1 /*- 2 * Copyright (c) 2004 Tim J. Robbins 3 * Copyright (c) 2002 Doug Rabson 4 * Copyright (c) 2000 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/kernel.h> 36 #include <sys/systm.h> 37 #include <sys/capsicum.h> 38 #include <sys/file.h> 39 #include <sys/fcntl.h> 40 #include <sys/clock.h> 41 #include <sys/imgact.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mman.h> 46 #include <sys/mutex.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/resource.h> 50 #include <sys/resourcevar.h> 51 #include <sys/sched.h> 52 #include <sys/syscallsubr.h> 53 #include <sys/sysproto.h> 54 #include <sys/unistd.h> 55 #include <sys/wait.h> 56 57 #include <machine/frame.h> 58 #include <machine/pcb.h> 59 #include <machine/psl.h> 60 #include <machine/segments.h> 61 #include <machine/specialreg.h> 62 63 #include <vm/vm.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 67 #include <compat/freebsd32/freebsd32_util.h> 68 #include <amd64/linux32/linux.h> 69 #include <amd64/linux32/linux32_proto.h> 70 #include <compat/linux/linux_ipc.h> 71 #include <compat/linux/linux_misc.h> 72 #include <compat/linux/linux_signal.h> 73 #include <compat/linux/linux_util.h> 74 #include <compat/linux/linux_emul.h> 75 76 struct l_old_select_argv { 77 l_int nfds; 78 l_uintptr_t readfds; 79 l_uintptr_t writefds; 80 l_uintptr_t exceptfds; 81 l_uintptr_t timeout; 82 } __packed; 83 84 int 85 linux_to_bsd_sigaltstack(int lsa) 86 { 87 int bsa = 0; 88 89 if (lsa & LINUX_SS_DISABLE) 90 bsa |= SS_DISABLE; 91 if (lsa & LINUX_SS_ONSTACK) 92 bsa |= SS_ONSTACK; 93 return (bsa); 94 } 95 96 static int linux_mmap_common(struct thread *td, l_uintptr_t addr, 97 l_size_t len, l_int prot, l_int flags, l_int fd, 98 l_loff_t pos); 99 100 int 101 bsd_to_linux_sigaltstack(int bsa) 102 { 103 int lsa = 0; 104 105 if (bsa & SS_DISABLE) 106 lsa |= LINUX_SS_DISABLE; 107 if (bsa & SS_ONSTACK) 108 lsa |= LINUX_SS_ONSTACK; 109 return (lsa); 110 } 111 112 static void 113 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru) 114 { 115 116 lru->ru_utime.tv_sec = ru->ru_utime.tv_sec; 117 lru->ru_utime.tv_usec = ru->ru_utime.tv_usec; 118 lru->ru_stime.tv_sec = ru->ru_stime.tv_sec; 119 lru->ru_stime.tv_usec = ru->ru_stime.tv_usec; 120 lru->ru_maxrss = ru->ru_maxrss; 121 lru->ru_ixrss = ru->ru_ixrss; 122 lru->ru_idrss = ru->ru_idrss; 123 lru->ru_isrss = ru->ru_isrss; 124 lru->ru_minflt = ru->ru_minflt; 125 lru->ru_majflt = ru->ru_majflt; 126 lru->ru_nswap = ru->ru_nswap; 127 lru->ru_inblock = ru->ru_inblock; 128 lru->ru_oublock = ru->ru_oublock; 129 lru->ru_msgsnd = ru->ru_msgsnd; 130 lru->ru_msgrcv = ru->ru_msgrcv; 131 lru->ru_nsignals = ru->ru_nsignals; 132 lru->ru_nvcsw = ru->ru_nvcsw; 133 lru->ru_nivcsw = ru->ru_nivcsw; 134 } 135 136 int 137 linux_execve(struct thread *td, struct linux_execve_args *args) 138 { 139 struct image_args eargs; 140 char *path; 141 int error; 142 143 LCONVPATHEXIST(td, args->path, &path); 144 145 #ifdef DEBUG 146 if (ldebug(execve)) 147 printf(ARGS(execve, "%s"), path); 148 #endif 149 150 error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE, 151 args->argp, args->envp); 152 free(path, M_TEMP); 153 if (error == 0) 154 error = kern_execve(td, &eargs, NULL); 155 if (error == 0) 156 /* Linux process can execute FreeBSD one, do not attempt 157 * to create emuldata for such process using 158 * linux_proc_init, this leads to a panic on KASSERT 159 * because such process has