xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 2d0d168606f477d58d1a9aa72f94915da2f1733a)
1 /*-
2  * Copyright (c) 2004 Tim J. Robbins
3  * Copyright (c) 2002 Doug Rabson
4  * Copyright (c) 2000 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/capability.h>
38 #include <sys/file.h>
39 #include <sys/fcntl.h>
40 #include <sys/clock.h>
41 #include <sys/imgact.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mman.h>
46 #include <sys/mutex.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/resource.h>
50 #include <sys/resourcevar.h>
51 #include <sys/sched.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysproto.h>
54 #include <sys/unistd.h>
55 #include <sys/wait.h>
56 
57 #include <machine/frame.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/segments.h>
61 #include <machine/specialreg.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 
67 #include <compat/freebsd32/freebsd32_util.h>
68 #include <amd64/linux32/linux.h>
69 #include <amd64/linux32/linux32_proto.h>
70 #include <compat/linux/linux_ipc.h>
71 #include <compat/linux/linux_misc.h>
72 #include <compat/linux/linux_signal.h>
73 #include <compat/linux/linux_util.h>
74 #include <compat/linux/linux_emul.h>
75 
76 struct l_old_select_argv {
77 	l_int		nfds;
78 	l_uintptr_t	readfds;
79 	l_uintptr_t	writefds;
80 	l_uintptr_t	exceptfds;
81 	l_uintptr_t	timeout;
82 } __packed;
83 
84 int
85 linux_to_bsd_sigaltstack(int lsa)
86 {
87 	int bsa = 0;
88 
89 	if (lsa & LINUX_SS_DISABLE)
90 		bsa |= SS_DISABLE;
91 	if (lsa & LINUX_SS_ONSTACK)
92 		bsa |= SS_ONSTACK;
93 	return (bsa);
94 }
95 
96 static int	linux_mmap_common(struct thread *td, l_uintptr_t addr,
97 		    l_size_t len, l_int prot, l_int flags, l_int fd,
98 		    l_loff_t pos);
99 
100 int
101 bsd_to_linux_sigaltstack(int bsa)
102 {
103 	int lsa = 0;
104 
105 	if (bsa & SS_DISABLE)
106 		lsa |= LINUX_SS_DISABLE;
107 	if (bsa & SS_ONSTACK)
108 		lsa |= LINUX_SS_ONSTACK;
109 	return (lsa);
110 }
111 
112 static void
113 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
114 {
115 
116 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
117 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
118 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
119 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
120 	lru->ru_maxrss = ru->ru_maxrss;
121 	lru->ru_ixrss = ru->ru_ixrss;
122 	lru->ru_idrss = ru->ru_idrss;
123 	lru->ru_isrss = ru->ru_isrss;
124 	lru->ru_minflt = ru->ru_minflt;
125 	lru->ru_majflt = ru->ru_majflt;
126 	lru->ru_nswap = ru->ru_nswap;
127 	lru->ru_inblock = ru->ru_inblock;
128 	lru->ru_oublock = ru->ru_oublock;
129 	lru->ru_msgsnd = ru->ru_msgsnd;
130 	lru->ru_msgrcv = ru->ru_msgrcv;
131 	lru->ru_nsignals = ru->ru_nsignals;
132 	lru->ru_nvcsw = ru->ru_nvcsw;
133 	lru->ru_nivcsw = ru->ru_nivcsw;
134 }
135 
136 int
137 linux_execve(struct thread *td, struct linux_execve_args *args)
138 {
139 	struct image_args eargs;
140 	char *path;
141 	int error;
142 
143 	LCONVPATHEXIST(td, args->path, &path);
144 
145 #ifdef DEBUG
146 	if (ldebug(execve))
147 		printf(ARGS(execve, "%s"), path);
148 #endif
149 
150 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
151 	    args->argp, args->envp);
152 	free(path, M_TEMP);
153 	if (error == 0)
154 		error = kern_execve(td, &eargs, NULL);
155 	if (error == 0)
156 		/* Linux process can execute FreeBSD one, do not attempt
157 		 * to create emuldata for such process using
158 		 * linux_proc_init, this leads to a panic on KASSERT
159 		 * because such process has p->p_emuldata == NULL.
