xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Tim J. Robbins
5  * Copyright (c) 2002 Doug Rabson
6  * Copyright (c) 2000 Marcel Moolenaar
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_compat.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/clock.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/imgact.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mman.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/syscallsubr.h>
55 #include <sys/sysproto.h>
56 #include <sys/systm.h>
57 #include <sys/unistd.h>
58 #include <sys/wait.h>
59 
60 #include <machine/frame.h>
61 #include <machine/md_var.h>
62 #include <machine/pcb.h>
63 #include <machine/psl.h>
64 #include <machine/reg.h>
65 #include <machine/segments.h>
66 #include <machine/specialreg.h>
67 #include <x86/ifunc.h>
68 
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_map.h>
72 
73 #include <security/audit/audit.h>
74 
75 #include <compat/freebsd32/freebsd32_util.h>
76 #include <amd64/linux32/linux.h>
77 #include <amd64/linux32/linux32_proto.h>
78 #include <compat/linux/linux_emul.h>
79 #include <compat/linux/linux_ipc.h>
80 #include <compat/linux/linux_misc.h>
81 #include <compat/linux/linux_mmap.h>
82 #include <compat/linux/linux_signal.h>
83 #include <compat/linux/linux_util.h>
84 
85 static void	bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
86 
87 struct l_old_select_argv {
88 	l_int		nfds;
89 	l_uintptr_t	readfds;
90 	l_uintptr_t	writefds;
91 	l_uintptr_t	exceptfds;
92 	l_uintptr_t	timeout;
93 } __packed;
94 
95 static void
96 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
97 {
98 
99 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
100 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
101 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
102 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
103 	lru->ru_maxrss = ru->ru_maxrss;
104 	lru->ru_ixrss = ru->ru_ixrss;
105 	lru->ru_idrss = ru->ru_idrss;
106 	lru->ru_isrss = ru->ru_isrss;
107 	lru->ru_minflt = ru->ru_minflt;
108 	lru->ru_majflt = ru->ru_majflt;
109 	lru->ru_nswap = ru->ru_nswap;
110 	lru->ru_inblock = ru->ru_inblock;
111 	lru->ru_oublock = ru->ru_oublock;
112 	lru->ru_msgsnd = ru->ru_msgsnd;
113 	lru->ru_msgrcv = ru->ru_msgrcv;
114 	lru->ru_nsignals = ru->ru_nsignals;
115 	lru->ru_nvcsw = ru->ru_nvcsw;
116 	lru->ru_nivcsw = ru->ru_nivcsw;
117 }
118 
119 int
120 linux_copyout_rusage(struct rusage *ru, void *uaddr)
121 {
122 	struct l_rusage lru;
123 
124 	bsd_to_linux_rusage(ru, &lru);
125 
126 	return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
127 }
128 
129 int
130 linux_execve(struct thread *td, struct linux_execve_args *args)
131 {
132 	struct image_args eargs;
133 	char *path;
134 	int error;
135 
136 	LCONVPATHEXIST(td, args->path, &path);
137 
138 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
139 	    args->argp, args->envp);
140 	free(path, M_TEMP);
141 	if (error == 0)
142 		error = linux_common_execve(td, &eargs);
143 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
144 	return (error);
145 }
146 
147 CTASSERT(sizeof(struct l_iovec32) == 8);
148 
149 int
150 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
151 {
152 	struct l_iovec32 iov32;
153 	struct iovec *iov;
154 	struct uio *uio;
155 	uint32_t iovlen;
156 	int error, i;
157 
158 	*uiop = NULL;
159 	if (iovcnt > UIO_MAXIOV)
160 		return (EINVAL);