p->p_emuldata == NULL. 160 */ 161 if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) 162 error = linux_proc_init(td, 0, 0); 163 return (error); 164 } 165 166 CTASSERT(sizeof(struct l_iovec32) == 8); 167 168 static int 169 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop) 170 { 171 struct l_iovec32 iov32; 172 struct iovec *iov; 173 struct uio *uio; 174 uint32_t iovlen; 175 int error, i; 176 177 *uiop = NULL; 178 if (iovcnt > UIO_MAXIOV) 179 return (EINVAL); 180 iovlen = iovcnt * sizeof(struct iovec); 181 uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK); 182 iov = (struct iovec *)(uio + 1); 183 for (i = 0; i < iovcnt; i++) { 184 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32)); 185 if (error) { 186 free(uio, M_IOV); 187 return (error); 188 } 189 iov[i].iov_base = PTRIN(iov32.iov_base); 190 iov[i].iov_len = iov32.iov_len; 191 } 192 uio->uio_iov = iov; 193 uio->uio_iovcnt = iovcnt; 194 uio->uio_segflg = UIO_USERSPACE; 195 uio->uio_offset = -1; 196 uio->uio_resid = 0; 197 for (i = 0; i < iovcnt; i++) { 198 if (iov->iov_len > INT_MAX - uio->uio_resid) { 199 free(uio, M_IOV); 200 return (EINVAL); 201 } 202 uio->uio_resid += iov->iov_len; 203 iov++; 204 } 205 *uiop = uio; 206 return (0); 207 } 208 209 int 210 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp, 211 int error) 212 { 213 struct l_iovec32 iov32; 214 struct iovec *iov; 215 uint32_t iovlen; 216 int i; 217 218 *iovp = NULL; 219 if (iovcnt > UIO_MAXIOV) 220 return (error); 221 iovlen = iovcnt * sizeof(struct iovec); 222 iov = malloc(iovlen, M_IOV, M_WAITOK); 223 for (i = 0; i < iovcnt; i++) { 224 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32)); 225 if (error) { 226 free(iov, M_IOV); 227 return (error); 228 } 229 iov[i].iov_base = PTRIN(iov32.iov_base); 230 iov[i].iov_len = iov32.iov_len; 231 } 232 *iovp = iov; 233 return(0); 234 235 } 236 237 int 238 linux_readv(struct thread *td, struct linux_readv_args *uap) 239 { 240 struct uio *auio; 241 int error; 242 243 error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); 244 if (error) 245 return (error); 246 error = kern_readv(td, uap->fd, auio); 247 free(auio, M_IOV); 248 return (error); 249 } 250 251 int 252 linux_writev(struct thread *td, struct linux_writev_args *uap) 253 { 254 struct uio *auio; 255 int error; 256 257 error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); 258 if (error) 259 return (error); 260 error = kern_writev(td, uap->fd, auio); 261 free(auio, M_IOV); 262 return (error); 263 } 264 265 struct l_ipc_kludge { 266 l_uintptr_t msgp; 267 l_long msgtyp; 268 } __packed; 269 270 int 271 linux_ipc(struct thread *td, struct linux_ipc_args *args) 272 { 273 274 switch (args->what & 0xFFFF) { 275 case LINUX_SEMOP: { 276 struct linux_semop_args a; 277 278 a.semid = args->arg1; 279 a.tsops = args->ptr; 280 a.nsops = args->arg2; 281 return (linux_semop(td, &a)); 282 } 283 case LINUX_SEMGET: { 284 struct linux_semget_args a; 285 286 a.key = args->arg1; 287 a.nsems = args->arg2; 288 a.semflg = args->arg3; 289 return (linux_semget(td, &a)); 290 } 291 case LINUX_SEMCTL: { 292 struct linux_semctl_args a; 293 int error; 294 295 a.semid = args->arg1; 296 a.semnum = args->arg2; 297 a.cmd = args->arg3; 298 error = copyin(args->ptr, &a.arg, sizeof(a.arg)); 299 if (error) 300 return (error); 301 return (linux_semctl(td, &a)); 302 } 303 case LINUX_MSGSND: { 304 struct linux_msgsnd_args a; 305 306 