160 		 */
161 		if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX)
162 			error = linux_proc_init(td, 0, 0);
163 	return (error);
164 }
165 
166 CTASSERT(sizeof(struct l_iovec32) == 8);
167 
168 static int
169 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
170 {
171 	struct l_iovec32 iov32;
172 	struct iovec *iov;
173 	struct uio *uio;
174 	uint32_t iovlen;
175 	int error, i;
176 
177 	*uiop = NULL;
178 	if (iovcnt > UIO_MAXIOV)
179 		return (EINVAL);
180 	iovlen = iovcnt * sizeof(struct iovec);
181 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
182 	iov = (struct iovec *)(uio + 1);
183 	for (i = 0; i < iovcnt; i++) {
184 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
185 		if (error) {
186 			free(uio, M_IOV);
187 			return (error);
188 		}
189 		iov[i].iov_base = PTRIN(iov32.iov_base);
190 		iov[i].iov_len = iov32.iov_len;
191 	}
192 	uio->uio_iov = iov;
193 	uio->uio_iovcnt = iovcnt;
194 	uio->uio_segflg = UIO_USERSPACE;
195 	uio->uio_offset = -1;
196 	uio->uio_resid = 0;
197 	for (i = 0; i < iovcnt; i++) {
198 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
199 			free(uio, M_IOV);
200 			return (EINVAL);
201 		}
202 		uio->uio_resid += iov->iov_len;
203 		iov++;
204 	}
205 	*uiop = uio;
206 	return (0);
207 }
208 
209 int
210 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
211     int error)
212 {
213 	struct l_iovec32 iov32;
214 	struct iovec *iov;
215 	uint32_t iovlen;
216 	int i;
217 
218 	*iovp = NULL;
219 	if (iovcnt > UIO_MAXIOV)
220 		return (error);
221 	iovlen = iovcnt * sizeof(struct iovec);
222 	iov = malloc(iovlen, M_IOV, M_WAITOK);
223 	for (i = 0; i < iovcnt; i++) {
224 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
225 		if (error) {
226 			free(iov, M_IOV);
227 			return (error);
228 		}
229 		iov[i].iov_base = PTRIN(iov32.iov_base);
230 		iov[i].iov_len = iov32.iov_len;
231 	}
232 	*iovp = iov;
233 	return(0);
234 
235 }
236 
237 int
238 linux_readv(struct thread *td, struct linux_readv_args *uap)
239 {
240 	struct uio *auio;
241 	int error;
242 
243 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
244 	if (error)
245 		return (error);
246 	error = kern_readv(td, uap->fd, auio);
247 	free(auio, M_IOV);
248 	return (error);
249 }
250 
251 int
252 linux_writev(struct thread *td, struct linux_writev_args *uap)
253 {
254 	struct uio *auio;
255 	int error;
256 
257 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
258 	if (error)
259 		return (error);
260 	error = kern_writev(td, uap->fd, auio);
261 	free(auio, M_IOV);
262 	return (error);
263 }
264 
265 struct l_ipc_kludge {
266 	l_uintptr_t msgp;
267 	l_long msgtyp;
268 } __packed;
269 
270 int
271 linux_ipc(struct thread *td, struct linux_ipc_args *args)
272 {
273 
274 	switch (args->what & 0xFFFF) {
275 	case LINUX_SEMOP: {
276 		struct linux_semop_args a;
277 
278 		a.semid = args->arg1;
279 		a.tsops = args->ptr;
280 		a.nsops = args->arg2;
281 		return (linux_semop(td, &a));
282 	}
283 	case LINUX_SEMGET: {
284 		struct linux_semget_args a;
285 
286 		a.key = args->arg1;
287 		a.nsems = args->arg2;
288 		a.semflg = args->arg3;
289 		return (linux_semget(td, &a));
290 	}
291 	case LINUX_SEMCTL: {
292 		struct linux_semctl_args a;
293 		int error;
294 
295 		a.semid = args->arg1;
296 		a.semnum = args->arg2;
297 		a.cmd = args->arg3;
298 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
299 		if (error)