161 	iovlen = iovcnt * sizeof(struct iovec);
162 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
163 	iov = (struct iovec *)(uio + 1);
164 	for (i = 0; i < iovcnt; i++) {
165 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
166 		if (error) {
167 			free(uio, M_IOV);
168 			return (error);
169 		}
170 		iov[i].iov_base = PTRIN(iov32.iov_base);
171 		iov[i].iov_len = iov32.iov_len;
172 	}
173 	uio->uio_iov = iov;
174 	uio->uio_iovcnt = iovcnt;
175 	uio->uio_segflg = UIO_USERSPACE;
176 	uio->uio_offset = -1;
177 	uio->uio_resid = 0;
178 	for (i = 0; i < iovcnt; i++) {
179 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
180 			free(uio, M_IOV);
181 			return (EINVAL);
182 		}
183 		uio->uio_resid += iov->iov_len;
184 		iov++;
185 	}
186 	*uiop = uio;
187 	return (0);
188 }
189 
190 int
191 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
192     int error)
193 {
194 	struct l_iovec32 iov32;
195 	struct iovec *iov;
196 	uint32_t iovlen;
197 	int i;
198 
199 	*iovp = NULL;
200 	if (iovcnt > UIO_MAXIOV)
201 		return (error);
202 	iovlen = iovcnt * sizeof(struct iovec);
203 	iov = malloc(iovlen, M_IOV, M_WAITOK);
204 	for (i = 0; i < iovcnt; i++) {
205 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
206 		if (error) {
207 			free(iov, M_IOV);
208 			return (error);
209 		}
210 		iov[i].iov_base = PTRIN(iov32.iov_base);
211 		iov[i].iov_len = iov32.iov_len;
212 	}
213 	*iovp = iov;
214 	return(0);
215 
216 }
217 
218 int
219 linux_readv(struct thread *td, struct linux_readv_args *uap)
220 {
221 	struct uio *auio;
222 	int error;
223 
224 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
225 	if (error)
226 		return (error);
227 	error = kern_readv(td, uap->fd, auio);
228 	free(auio, M_IOV);
229 	return (error);
230 }
231 
232 int
233 linux_writev(struct thread *td, struct linux_writev_args *uap)
234 {
235 	struct uio *auio;
236 	int error;
237 
238 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
239 	if (error)
240 		return (error);
241 	error = kern_writev(td, uap->fd, auio);
242 	free(auio, M_IOV);
243 	return (error);
244 }
245 
246 struct l_ipc_kludge {
247 	l_uintptr_t msgp;
248 	l_long msgtyp;
249 } __packed;
250 
251 int
252 linux_ipc(struct thread *td, struct linux_ipc_args *args)
253 {
254 
255 	switch (args->what & 0xFFFF) {
256 	case LINUX_SEMOP: {
257 		struct linux_semop_args a;
258 
259 		a.semid = args->arg1;
260 		a.tsops = PTRIN(args->ptr);
261 		a.nsops = args->arg2;
262 		return (linux_semop(td, &a));
263 	}
264 	case LINUX_SEMGET: {
265 		struct linux_semget_args a;
266 
267 		a.key = args->arg1;
268 		a.nsems = args->arg2;
269 		a.semflg = args->arg3;
270 		return (linux_semget(td, &a));
271 	}
272 	case LINUX_SEMCTL: {
273 		struct linux_semctl_args a;
274 		int error;
275 
276 		a.semid = args->arg1;
277 		a.semnum = args->arg2;
278 		a.cmd = args->arg3;
279 		error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
280 		if (error)
281 			return (error);
282 		return (linux_semctl(td, &a));
283 	}
284 	case LINUX_MSGSND: {
285 		struct linux_msgsnd_args a;
286 
287 		a.msqid = args->arg1;
288 		a.msgp = PTRIN(args->ptr);
289 		a.msgsz = args->arg2;
290 		a.msgflg = args->arg3;
291 		return (linux_msgsnd(td, &a));
292 	}
293 	case LINUX_MSGRCV: {
294 		struct linux_msgrcv_args a;
295 
296 		a.msqid = args->arg1;
297 		a.msgsz = args->arg2;
298 		a.msgflg = args->arg3;
299 		if ((args->what >> 16) == 0) {