a.msqid = args->arg1; 307 a.msgp = args->ptr; 308 a.msgsz = args->arg2; 309 a.msgflg = args->arg3; 310 return (linux_msgsnd(td, &a)); 311 } 312 case LINUX_MSGRCV: { 313 struct linux_msgrcv_args a; 314 315 a.msqid = args->arg1; 316 a.msgsz = args->arg2; 317 a.msgflg = args->arg3; 318 if ((args->what >> 16) == 0) { 319 struct l_ipc_kludge tmp; 320 int error; 321 322 if (args->ptr == 0) 323 return (EINVAL); 324 error = copyin(args->ptr, &tmp, sizeof(tmp)); 325 if (error) 326 return (error); 327 a.msgp = PTRIN(tmp.msgp); 328 a.msgtyp = tmp.msgtyp; 329 } else { 330 a.msgp = args->ptr; 331 a.msgtyp = args->arg5; 332 } 333 return (linux_msgrcv(td, &a)); 334 } 335 case LINUX_MSGGET: { 336 struct linux_msgget_args a; 337 338 a.key = args->arg1; 339 a.msgflg = args->arg2; 340 return (linux_msgget(td, &a)); 341 } 342 case LINUX_MSGCTL: { 343 struct linux_msgctl_args a; 344 345 a.msqid = args->arg1; 346 a.cmd = args->arg2; 347 a.buf = args->ptr; 348 return (linux_msgctl(td, &a)); 349 } 350 case LINUX_SHMAT: { 351 struct linux_shmat_args a; 352 353 a.shmid = args->arg1; 354 a.shmaddr = args->ptr; 355 a.shmflg = args->arg2; 356 a.raddr = PTRIN((l_uint)args->arg3); 357 return (linux_shmat(td, &a)); 358 } 359 case LINUX_SHMDT: { 360 struct linux_shmdt_args a; 361 362 a.shmaddr = args->ptr; 363 return (linux_shmdt(td, &a)); 364 } 365 case LINUX_SHMGET: { 366 struct linux_shmget_args a; 367 368 a.key = args->arg1; 369 a.size = args->arg2; 370 a.shmflg = args->arg3; 371 return (linux_shmget(td, &a)); 372 } 373 case LINUX_SHMCTL: { 374 struct linux_shmctl_args a; 375 376 a.shmid = args->arg1; 377 a.cmd = args->arg2; 378 a.buf = args->ptr; 379 return (linux_shmctl(td, &a)); 380 } 381 default: 382 break; 383 } 384 385 return (EINVAL); 386 } 387 388 int 389 linux_old_select(struct thread *td, struct linux_old_select_args *args) 390 { 391 struct l_old_select_argv linux_args; 392 struct linux_select_args newsel; 393 int error; 394 395 #ifdef DEBUG 396 if (ldebug(old_select)) 397 printf(ARGS(old_select, "%p"), args->ptr); 398 #endif 399 400 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 401 if (error) 402 return (error); 403 404 newsel.nfds = linux_args.nfds; 405 newsel.readfds = PTRIN(linux_args.readfds); 406 newsel.writefds = PTRIN(linux_args.writefds); 407 newsel.exceptfds = PTRIN(linux_args.exceptfds); 408 newsel.timeout = PTRIN(linux_args.timeout); 409 return (linux_select(td, &newsel)); 410 } 411 412 int 413 linux_set_cloned_tls(struct thread *td, void *desc) 414 { 415 struct user_segment_descriptor sd; 416 struct l_user_desc info; 417 struct pcb *pcb; 418 int error; 419 int a[2]; 420 421 error = copyin(desc, &info, sizeof(struct l_user_desc)); 422 if (error) { 423 printf(LMSG("copyin failed!")); 424 } else { 425 /* We might copy out the entry_number as GUGS32_SEL. */ 426 info.entry_number = GUGS32_SEL; 427 error = copyout(&info, desc, sizeof(struct l_user_desc)); 428 if (error) 429 printf(LMSG("copyout failed!")); 430 431 a[0] = LINUX_LDT_entry_a(&info); 432 a[1] = LINUX_LDT_entry_b(&info); 433 434 memcpy(&sd, &a, sizeof(a)); 435 #ifdef DEBUG 436 if (ldebug(clone)) 437 printf("Segment created in clone with " 438 "CLONE_SETTLS: lobase: %x, hibase: %x, " 439 "lolimit: %x, hilimit: %x, type: %i, " 440 "dpl: %i, p: %i, xx: %i, long: %i, " 441 "def32: %i, gran: %i\n", sd.sd_lobase, 442 sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, 443 sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, 444 sd.sd_long, sd.sd_def32, sd.sd_gran); 445 #endif 446 pcb = td->td_pcb; 447 pcb->pcb_gsbase = (register_t)info.base_addr; 448 /* XXXKIB pcb->pcb_gs32sd = sd; */ 449 td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL); 450 set_pcb_flags(pcb, PCB_32BIT); 451 } 452 453 return (error); 454 } 455 456 int 457 linux_set_upcall_kse(struct thread *td, register_t stack) 458 { 459 460 td->td_frame->tf_rsp = stack; 461 462 return (0); 463 } 464 465 #define STACK_SIZE (2 * 1024 * 1024) 466 #define GUARD_SIZE (4 * PAGE_SIZE) 467 468 int 469 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 470 { 471 472 #ifdef DEBUG 473 if (ldebug(mmap2)) 474 printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"), 475 args->addr, args->len, args->prot, 476 args->flags, args->fd, args->pgoff); 477 #endif 478 479 return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot, 480 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 481 PAGE_SIZE)); 482 } 483 484 int 485 linux_mmap(struct thread *td, struct linux_mmap_args *args) 486 { 487 int error; 488 struct l_mmap_argv linux_args; 489 490 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 491 if (error) 492 return (error); 493 494 #ifdef DEBUG 495 if (ldebug(mmap)) 496 printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"), 497 linux_args.addr, linux_args.len, linux_args.prot, 498 linux_args.flags, linux_args.fd, linux_args.pgoff); 499 #endif 500 501 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 502 linux_args.prot, linux_args.flags, linux_args.fd, 503 (uint32_t)linux_args.pgoff)); 504 } 505 506 static int 507 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, 508 l_int flags, l_int fd, l_loff_t pos) 509 { 510 struct proc *p = td->td_proc; 511 struct mmap_args /* { 512 caddr_t addr; 513 size_t len; 514 int prot; 515 int flags; 516 int fd; 517 long pad; 518 off_t pos; 519 } */ bsd_args; 520 int error; 521 struct file *fp; 522 cap_rights_t rights; 523 524 error = 0; 525 bsd_args.flags = 0; 526 fp = NULL; 527 528 /* 529 * Linux mmap(2): 530 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE 531 */ 532 if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) 533 return (EINVAL); 534 535 if (flags & LINUX_MAP_SHARED) 536 bsd_args.flags |= MAP_SHARED; 537 if (flags & LINUX_MAP_PRIVATE) 538 bsd_args.flags |= MAP_PRIVATE; 539 if (flags & LINUX_MAP_FIXED) 540 bsd_args.flags |= MAP_FIXED; 541 if (flags & LINUX_MAP_ANON) { 542 /* Enforce pos to be on page boundary, then ignore. */ 543 if ((pos & PAGE_MASK) != 0) 544 return (EINVAL); 545 pos = 0; 546 bsd_args.flags |= MAP_ANON; 547 } else 548 bsd_args.flags |= MAP_NOSYNC; 549 if (flags & LINUX_MAP_GROWSDOWN) 550 bsd_args.flags |= MAP_STACK; 551 552 /* 553 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC 554 * on Linux/i386. We do this to ensure maximum compatibility. 555 * Linux/ia64 does the same in i386 emulation mode. 556 */ 557 bsd_args.prot = prot; 558 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 559 bsd_args.prot |= PROT_READ | PROT_EXEC; 560 561 /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ 562 bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; 563 if (bsd_args.fd != -1) { 564 /* 565 * Linux follows Solaris mmap(2) description: 566 * The file descriptor fildes is opened with 567 * read permission, regardless of the 568 * protection options specified. 