300 			return (error);
301 		return (linux_semctl(td, &a));
302 	}
303 	case LINUX_MSGSND: {
304 		struct linux_msgsnd_args a;
305 
306 		a.msqid = args->arg1;
307 		a.msgp = args->ptr;
308 		a.msgsz = args->arg2;
309 		a.msgflg = args->arg3;
310 		return (linux_msgsnd(td, &a));
311 	}
312 	case LINUX_MSGRCV: {
313 		struct linux_msgrcv_args a;
314 
315 		a.msqid = args->arg1;
316 		a.msgsz = args->arg2;
317 		a.msgflg = args->arg3;
318 		if ((args->what >> 16) == 0) {
319 			struct l_ipc_kludge tmp;
320 			int error;
321 
322 			if (args->ptr == 0)
323 				return (EINVAL);
324 			error = copyin(args->ptr, &tmp, sizeof(tmp));
325 			if (error)
326 				return (error);
327 			a.msgp = PTRIN(tmp.msgp);
328 			a.msgtyp = tmp.msgtyp;
329 		} else {
330 			a.msgp = args->ptr;
331 			a.msgtyp = args->arg5;
332 		}
333 		return (linux_msgrcv(td, &a));
334 	}
335 	case LINUX_MSGGET: {
336 		struct linux_msgget_args a;
337 
338 		a.key = args->arg1;
339 		a.msgflg = args->arg2;
340 		return (linux_msgget(td, &a));
341 	}
342 	case LINUX_MSGCTL: {
343 		struct linux_msgctl_args a;
344 
345 		a.msqid = args->arg1;
346 		a.cmd = args->arg2;
347 		a.buf = args->ptr;
348 		return (linux_msgctl(td, &a));
349 	}
350 	case LINUX_SHMAT: {
351 		struct linux_shmat_args a;
352 
353 		a.shmid = args->arg1;
354 		a.shmaddr = args->ptr;
355 		a.shmflg = args->arg2;
356 		a.raddr = PTRIN((l_uint)args->arg3);
357 		return (linux_shmat(td, &a));
358 	}
359 	case LINUX_SHMDT: {
360 		struct linux_shmdt_args a;
361 
362 		a.shmaddr = args->ptr;
363 		return (linux_shmdt(td, &a));
364 	}
365 	case LINUX_SHMGET: {
366 		struct linux_shmget_args a;
367 
368 		a.key = args->arg1;
369 		a.size = args->arg2;
370 		a.shmflg = args->arg3;
371 		return (linux_shmget(td, &a));
372 	}
373 	case LINUX_SHMCTL: {
374 		struct linux_shmctl_args a;
375 
376 		a.shmid = args->arg1;
377 		a.cmd = args->arg2;
378 		a.buf = args->ptr;
379 		return (linux_shmctl(td, &a));
380 	}
381 	default:
382 		break;
383 	}
384 
385 	return (EINVAL);
386 }
387 
388 int
389 linux_old_select(struct thread *td, struct linux_old_select_args *args)
390 {
391 	struct l_old_select_argv linux_args;
392 	struct linux_select_args newsel;
393 	int error;
394 
395 #ifdef DEBUG
396 	if (ldebug(old_select))
397 		printf(ARGS(old_select, "%p"), args->ptr);
398 #endif
399 
400 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
401 	if (error)
402 		return (error);
403 
404 	newsel.nfds = linux_args.nfds;
405 	newsel.readfds = PTRIN(linux_args.readfds);
406 	newsel.writefds = PTRIN(linux_args.writefds);
407 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
408 	newsel.timeout = PTRIN(linux_args.timeout);
409 	return (linux_select(td, &newsel));
410 }
411 
412 int
413 linux_set_cloned_tls(struct thread *td, void *desc)
414 {
415 	struct user_segment_descriptor sd;
416 	struct l_user_desc info;
417 	struct pcb *pcb;
418 	int error;
419 	int a[2];
420 
421 	error = copyin(desc, &info, sizeof(struct l_user_desc));
422 	if (error) {
423 		printf(LMSG("copyin failed!"));
424 	} else {
425 		/* We might copy out the entry_number as GUGS32_SEL. */
426 		info.entry_number = GUGS32_SEL;
427 		error = copyout(&info, desc, sizeof(struct l_user_desc));
428 		if (error)
429 			printf(LMSG("copyout failed!"));
430 
431 		a[0] = LINUX_LDT_entry_a(&info);
432 		a[1] = LINUX_LDT_entry_b(&info);
433 