300 			struct l_ipc_kludge tmp;
301 			int error;
302 
303 			if (args->ptr == 0)
304 				return (EINVAL);
305 			error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
306 			if (error)
307 				return (error);
308 			a.msgp = PTRIN(tmp.msgp);
309 			a.msgtyp = tmp.msgtyp;
310 		} else {
311 			a.msgp = PTRIN(args->ptr);
312 			a.msgtyp = args->arg5;
313 		}
314 		return (linux_msgrcv(td, &a));
315 	}
316 	case LINUX_MSGGET: {
317 		struct linux_msgget_args a;
318 
319 		a.key = args->arg1;
320 		a.msgflg = args->arg2;
321 		return (linux_msgget(td, &a));
322 	}
323 	case LINUX_MSGCTL: {
324 		struct linux_msgctl_args a;
325 
326 		a.msqid = args->arg1;
327 		a.cmd = args->arg2;
328 		a.buf = PTRIN(args->ptr);
329 		return (linux_msgctl(td, &a));
330 	}
331 	case LINUX_SHMAT: {
332 		struct linux_shmat_args a;
333 		l_uintptr_t addr;
334 		int error;
335 
336 		a.shmid = args->arg1;
337 		a.shmaddr = PTRIN(args->ptr);
338 		a.shmflg = args->arg2;
339 		error = linux_shmat(td, &a);
340 		if (error != 0)
341 			return (error);
342 		addr = td->td_retval[0];
343 		error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
344 		td->td_retval[0] = 0;
345 		return (error);
346 	}
347 	case LINUX_SHMDT: {
348 		struct linux_shmdt_args a;
349 
350 		a.shmaddr = PTRIN(args->ptr);
351 		return (linux_shmdt(td, &a));
352 	}
353 	case LINUX_SHMGET: {
354 		struct linux_shmget_args a;
355 
356 		a.key = args->arg1;
357 		a.size = args->arg2;
358 		a.shmflg = args->arg3;
359 		return (linux_shmget(td, &a));
360 	}
361 	case LINUX_SHMCTL: {
362 		struct linux_shmctl_args a;
363 
364 		a.shmid = args->arg1;
365 		a.cmd = args->arg2;
366 		a.buf = PTRIN(args->ptr);
367 		return (linux_shmctl(td, &a));
368 	}
369 	default:
370 		break;
371 	}
372 
373 	return (EINVAL);
374 }
375 
376 int
377 linux_old_select(struct thread *td, struct linux_old_select_args *args)
378 {
379 	struct l_old_select_argv linux_args;
380 	struct linux_select_args newsel;
381 	int error;
382 
383 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
384 	if (error)
385 		return (error);
386 
387 	newsel.nfds = linux_args.nfds;
388 	newsel.readfds = PTRIN(linux_args.readfds);
389 	newsel.writefds = PTRIN(linux_args.writefds);
390 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
391 	newsel.timeout = PTRIN(linux_args.timeout);
392 	return (linux_select(td, &newsel));
393 }
394 
395 int
396 linux_set_cloned_tls(struct thread *td, void *desc)
397 {
398 	struct l_user_desc info;
399 	struct pcb *pcb;
400 	int error;
401 
402 	error = copyin(desc, &info, sizeof(struct l_user_desc));
403 	if (error) {
404 		linux_msg(td, "set_cloned_tls copyin info failed!");
405 	} else {
406 		/* We might copy out the entry_number as GUGS32_SEL. */
407 		info.entry_number = GUGS32_SEL;
408 		error = copyout(&info, desc, sizeof(struct l_user_desc));
409 		if (error)
410 			linux_msg(td, "set_cloned_tls copyout info failed!");
411 
412 		pcb = td->td_pcb;
413 		update_pcb_bases(pcb);
414 		pcb->pcb_gsbase = (register_t)info.base_addr;
415 		td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
416 	}
417 
418 	return (error);
419 }
420 
421 int
422 linux_set_upcall(struct thread *td, register_t stack)
423 {
424 
425 	if (stack)
426 		td->td_frame->tf_rsp = stack;
427 
428 	/*
429 	 * The newly created Linux thread returns
430 	 * to the user space by the same path that a parent do.