569 */ 570 571 error = fget(td, bsd_args.fd, 572 cap_rights_init(&rights, CAP_MMAP), &fp); 573 if (error != 0) 574 return (error); 575 if (fp->f_type != DTYPE_VNODE) { 576 fdrop(fp, td); 577 return (EINVAL); 578 } 579 580 /* Linux mmap() just fails for O_WRONLY files */ 581 if (!(fp->f_flag & FREAD)) { 582 fdrop(fp, td); 583 return (EACCES); 584 } 585 586 fdrop(fp, td); 587 } 588 589 if (flags & LINUX_MAP_GROWSDOWN) { 590 /* 591 * The Linux MAP_GROWSDOWN option does not limit auto 592 * growth of the region. Linux mmap with this option 593 * takes as addr the inital BOS, and as len, the initial 594 * region size. It can then grow down from addr without 595 * limit. However, Linux threads has an implicit internal 596 * limit to stack size of STACK_SIZE. Its just not 597 * enforced explicitly in Linux. But, here we impose 598 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack 599 * region, since we can do this with our mmap. 600 * 601 * Our mmap with MAP_STACK takes addr as the maximum 602 * downsize limit on BOS, and as len the max size of 603 * the region. It then maps the top SGROWSIZ bytes, 604 * and auto grows the region down, up to the limit 605 * in addr. 606 * 607 * If we don't use the MAP_STACK option, the effect 608 * of this code is to allocate a stack region of a 609 * fixed size of (STACK_SIZE - GUARD_SIZE). 610 */ 611 612 if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { 613 /* 614 * Some Linux apps will attempt to mmap 615 * thread stacks near the top of their 616 * address space. If their TOS is greater 617 * than vm_maxsaddr, vm_map_growstack() 618 * will confuse the thread stack with the 619 * process stack and deliver a SEGV if they 620 * attempt to grow the thread stack past their 621 * current stacksize rlimit. To avoid this, 622 * adjust vm_maxsaddr upwards to reflect 623 * the current stacksize rlimit rather 624 * than the maximum possible stacksize. 625 * It would be better to adjust the 626 * mmap'ed region, but some apps do not check 627 * mmap's return value. 628 */ 629 PROC_LOCK(p); 630 p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK - 631 lim_cur(p, RLIMIT_STACK); 632 PROC_UNLOCK(p); 633 } 634 635 /* 636 * This gives us our maximum stack size and a new BOS. 637 * If we're using VM_STACK, then mmap will just map 638 * the top SGROWSIZ bytes, and let the stack grow down 639 * to the limit at BOS. If we're not using VM_STACK 640 * we map the full stack, since we don't have a way 641 * to autogrow it. 642 */ 643 if (len > STACK_SIZE - GUARD_SIZE) { 644 bsd_args.addr = (caddr_t)PTRIN(addr); 645 bsd_args.len = len; 646 } else { 647 bsd_args.addr = (caddr_t)PTRIN(addr) - 648 (STACK_SIZE - GUARD_SIZE - len); 649 bsd_args.len = STACK_SIZE - GUARD_SIZE; 650 } 651 } else { 652 bsd_args.addr = (caddr_t)PTRIN(addr); 653 bsd_args.len = len; 654 } 655 bsd_args.pos = pos; 656 657 #ifdef DEBUG 658 if (ldebug(mmap)) 659 printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", 660 __func__, 661 (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot, 662 bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); 663 #endif 664 error = sys_mmap(td, &bsd_args); 665 #ifdef DEBUG 666 if (ldebug(mmap)) 667 printf("-> %s() return: 0x%x (0x%08x)\n", 668 __func__, error, (u_int)td->td_retval[0]); 669 #endif 670 return (error); 671 } 672 673 int 674 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 675 { 676 struct mprotect_args