434 		memcpy(&sd, &a, sizeof(a));
435 #ifdef DEBUG
436 		if (ldebug(clone))
437 			printf("Segment created in clone with "
438 			    "CLONE_SETTLS: lobase: %x, hibase: %x, "
439 			    "lolimit: %x, hilimit: %x, type: %i, "
440 			    "dpl: %i, p: %i, xx: %i, long: %i, "
441 			    "def32: %i, gran: %i\n", sd.sd_lobase,
442 			    sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
443 			    sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
444 			    sd.sd_long, sd.sd_def32, sd.sd_gran);
445 #endif
446 		pcb = td->td_pcb;
447 		pcb->pcb_gsbase = (register_t)info.base_addr;
448 /* XXXKIB	pcb->pcb_gs32sd = sd; */
449 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
450 		set_pcb_flags(pcb, PCB_32BIT);
451 	}
452 
453 	return (error);
454 }
455 
456 int
457 linux_set_upcall_kse(struct thread *td, register_t stack)
458 {
459 
460 	td->td_frame->tf_rsp = stack;
461 
462 	return (0);
463 }
464 
465 #define STACK_SIZE  (2 * 1024 * 1024)
466 #define GUARD_SIZE  (4 * PAGE_SIZE)
467 
468 int
469 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
470 {
471 
472 #ifdef DEBUG
473 	if (ldebug(mmap2))
474 		printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
475 		    args->addr, args->len, args->prot,
476 		    args->flags, args->fd, args->pgoff);
477 #endif
478 
479 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
480 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
481 		PAGE_SIZE));
482 }
483 
484 int
485 linux_mmap(struct thread *td, struct linux_mmap_args *args)
486 {
487 	int error;
488 	struct l_mmap_argv linux_args;
489 
490 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
491 	if (error)
492 		return (error);
493 
494 #ifdef DEBUG
495 	if (ldebug(mmap))
496 		printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
497 		    linux_args.addr, linux_args.len, linux_args.prot,
498 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
499 #endif
500 
501 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
502 	    linux_args.prot, linux_args.flags, linux_args.fd,
503 	    (uint32_t)linux_args.pgoff));
504 }
505 
506 static int
507 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
508     l_int flags, l_int fd, l_loff_t pos)
509 {
510 	struct proc *p = td->td_proc;
511 	struct mmap_args /* {
512 		caddr_t addr;
513 		size_t len;
514 		int prot;
515 		int flags;
516 		int fd;
517 		long pad;
518 		off_t pos;
519 	} */ bsd_args;
520 	int error;
521 	struct file *fp;
522 	cap_rights_t rights;
523 
524 	error = 0;
525 	bsd_args.flags = 0;
526 	fp = NULL;
527 
528 	/*
529 	 * Linux mmap(2):
530 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
531 	 */
532 	if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
533 		return (EINVAL);
534 
535 	if (flags & LINUX_MAP_SHARED)
536 		bsd_args.flags |= MAP_SHARED;
537 	if (flags & LINUX_MAP_PRIVATE)
538 		bsd_args.flags |= MAP_PRIVATE;
539 	if (flags & LINUX_MAP_FIXED)
540 		bsd_args.flags |= MAP_FIXED;
541 	if (flags & LINUX_MAP_ANON) {
542 		/* Enforce pos to be on page boundary, then ignore. */
543 		if ((pos & PAGE_MASK) != 0)
544 			return (EINVAL);
545 		pos = 0;
546 		bsd_args.flags |= MAP_ANON;
547 	} else
548 		bsd_args.flags |= MAP_NOSYNC;
549 	if (flags & LINUX_MAP_GROWSDOWN)
550 		bsd_args.flags |= MAP_STACK;
551 
552 	/*
553 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
554 	 * on Linux/i386. We do this to ensure maximum compatibility.