431 	 */
432 	td->td_frame->tf_rax = 0;
433 	return (0);
434 }
435 
436 int
437 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
438 {
439 
440 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
441 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
442 		PAGE_SIZE));
443 }
444 
445 int
446 linux_mmap(struct thread *td, struct linux_mmap_args *args)
447 {
448 	int error;
449 	struct l_mmap_argv linux_args;
450 
451 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
452 	if (error)
453 		return (error);
454 
455 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
456 	    linux_args.prot, linux_args.flags, linux_args.fd,
457 	    (uint32_t)linux_args.pgoff));
458 }
459 
460 int
461 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
462 {
463 
464 	return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
465 }
466 
467 int
468 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
469 {
470 
471 	return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
472 }
473 
474 int
475 linux_iopl(struct thread *td, struct linux_iopl_args *args)
476 {
477 	int error;
478 
479 	if (args->level < 0 || args->level > 3)
480 		return (EINVAL);
481 	if ((error = priv_check(td, PRIV_IO)) != 0)
482 		return (error);
483 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
484 		return (error);
485 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
486 	    (args->level * (PSL_IOPL / 3));
487 
488 	return (0);
489 }
490 
491 int
492 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
493 {
494 	l_osigaction_t osa;
495 	l_sigaction_t act, oact;
496 	int error;
497 
498 	if (args->nsa != NULL) {
499 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
500 		if (error)
501 			return (error);
502 		act.lsa_handler = osa.lsa_handler;
503 		act.lsa_flags = osa.lsa_flags;
504 		act.lsa_restorer = osa.lsa_restorer;
505 		LINUX_SIGEMPTYSET(act.lsa_mask);
506 		act.lsa_mask.__mask = osa.lsa_mask;
507 	}
508 
509 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
510 	    args->osa ? &oact : NULL);
511 
512 	if (args->osa != NULL && !error) {
513 		osa.lsa_handler = oact.lsa_handler;
514 		osa.lsa_flags = oact.lsa_flags;
515 		osa.lsa_restorer = oact.lsa_restorer;
516 		osa.lsa_mask = oact.lsa_mask.__mask;
517 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
518 	}
519 
520 	return (error);
521 }
522 
523 /*
524  * Linux has two extra args, restart and oldmask.  We don't use these,
525  * but it seems that "restart" is actually a context pointer that
526  * enables the signal to happen with a different register set.
527  */
528 int
529 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
530 {
531 	sigset_t sigmask;
532 	l_sigset_t mask;
533 
534 	LINUX_SIGEMPTYSET(mask);
535 	mask.__mask = args->mask;
536 	linux_to_bsd_sigset(&mask, &sigmask);
537 	return (kern_sigsuspend(td, sigmask));
538 }
539 
540 int
541 linux_pause(struct thread *td, struct linux_pause_args *args)
542 {
543 	struct proc *p = td->td_proc;
544 	sigset_t sigmask;
545 
546 	PROC_LOCK(p);
547 	sigmask = td->td_sigmask;
548 	PROC_UNLOCK(p);
549 	return (kern_sigsuspend(td, sigmask));
550 }
551 
552 int
553 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
554 {
555 	struct timeval atv;
556 	l_timeval atv32;
557 	struct timezone rtz;
558 	int error = 0;
559 
560 	if (uap->tp) {
561 		microtime(&atv);
562 		atv32.tv_sec = atv.tv_sec;
563 		atv32.tv_usec = atv.tv_usec;
564 		error = copyout(&atv32, uap->tp, sizeof(atv32));
565 	}
566 	if (error == 0 && uap->tzp != NULL) {
567 		rtz.tz_minuteswest = 0;
568 		rtz.tz_dsttime = 0;
569 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
570 	}
571 	return (error);
572 }
573 
574 int
575 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
576 {
577 	l_timeval atv32;
578 	struct timeval atv, *tvp;
579 	struct timezone atz, *tzp;
580 	int error;
581 
582 	if (uap->tp) {
583 		error = copyin(uap->tp, &atv32, sizeof(atv32));
584 		if (error)
585 			return (error);
586 		atv.tv_sec = atv32.tv_sec;
587 		atv.tv_usec = atv32.tv_usec;
588 		tvp = &atv;
589 	} else
590 		tvp = NULL;
591 	if (uap->tzp) {
592 		error = copyin(uap->tzp, &atz, sizeof(atz));
593 		if (error)
594 			return (error);
595 		tzp = &atz;
596 	} else
597 		tzp = NULL;
598 	return (kern_settimeofday(td, tvp, tzp));
599 }
600 
601 int
602 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
603 {
604 	struct rusage s;
605 	int error;
606 
607 	error = kern_getrusage(td, uap->who, &s);
608 	if (error != 0)
609 		return (error);
610 	if (uap->rusage != NULL)
611 		error = linux_copyout_rusage(&s, uap->rusage);
612 	return (error);
613 }
614 
615 int
616 linux_set_thread_area(struct thread *td,
617     struct linux_set_thread_area_args *args)
618 {
619 	struct l_user_desc info;
620 	struct pcb *pcb;
621 	int error;
622 
623 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
624 	if (error)
625 		return (error);
626 
627 	/*
628 	 * Semantics of Linux version: every thread in the system has array
629 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
630 	 * This syscall loads one of the selected TLS decriptors with a value
631 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
632 	 * the per-thread descriptors.