bsd_args; 677 678 bsd_args.addr = uap->addr; 679 bsd_args.len = uap->len; 680 bsd_args.prot = uap->prot; 681 if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) 682 bsd_args.prot |= PROT_READ | PROT_EXEC; 683 return (sys_mprotect(td, &bsd_args)); 684 } 685 686 int 687 linux_iopl(struct thread *td, struct linux_iopl_args *args) 688 { 689 int error; 690 691 if (args->level < 0 || args->level > 3) 692 return (EINVAL); 693 if ((error = priv_check(td, PRIV_IO)) != 0) 694 return (error); 695 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 696 return (error); 697 td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) | 698 (args->level * (PSL_IOPL / 3)); 699 700 return (0); 701 } 702 703 int 704 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 705 { 706 l_osigaction_t osa; 707 l_sigaction_t act, oact; 708 int error; 709 710 #ifdef DEBUG 711 if (ldebug(sigaction)) 712 printf(ARGS(sigaction, "%d, %p, %p"), 713 args->sig, (void *)args->nsa, (void *)args->osa); 714 #endif 715 716 if (args->nsa != NULL) { 717 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 718 if (error) 719 return (error); 720 act.lsa_handler = osa.lsa_handler; 721 act.lsa_flags = osa.lsa_flags; 722 act.lsa_restorer = osa.lsa_restorer; 723 LINUX_SIGEMPTYSET(act.lsa_mask); 724 act.lsa_mask.__bits[0] = osa.lsa_mask; 725 } 726 727 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 728 args->osa ? &oact : NULL); 729 730 if (args->osa != NULL && !error) { 731 osa.lsa_handler = oact.lsa_handler; 732 osa.lsa_flags = oact.lsa_flags; 733 osa.lsa_restorer = oact.lsa_restorer; 734 osa.lsa_mask = oact.lsa_mask.__bits[0]; 735 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 736 } 737 738 return (error); 739 } 740 741 /* 742 * Linux has two extra args, restart and oldmask. We don't use these, 743 * but it seems that "restart" is actually a context pointer that 744 * enables the signal to happen with a different register set. 745 */ 746 int 747 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 748 { 749 sigset_t sigmask; 750 l_sigset_t mask; 751 752 #ifdef DEBUG 753 if (ldebug(sigsuspend)) 754 printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); 755 #endif 756 757 LINUX_SIGEMPTYSET(mask); 758 mask.__bits[0] = args->mask; 759 linux_to_bsd_sigset(&mask, &sigmask); 760 return (kern_sigsuspend(td, sigmask)); 761 } 762 763 int 764 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) 765 { 766 l_sigset_t lmask; 767 sigset_t sigmask; 768 int error; 769 770 #ifdef DEBUG 771 if (ldebug(rt_sigsuspend)) 772 printf(ARGS(rt_sigsuspend, "%p, %d"), 773 (void *)uap->newset, uap->sigsetsize); 774 #endif 775 776 if (uap->sigsetsize != sizeof(l_sigset_t)) 777 return (EINVAL); 778 779 error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); 780 if (error) 781 return (error); 782 783 linux_to_bsd_sigset(&lmask, &sigmask); 784 return (kern_sigsuspend(td, sigmask)); 785 } 786 787 int 788 linux_pause(struct thread *td, struct linux_pause_args *args) 789 { 790 struct proc *p = td->td_proc; 791 sigset_t sigmask; 792 793 #ifdef DEBUG 794 if (ldebug(pause)) 795 printf(ARGS(pause, "")); 796 #endif 797 798 PROC_LOCK(p); 799 sigmask = td->td_sigmask; 800 PROC_UNLOCK(p); 801 return (kern_sigsuspend(td, sigmask)); 802 } 803 804 int 805 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) 806 { 807 stack_t ss, oss; 808 l_stack_t lss; 809 int error; 810 811 #ifdef DEBUG 812 if (ldebug(sigaltstack)) 813 printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); 814 #endif 815 816 if (uap->uss != NULL) { 817 error = copyin(uap->uss, &lss, sizeof(l_stack_t)); 818 if (error) 819 return (error); 820 821 ss.ss_sp = PTRIN(lss.ss_sp); 822 ss.ss_size = lss.ss_size; 823 ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); 824 } 825 error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, 826 (uap->uoss != NULL) ? &oss : NULL); 827 if (!error && uap->uoss != NULL) { 828 lss.ss_sp = PTROUT(oss.ss_sp); 829 lss.ss_size = oss.ss_size; 830 lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); 831 error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); 832 } 833 834 return (error); 835 } 836 837 int 838 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) 839 { 840 struct ftruncate_args sa; 841 842 #ifdef DEBUG 843 if (ldebug(ftruncate64)) 844 printf(ARGS(ftruncate64, "%u, %jd"), args->fd, 845 (intmax_t)args->length); 846 #endif 847 848 sa.fd = args->fd; 849 sa.length = args->length; 850 return sys_ftruncate(td, &sa); 851 } 852 853 int 854 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) 855 { 856 struct timeval atv; 857 l_timeval atv32; 858 struct timezone rtz; 859 int error = 0; 860 861 if (uap->tp) { 862 microtime(&atv); 863 atv32.tv_sec = atv.tv_sec; 864 atv32.tv_usec = atv.tv_usec; 865 error = copyout(&atv32, uap->tp, sizeof(atv32)); 866 } 867 if (error == 0 && uap->tzp != NULL) { 868 rtz.tz_minuteswest = tz_minuteswest; 869 rtz.tz_dsttime = tz_dsttime; 870 error = copyout(&rtz, uap->tzp, sizeof(rtz)); 871 } 872 return (error); 873 } 874 875 int 876 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap) 877 { 878 l_timeval atv32; 879 struct timeval atv, *tvp; 880 struct timezone atz, *tzp; 881 int error; 882 883 if (uap->tp) { 884 error = copyin(uap->tp, &atv32, sizeof(atv32)); 885 if (error) 886 return (error); 887 atv.tv_sec = atv32.tv_sec; 888 atv.tv_usec = atv32.tv_usec; 889 tvp = &atv; 890 } else 891 tvp = NULL; 892 if (uap->tzp) { 893 error = copyin(uap->tzp, &atz, sizeof(atz)); 894 if (error) 895 return (error); 896 tzp = &atz; 897 } else 898 tzp = NULL; 899 return (kern_settimeofday(td, tvp, tzp)); 900 } 901 902 int 903 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) 904 { 905 struct l_rusage s32; 906 struct rusage s; 907 int error; 908 909 error = kern_getrusage(td, uap->who, &s); 910 if (error != 0) 911 return (error); 912 if (uap->rusage != NULL) { 913 bsd_to_linux_rusage(&s, &s32); 914 error = copyout(&s32, uap->rusage, sizeof(s32)); 915 } 916 return (error); 917 } 918 919 int 920 linux_sched_rr_get_interval(struct thread *td, 921 struct linux_sched_rr_get_interval_args *uap) 922 { 923 struct timespec ts; 924 struct l_timespec ts32; 925 int error; 926 927 error = kern_sched_rr_get_interval(td, uap->pid, &ts); 928 if (error != 0) 929 return (error); 930 ts32.tv_sec = ts.tv_sec; 931 ts32.tv_nsec = ts.tv_nsec; 932 return (copyout(&ts32, uap->interval, sizeof(ts32))); 933 } 934 935 int 936 linux_set_thread_area(struct thread *td, 937 struct linux_set_thread_area_args *args) 938 { 939 struct l_user_desc info; 940 struct user_segment_descriptor sd; 941 struct pcb *pcb; 942 int a[2]; 943 int error; 944 945 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 946 if (error) 947 return (error); 948 949 #ifdef DEBUG 950 if (ldebug(set_thread_area)) 951 printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, " 952 "%i, %i, %i"), info.entry_number, info.base_addr, 953 info.limit, info.seg_32bit, info.contents, 954 info.read_exec_only, info.limit_in_pages, 955 info.seg_not_present, info.useable); 956 #endif 957 958 /* 959 * Semantics of Linux version: every thread in the system has array 960 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. 