555 	 * Linux/ia64 does the same in i386 emulation mode.
556 	 */
557 	bsd_args.prot = prot;
558 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
559 		bsd_args.prot |= PROT_READ | PROT_EXEC;
560 
561 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
562 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
563 	if (bsd_args.fd != -1) {
564 		/*
565 		 * Linux follows Solaris mmap(2) description:
566 		 * The file descriptor fildes is opened with
567 		 * read permission, regardless of the
568 		 * protection options specified.
569 		 */
570 
571 		error = fget(td, bsd_args.fd,
572 		    cap_rights_init(&rights, CAP_MMAP), &fp);
573 		if (error != 0)
574 			return (error);
575 		if (fp->f_type != DTYPE_VNODE) {
576 			fdrop(fp, td);
577 			return (EINVAL);
578 		}
579 
580 		/* Linux mmap() just fails for O_WRONLY files */
581 		if (!(fp->f_flag & FREAD)) {
582 			fdrop(fp, td);
583 			return (EACCES);
584 		}
585 
586 		fdrop(fp, td);
587 	}
588 
589 	if (flags & LINUX_MAP_GROWSDOWN) {
590 		/*
591 		 * The Linux MAP_GROWSDOWN option does not limit auto
592 		 * growth of the region.  Linux mmap with this option
593 		 * takes as addr the inital BOS, and as len, the initial
594 		 * region size.  It can then grow down from addr without
595 		 * limit.  However, Linux threads has an implicit internal
596 		 * limit to stack size of STACK_SIZE.  Its just not
597 		 * enforced explicitly in Linux.  But, here we impose
598 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
599 		 * region, since we can do this with our mmap.
600 		 *
601 		 * Our mmap with MAP_STACK takes addr as the maximum
602 		 * downsize limit on BOS, and as len the max size of
603 		 * the region.  It then maps the top SGROWSIZ bytes,
604 		 * and auto grows the region down, up to the limit
605 		 * in addr.
606 		 *
607 		 * If we don't use the MAP_STACK option, the effect
608 		 * of this code is to allocate a stack region of a
609 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
610 		 */
611 
612 		if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
613 			/*
614 			 * Some Linux apps will attempt to mmap
615 			 * thread stacks near the top of their
616 			 * address space.  If their TOS is greater
617 			 * than vm_maxsaddr, vm_map_growstack()
618 			 * will confuse the thread stack with the
619 			 * process stack and deliver a SEGV if they
620 			 * attempt to grow the thread stack past their
621 			 * current stacksize rlimit.  To avoid this,
622 			 * adjust vm_maxsaddr upwards to reflect
623 			 * the current stacksize rlimit rather
624 			 * than the maximum possible stacksize.
625 			 * It would be better to adjust the
626 			 * mmap'ed region, but some apps do not check
627 			 * mmap's return value.
628 			 */
629 			PROC_LOCK(p);
630 			p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
631 			    lim_cur(p, RLIMIT_STACK);
632 			PROC_UNLOCK(p);
633 		}
634 
635 		/*
636 		 * This gives us our maximum stack size and a new BOS.
637 		 * If we're using VM_STACK, then mmap will just map
638 		 * the top SGROWSIZ bytes, and let the stack grow down
639 		 * to the limit at BOS.  If we're not using VM_STACK
640 		 * we map the full stack, since we don't have a way
641 		 * to autogrow it.