633 	 *
634 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
635 	 * three per-thread descriptors and use just the first one.
636 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
637 	 * for loading the GDT descriptors. We use just one GDT descriptor
638 	 * for TLS, so we will load just one.
639 	 *
640 	 * XXX: This doesn't work when a user space process tries to use more
641 	 * than one TLS segment. Comment in the Linux source says wine might
642 	 * do this.
643 	 */
644 
645 	/*
646 	 * GLIBC reads current %gs and call set_thread_area() with it.
647 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
648 	 * we use these segments.
649 	 */
650 	switch (info.entry_number) {
651 	case GUGS32_SEL:
652 	case GUDATA_SEL:
653 	case 6:
654 	case -1:
655 		info.entry_number = GUGS32_SEL;
656 		break;
657 	default:
658 		return (EINVAL);
659 	}
660 
661 	/*
662 	 * We have to copy out the GDT entry we use.
663 	 *
664 	 * XXX: What if a user space program does not check the return value
665 	 * and tries to use 6, 7 or 8?
666 	 */
667 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
668 	if (error)
669 		return (error);
670 
671 	pcb = td->td_pcb;
672 	update_pcb_bases(pcb);
673 	pcb->pcb_gsbase = (register_t)info.base_addr;
674 	update_gdt_gsbase(td, info.base_addr);
675 
676 	return (0);
677 }
678 
679 void
680 bsd_to_linux_regset32(struct reg32 *b_reg, struct linux_pt_regset32 *l_regset)
681 {
682 
683 	l_regset->ebx = b_reg->r_ebx;
684 	l_regset->ecx = b_reg->r_ecx;
685 	l_regset->edx = b_reg->r_edx;
686 	l_regset->esi = b_reg->r_esi;
687 	l_regset->edi = b_reg->r_edi;
688 	l_regset->ebp = b_reg->r_ebp;
689 	l_regset->eax = b_reg->r_eax;
690 	l_regset->ds = b_reg->r_ds;
691 	l_regset->es = b_reg->r_es;
692 	l_regset->fs = b_reg->r_fs;
693 	l_regset->gs = b_reg->r_gs;
694 	l_regset->orig_eax = b_reg->r_eax;
695 	l_regset->eip = b_reg->r_eip;
696 	l_regset->cs = b_reg->r_cs;
697 	l_regset->eflags = b_reg->r_eflags;
698 	l_regset->esp = b_reg->r_esp;
699 	l_regset->ss = b_reg->r_ss;
700 }
701 
702 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
703 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
704 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
705 {
706 
707 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
708 	    futex_xchgl_smap : futex_xchgl_nosmap);
709 }
710 
711 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
712 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
713 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
714 {
715 
716 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
717 	    futex_addl_smap : futex_addl_nosmap);
718 }
719 
720 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
721 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
722 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
723 {
724 
725 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
726 	    futex_orl_smap : futex_orl_nosmap);
727 }
728 
729 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
730 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
731 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
732 {
733 
734 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
735 	    futex_andl_smap : futex_andl_nosmap);
736 }
737 
738 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
739 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
740 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
741 {
742 
743 	return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
744 	    futex_xorl_smap : futex_xorl_nosmap);
745 }
746