754 	error = copyout(pip, args->pipefds, 2 * sizeof(int));
755 	if (error) {
756 		td->td_retval[1] = reg_rdx;
757 		return (error);
758 	}
759 
760 	td->td_retval[1] = reg_rdx;
761 	td->td_retval[0] = 0;
762 	return (0);
763 }
764 
765 int
766 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
767 {
768 	l_osigaction_t osa;
769 	l_sigaction_t act, oact;
770 	int error;
771 
772 #ifdef DEBUG
773 	if (ldebug(sigaction))
774 		printf(ARGS(sigaction, "%d, %p, %p"),
775 		    args->sig, (void *)args->nsa, (void *)args->osa);
776 #endif
777 
778 	if (args->nsa != NULL) {
779 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
780 		if (error)
781 			return (error);
782 		act.lsa_handler = osa.lsa_handler;
783 		act.lsa_flags = osa.lsa_flags;
784 		act.lsa_restorer = osa.lsa_restorer;
785 		LINUX_SIGEMPTYSET(act.lsa_mask);
786 		act.lsa_mask.__bits[0] = osa.lsa_mask;
787 	}
788 
789 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
790 	    args->osa ? &oact : NULL);
791 
792 	if (args->osa != NULL && !error) {
793 		osa.lsa_handler = oact.lsa_handler;
794 		osa.lsa_flags = oact.lsa_flags;
795 		osa.lsa_restorer = oact.lsa_restorer;
796 		osa.lsa_mask = oact.lsa_mask.__bits[0];
797 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
798 	}
799 
800 	return (error);
801 }
802 
803 /*
804  * Linux has two extra args, restart and oldmask.  We dont use these,
805  * but it seems that "restart" is actually a context pointer that
806  * enables the signal to happen with a different register set.
807  */
808 int
809 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
810 {
811 	sigset_t sigmask;
812 	l_sigset_t mask;
813 
814 #ifdef DEBUG
815 	if (ldebug(sigsuspend))
816 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
817 #endif
818 
819 	LINUX_SIGEMPTYSET(mask);
820 	mask.__bits[0] = args->mask;
821 	linux_to_bsd_sigset(&mask, &sigmask);
822 	return (kern_sigsuspend(td, sigmask));
823 }
824 
825 int
826 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
827 {
828 	l_sigset_t lmask;
829 	sigset_t sigmask;
830 	int error;
831 
832 #ifdef DEBUG
833 	if (ldebug(rt_sigsuspend))
834 		printf(ARGS(rt_sigsuspend, "%p, %d"),
835 		    (void *)uap->newset, uap->sigsetsize);
836 #endif
837 
838 	if (uap->sigsetsize != sizeof(l_sigset_t))
839 		return (EINVAL);
840 
841 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
842 	if (error)
843 		return (error);
844 
845 	linux_to_bsd_sigset(&lmask, &sigmask);
846 	return (kern_sigsuspend(td, sigmask));
847 }
848 
849 int
850 linux_pause(struct thread *td, struct linux_pause_args *args)
851 {
852 	struct proc *p = td->td_proc;
853 	sigset_t sigmask;
854 
855 #ifdef DEBUG
856 	if (ldebug(pause))
857 		printf(ARGS(pause, ""));
858 #endif
859 
860 	PROC_LOCK(p);
861 	sigmask = td->td_sigmask;
862 	PROC_UNLOCK(p);
863 	return (kern_sigsuspend(td, sigmask));
864 }
865 
866 int
867 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
868 {
869 	stack_t ss, oss;
870 	l_stack_t lss;
871 	int error;
872 
873 #ifdef DEBUG
874 	if (ldebug(sigaltstack))
875 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
876 #endif
877 
878 	if (uap->uss != NULL) {
879 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
880 		if (error)
881 			return (error);
882 
883 		ss.ss_sp = PTRIN(lss.ss_sp);
884 		ss.ss_size = lss.ss_size;
885 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
886 	}
887 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
888 	    (uap->uoss != NULL) ? &oss : NULL);
889 	if (!error && uap->uoss != NULL) {
890 		lss.ss_sp = PTROUT(oss.ss_sp);