642 		 */
643 		if (len > STACK_SIZE - GUARD_SIZE) {
644 			bsd_args.addr = (caddr_t)PTRIN(addr);
645 			bsd_args.len = len;
646 		} else {
647 			bsd_args.addr = (caddr_t)PTRIN(addr) -
648 			    (STACK_SIZE - GUARD_SIZE - len);
649 			bsd_args.len = STACK_SIZE - GUARD_SIZE;
650 		}
651 	} else {
652 		bsd_args.addr = (caddr_t)PTRIN(addr);
653 		bsd_args.len  = len;
654 	}
655 	bsd_args.pos = pos;
656 
657 #ifdef DEBUG
658 	if (ldebug(mmap))
659 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
660 		    __func__,
661 		    (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
662 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
663 #endif
664 	error = sys_mmap(td, &bsd_args);
665 #ifdef DEBUG
666 	if (ldebug(mmap))
667 		printf("-> %s() return: 0x%x (0x%08x)\n",
668 			__func__, error, (u_int)td->td_retval[0]);
669 #endif
670 	return (error);
671 }
672 
673 int
674 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
675 {
676 	struct mprotect_args bsd_args;
677 
678 	bsd_args.addr = uap->addr;
679 	bsd_args.len = uap->len;
680 	bsd_args.prot = uap->prot;
681 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
682 		bsd_args.prot |= PROT_READ | PROT_EXEC;
683 	return (sys_mprotect(td, &bsd_args));
684 }
685 
686 int
687 linux_iopl(struct thread *td, struct linux_iopl_args *args)
688 {
689 	int error;
690 
691 	if (args->level < 0 || args->level > 3)
692 		return (EINVAL);
693 	if ((error = priv_check(td, PRIV_IO)) != 0)
694 		return (error);
695 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
696 		return (error);
697 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
698 	    (args->level * (PSL_IOPL / 3));
699 
700 	return (0);
701 }
702 
703 int
704 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
705 {
706 	l_osigaction_t osa;
707 	l_sigaction_t act, oact;
708 	int error;
709 
710 #ifdef DEBUG
711 	if (ldebug(sigaction))
712 		printf(ARGS(sigaction, "%d, %p, %p"),
713 		    args->sig, (void *)args->nsa, (void *)args->osa);
714 #endif
715 
716 	if (args->nsa != NULL) {
717 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
718 		if (error)
719 			return (error);
720 		act.lsa_handler = osa.lsa_handler;
721 		act.lsa_flags = osa.lsa_flags;
722 		act.lsa_restorer = osa.lsa_restorer;
723 		LINUX_SIGEMPTYSET(act.lsa_mask);
724 		act.lsa_mask.__bits[0] = osa.lsa_mask;
725 	}
726 
727 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
728 	    args->osa ? &oact : NULL);
729 
730 	if (args->osa != NULL && !error) {
731 		osa.lsa_handler = oact.lsa_handler;
732 		osa.lsa_flags = oact.lsa_flags;
733 		osa.lsa_restorer = oact.lsa_restorer;
734 		osa.lsa_mask = oact.lsa_mask.__bits[0];
735 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
736 	}
737 
738 	return (error);
739 }
740 
741 /*
742  * Linux has two extra args, restart and oldmask.  We don't use these,
743  * but it seems that "restart" is actually a context pointer that
744  * enables the signal to happen with a different register set.
745  */
746 int
747 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
748 {
749 	sigset_t sigmask;
750 	l_sigset_t mask;
751 
752 #ifdef DEBUG
753 	if (ldebug(sigsuspend))
754 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
755 #endif
756 
757 	LINUX_SIGEMPTYSET(mask);
758 	mask.__bits[0] = args->mask;
759 	linux_to_bsd_sigset(&mask, &sigmask);
760 	return (kern_sigsuspend(td, sigmask));
761 }
762 
763 int
764 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
765 {
766 	l_sigset_t lmask;
767 	sigset_t sigmask;
768 	int error;
769 
770 #ifdef DEBUG
771 	if (ldebug(rt_sigsuspend))
772 		printf(ARGS(rt_sigsuspend, "%p, %d"),
773 		    (void *)uap->newset, uap->sigsetsize);
774 #endif
775 
776 	if (uap->sigsetsize != sizeof(l_sigset_t))
777 		return (EINVAL);
778 
779 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
780 	if (error)
781 		return (error);
782 
783 	linux_to_bsd_sigset(&lmask, &sigmask);
784 	return (kern_sigsuspend(td, sigmask));
785 }
786 
787 int
788 linux_pause(struct thread *td, struct linux_pause_args *args)
789 {
790 	struct proc *p = td->td_proc;
791 	sigset_t sigmask;
792 
793 #ifdef DEBUG
794 	if (ldebug(pause))
795 		printf(ARGS(pause, ""));
796 #endif
797 
798 	PROC_LOCK(p);
799 	sigmask = td->td_sigmask;
800 	PROC_UNLOCK(p);