961 * This syscall loads one of the selected TLS decriptors with a value 962 * and also loads GDT descriptors 6, 7 and 8 with the content of 963 * the per-thread descriptors. 964 * 965 * Semantics of FreeBSD version: I think we can ignore that Linux has 966 * three per-thread descriptors and use just the first one. 967 * The tls_array[] is used only in [gs]et_thread_area() syscalls and 968 * for loading the GDT descriptors. We use just one GDT descriptor 969 * for TLS, so we will load just one. 970 * 971 * XXX: This doesn't work when a user space process tries to use more 972 * than one TLS segment. Comment in the Linux source says wine might 973 * do this. 974 */ 975 976 /* 977 * GLIBC reads current %gs and call set_thread_area() with it. 978 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because 979 * we use these segments. 980 */ 981 switch (info.entry_number) { 982 case GUGS32_SEL: 983 case GUDATA_SEL: 984 case 6: 985 case -1: 986 info.entry_number = GUGS32_SEL; 987 break; 988 default: 989 return (EINVAL); 990 } 991 992 /* 993 * We have to copy out the GDT entry we use. 994 * 995 * XXX: What if a user space program does not check the return value 996 * and tries to use 6, 7 or 8? 997 */ 998 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 999 if (error) 1000 return (error); 1001 1002 if (LINUX_LDT_empty(&info)) { 1003 a[0] = 0; 1004 a[1] = 0; 1005 } else { 1006 a[0] = LINUX_LDT_entry_a(&info); 1007 a[1] = LINUX_LDT_entry_b(&info); 1008 } 1009 1010 memcpy(&sd, &a, sizeof(a)); 1011 #ifdef DEBUG 1012 if (ldebug(set_thread_area)) 1013 printf("Segment created in set_thread_area: " 1014 "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, " 1015 "type: %i, dpl: %i, p: %i, xx: %i, long: %i, " 1016 "def32: %i, gran: %i\n", 1017 sd.sd_lobase, 1018 sd.sd_hibase, 1019 sd.sd_lolimit, 1020 sd.sd_hilimit, 1021 sd.sd_type, 1022 sd.sd_dpl, 1023 sd.sd_p, 1024 sd.sd_xx, 1025 sd.sd_long, 1026 sd.sd_def32, 1027 sd.sd_gran); 1028 #endif 1029 1030 pcb = td->td_pcb; 1031 pcb->pcb_gsbase = (register_t)info.base_addr; 1032 set_pcb_flags(pcb, PCB_32BIT); 1033 update_gdt_gsbase(td, info.base_addr); 1034 1035 return (0); 1036 } 1037 1038 int 1039 linux_wait4(struct thread *td, struct linux_wait4_args *args) 1040 { 1041 int error, options; 1042 struct rusage ru, *rup; 1043 struct l_rusage lru; 1044 1045 #ifdef DEBUG 1046 if (ldebug(wait4)) 1047 printf(ARGS(wait4, "%d, %p, %d, %p"), 1048 args->pid, (void *)args->status, args->options, 1049 (void *)args->rusage); 1050 #endif 1051 1052 options = (args->options & (WNOHANG | WUNTRACED)); 1053 /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ 1054 if (args->options & __WCLONE) 1055 options |= WLINUXCLONE; 1056 1057 if (args->rusage != NULL) 1058 rup = &ru; 1059 else 1060 rup = NULL; 1061 error = linux_common_wait(td, args->pid, args->status, options, rup); 1062 if (error) 1063 return (error); 1064 if (args->rusage != NULL) { 1065 bsd_to_linux_rusage(rup, &lru); 1066 error = copyout(&lru, args->rusage, sizeof(lru)); 1067 } 1068 1069 return (error); 1070 } 1071