891 		lss.ss_size = oss.ss_size;
892 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
893 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
894 	}
895 
896 	return (error);
897 }
898 
899 int
900 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
901 {
902 	struct ftruncate_args sa;
903 
904 #ifdef DEBUG
905 	if (ldebug(ftruncate64))
906 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
907 		    (intmax_t)args->length);
908 #endif
909 
910 	sa.fd = args->fd;
911 	sa.pad = 0;
912 	sa.length = args->length;
913 	return ftruncate(td, &sa);
914 }
915 
916 int
917 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
918 {
919 	struct timeval atv;
920 	l_timeval atv32;
921 	struct timezone rtz;
922 	int error = 0;
923 
924 	if (uap->tp) {
925 		microtime(&atv);
926 		atv32.tv_sec = atv.tv_sec;
927 		atv32.tv_usec = atv.tv_usec;
928 		error = copyout(&atv32, uap->tp, sizeof (atv32));
929 	}
930 	if (error == 0 && uap->tzp != NULL) {
931 		rtz.tz_minuteswest = tz_minuteswest;
932 		rtz.tz_dsttime = tz_dsttime;
933 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
934 	}
935 	return (error);
936 }
937 
938 int
939 linux_nanosleep(struct thread *td, struct linux_nanosleep_args *uap)
940 {
941 	struct timespec rqt, rmt;
942 	struct l_timespec ats32;
943 	int error;
944 
945 	error = copyin(uap->rqtp, &ats32, sizeof(ats32));
946 	if (error != 0)
947 		return (error);
948 	rqt.tv_sec = ats32.tv_sec;
949 	rqt.tv_nsec = ats32.tv_nsec;
950 	error = kern_nanosleep(td, &rqt, &rmt);
951 	if (uap->rmtp != NULL) {
952 		ats32.tv_sec = rmt.tv_sec;
953 		ats32.tv_nsec = rmt.tv_nsec;
954 		error = copyout(&ats32, uap->rmtp, sizeof(ats32));
955 	}
956 	return (error);
957 }
958 
959 int
960 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
961 {
962 	struct l_rusage s32;
963 	struct rusage s;
964 	int error;
965 
966 	error = kern_getrusage(td, uap->who, &s);
967 	if (error != 0)
968 		return (error);
969 	if (uap->rusage != NULL) {
970 		s32.ru_utime.tv_sec = s.ru_utime.tv_sec;
971 		s32.ru_utime.tv_usec = s.ru_utime.tv_usec;
972 		s32.ru_stime.tv_sec = s.ru_stime.tv_sec;
973 		s32.ru_stime.tv_usec = s.ru_stime.tv_usec;
974 		s32.ru_maxrss = s.ru_maxrss;
975 		s32.ru_ixrss = s.ru_ixrss;
976 		s32.ru_idrss = s.ru_idrss;
977 		s32.ru_isrss = s.ru_isrss;
978 		s32.ru_minflt = s.ru_minflt;
979 		s32.ru_majflt = s.ru_majflt;
980 		s32.ru_nswap = s.ru_nswap;
981 		s32.ru_inblock = s.ru_inblock;
982 		s32.ru_oublock = s.ru_oublock;
983 		s32.ru_msgsnd = s.ru_msgsnd;
984 		s32.ru_msgrcv = s.ru_msgrcv;
985 		s32.ru_nsignals = s.ru_nsignals;
986 		s32.ru_nvcsw = s.ru_nvcsw;
987 		s32.ru_nivcsw = s.ru_nivcsw;
988 		error = copyout(&s32, uap->rusage, sizeof(s32));
989 	}
990 	return (error);
991 }
992 
993 int
994 linux_sched_rr_get_interval(struct thread *td,
995     struct linux_sched_rr_get_interval_args *uap)
996 {
997 	struct timespec ts;
998 	struct l_timespec ts32;
999 	int error;
1000 
1001 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
1002 	if (error != 0)
1003 		return (error);
1004 	ts32.tv_sec = ts.tv_sec;
1005 	ts32.tv_nsec = ts.tv_nsec;
1006 	return (copyout(&ts32, uap->interval, sizeof(ts32)));
1007 }
1008 
1009 int
1010 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
1011 {
1012 	struct mprotect_args bsd_args;
1013 
1014 	bsd_args.addr = uap->addr;
1015 	bsd_args.len = uap->len;
1016 	bsd_args.prot = uap->prot;
1017 	/* XXX PROT_READ implies PROT_EXEC; see linux_mmap_common(). */
1018 	if ((bsd_args.prot & PROT_READ) != 0)
1019 		bsd_args.prot |= PROT_EXEC;
1020 	return (mprotect(td, &bsd_args));
1021 }
1022