801 	return (kern_sigsuspend(td, sigmask));
802 }
803 
804 int
805 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
806 {
807 	stack_t ss, oss;
808 	l_stack_t lss;
809 	int error;
810 
811 #ifdef DEBUG
812 	if (ldebug(sigaltstack))
813 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
814 #endif
815 
816 	if (uap->uss != NULL) {
817 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
818 		if (error)
819 			return (error);
820 
821 		ss.ss_sp = PTRIN(lss.ss_sp);
822 		ss.ss_size = lss.ss_size;
823 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
824 	}
825 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
826 	    (uap->uoss != NULL) ? &oss : NULL);
827 	if (!error && uap->uoss != NULL) {
828 		lss.ss_sp = PTROUT(oss.ss_sp);
829 		lss.ss_size = oss.ss_size;
830 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
831 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
832 	}
833 
834 	return (error);
835 }
836 
837 int
838 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
839 {
840 	struct ftruncate_args sa;
841 
842 #ifdef DEBUG
843 	if (ldebug(ftruncate64))
844 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
845 		    (intmax_t)args->length);
846 #endif
847 
848 	sa.fd = args->fd;
849 	sa.length = args->length;
850 	return sys_ftruncate(td, &sa);
851 }
852 
853 int
854 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
855 {
856 	struct timeval atv;
857 	l_timeval atv32;
858 	struct timezone rtz;
859 	int error = 0;
860 
861 	if (uap->tp) {
862 		microtime(&atv);
863 		atv32.tv_sec = atv.tv_sec;
864 		atv32.tv_usec = atv.tv_usec;
865 		error = copyout(&atv32, uap->tp, sizeof(atv32));
866 	}
867 	if (error == 0 && uap->tzp != NULL) {
868 		rtz.tz_minuteswest = tz_minuteswest;
869 		rtz.tz_dsttime = tz_dsttime;
870 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
871 	}
872 	return (error);
873 }
874 
875 int
876 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
877 {
878 	l_timeval atv32;
879 	struct timeval atv, *tvp;
880 	struct timezone atz, *tzp;
881 	int error;
882 
883 	if (uap->tp) {
884 		error = copyin(uap->tp, &atv32, sizeof(atv32));
885 		if (error)
886 			return (error);
887 		atv.tv_sec = atv32.tv_sec;
888 		atv.tv_usec = atv32.tv_usec;
889 		tvp = &atv;
890 	} else
891 		tvp = NULL;
892 	if (uap->tzp) {
893 		error = copyin(uap->tzp, &atz, sizeof(atz));
894 		if (error)
895 			return (error);
896 		tzp = &atz;
897 	} else
898 		tzp = NULL;
899 	return (kern_settimeofday(td, tvp, tzp));
900 }
901 
902 int
903 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
904 {
905 	struct l_rusage s32;
906 	struct rusage s;
907 	int error;
908 
909 	error = kern_getrusage(td, uap->who, &s);
910 	if (error != 0)
911 		return (error);
912 	if (uap->rusage != NULL) {
913 		bsd_to_linux_rusage(&s, &s32);
914 		error = copyout(&s32, uap->rusage, sizeof(s32));
915 	}
916 	return (error);
917 }
918 
919 int
920 linux_sched_rr_get_interval(struct thread *td,
921     struct linux_sched_rr_get_interval_args *uap)
922 {
923 	struct timespec ts;
924 	struct l_timespec ts32;
925 	int error;
926 
927 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
928 	if (error != 0)
929 		return (error);
930 	ts32.tv_sec = ts.tv_sec;
931 	ts32.tv_nsec = ts.tv_nsec;
932 	return (copyout(&ts32, uap->interval, sizeof(ts32)));
933 }
934 
935 int
936 linux_set_thread_area(struct thread *td,
937     struct linux_set_thread_area_args *args)
938 {
939 	struct l_user_desc info;
940 	struct user_segment_descriptor sd;
941 	struct pcb *pcb;
942 	int a[2];
943 	int error;
944 
945 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
946 	if (error)
947 		return (error);
948 
949 #ifdef DEBUG
950 	if (ldebug(set_thread_area))
951 		printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
952 		    "%i, %i, %i"), info.entry_number, info.base_addr,
953 		    info.limit, info.seg_32bit, info.contents,
954 		    info.read_exec_only, info.limit_in_pages,
955 		    info.seg_not_present, info.useable);
956 #endif
957 
958 	/*
959 	 * Semantics of Linux version: every thread in the system has array
960 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
961 	 * This syscall loads one of the selected TLS decriptors with a value
962 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
963 	 * the per-thread descriptors.
964 	 *
965 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
966 	 * three per-thread descriptors and use just the first one.
967 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
968 	 * for loading the GDT descriptors. We use just one GDT descriptor
969 	 * for TLS, so we will load just one.
970 	 *
971 	 * XXX: This doesn't work when a user space process tries to use more
972 	 * than one TLS segment. Comment in the Linux source says wine might
973 	 * do this.
974 	 */
975 
976 	/*
977 	 * GLIBC reads current %gs and call set_thread_area() with it.
978 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
979 	 * we use these segments.
980 	 */
981 	switch (info.entry_number) {
982 	case GUGS32_SEL:
983 	case GUDATA_SEL:
984 	case 6:
985 	case -1:
986 		info.entry_number = GUGS32_SEL;
987 		break;
988 	default:
989 		return (EINVAL);
990 	}
991 
992 	/*
993 	 * We have to copy out the GDT entry we use.
994 	 *
995 	 * XXX: What if a user space program does not check the return value
996 	 * and tries to use 6, 7 or 8?
997 	 */
998 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
999 	if (error)
1000 		return (error);
1001 
1002 	if (LINUX_LDT_empty(&info)) {
1003 		a[0] = 0;
1004 		a[1] = 0;
1005 	} else {
1006 		a[0] = LINUX_LDT_entry_a(&info);
1007 		a[1] = LINUX_LDT_entry_b(&info);
1008 	}
1009 
1010 	memcpy(&sd, &a, sizeof(a));
1011 #ifdef DEBUG
1012 	if (ldebug(set_thread_area))
1013 		printf("Segment created in set_thread_area: "
1014 		    "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
1015 		    "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
1016 		    "def32: %i, gran: %i\n",
1017 		    sd.sd_lobase,
1018 		    sd.sd_hibase,
1019 		    sd.sd_lolimit,
1020 		    sd.sd_hilimit,
1021 		    sd.sd_type,
1022 		    sd.sd_dpl,
1023 		    sd.sd_p,
1024 		    sd.sd_xx,
1025 		    sd.sd_long,
1026 		    sd.sd_def32,
1027 		    sd.sd_gran);
1028 #endif
1029 
1030 	pcb = td->td_pcb;
1031 	pcb->pcb_gsbase = (register_t)info.base_addr;
1032 	set_pcb_flags(pcb, PCB_32BIT);
1033 	update_gdt_gsbase(td, info.base_addr);
1034 
1035 	return (0);
1036 }
1037 
1038 int
1039 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1040 {
1041 	int error, options;
1042 	struct rusage ru, *rup;
1043 	struct l_rusage lru;
1044 
1045 #ifdef DEBUG
1046 	if (ldebug(wait4))
1047 		printf(ARGS(wait4, "%d, %p, %d, %p"),
1048 		    args->pid, (void *)args->status, args->options,
1049 		    (void *)args->rusage);
1050 #endif
1051 
1052 	options = (args->options & (WNOHANG | WUNTRACED));
1053 	/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
1054 	if (args->options & __WCLONE)
1055 		options |= WLINUXCLONE;
1056 
1057 	if (args->rusage != NULL)
1058 		rup = &ru;
1059 	else
1060 		rup = NULL;
1061 	error = linux_common_wait(td, args->pid, args->status, options, rup);
1062 	if (error)
1063 		return (error);
1064 	if (args->rusage != NULL) {
1065 		bsd_to_linux_rusage(rup, &lru);
1066 		error = copyout(&lru, args->rusage, sizeof(lru));
1067 	}
1068 
1069 	return (error);
1070 }
1071