xref: /freebsd/sys/amd64/linux32/linux32_machdep.c (revision 0f27aaf940f2fa5a6540285537b33115a96161a4)
1 /*-
2  * Copyright (c) 2004 Tim J. Robbins
3  * Copyright (c) 2002 Doug Rabson
4  * Copyright (c) 2000 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/kernel.h>
36 #include <sys/systm.h>
37 #include <sys/file.h>
38 #include <sys/fcntl.h>
39 #include <sys/clock.h>
40 #include <sys/imgact.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/resource.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysproto.h>
53 #include <sys/unistd.h>
54 #include <sys/wait.h>
55 
56 #include <machine/frame.h>
57 #include <machine/pcb.h>
58 #include <machine/psl.h>
59 #include <machine/segments.h>
60 #include <machine/specialreg.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 
66 #include <compat/freebsd32/freebsd32_util.h>
67 #include <amd64/linux32/linux.h>
68 #include <amd64/linux32/linux32_proto.h>
69 #include <compat/linux/linux_ipc.h>
70 #include <compat/linux/linux_misc.h>
71 #include <compat/linux/linux_signal.h>
72 #include <compat/linux/linux_util.h>
73 #include <compat/linux/linux_emul.h>
74 
75 struct l_old_select_argv {
76 	l_int		nfds;
77 	l_uintptr_t	readfds;
78 	l_uintptr_t	writefds;
79 	l_uintptr_t	exceptfds;
80 	l_uintptr_t	timeout;
81 } __packed;
82 
83 int
84 linux_to_bsd_sigaltstack(int lsa)
85 {
86 	int bsa = 0;
87 
88 	if (lsa & LINUX_SS_DISABLE)
89 		bsa |= SS_DISABLE;
90 	if (lsa & LINUX_SS_ONSTACK)
91 		bsa |= SS_ONSTACK;
92 	return (bsa);
93 }
94 
95 static int	linux_mmap_common(struct thread *td, l_uintptr_t addr,
96 		    l_size_t len, l_int prot, l_int flags, l_int fd,
97 		    l_loff_t pos);
98 
99 int
100 bsd_to_linux_sigaltstack(int bsa)
101 {
102 	int lsa = 0;
103 
104 	if (bsa & SS_DISABLE)
105 		lsa |= LINUX_SS_DISABLE;
106 	if (bsa & SS_ONSTACK)
107 		lsa |= LINUX_SS_ONSTACK;
108 	return (lsa);
109 }
110 
111 static void
112 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
113 {
114 
115 	lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
116 	lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
117 	lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
118 	lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
119 	lru->ru_maxrss = ru->ru_maxrss;
120 	lru->ru_ixrss = ru->ru_ixrss;
121 	lru->ru_idrss = ru->ru_idrss;
122 	lru->ru_isrss = ru->ru_isrss;
123 	lru->ru_minflt = ru->ru_minflt;
124 	lru->ru_majflt = ru->ru_majflt;
125 	lru->ru_nswap = ru->ru_nswap;
126 	lru->ru_inblock = ru->ru_inblock;
127 	lru->ru_oublock = ru->ru_oublock;
128 	lru->ru_msgsnd = ru->ru_msgsnd;
129 	lru->ru_msgrcv = ru->ru_msgrcv;
130 	lru->ru_nsignals = ru->ru_nsignals;
131 	lru->ru_nvcsw = ru->ru_nvcsw;
132 	lru->ru_nivcsw = ru->ru_nivcsw;
133 }
134 
135 int
136 linux_execve(struct thread *td, struct linux_execve_args *args)
137 {
138 	struct image_args eargs;
139 	char *path;
140 	int error;
141 
142 	LCONVPATHEXIST(td, args->path, &path);
143 
144 #ifdef DEBUG
145 	if (ldebug(execve))
146 		printf(ARGS(execve, "%s"), path);
147 #endif
148 
149 	error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
150 	    args->argp, args->envp);
151 	free(path, M_TEMP);
152 	if (error == 0)
153 		error = kern_execve(td, &eargs, NULL);
154 	if (error == 0)
155 		/* Linux process can execute FreeBSD one, do not attempt
156 		 * to create emuldata for such process using
157 		 * linux_proc_init, this leads to a panic on KASSERT
158 		 * because such process has p->p_emuldata == NULL.
159 		 */
160 		if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX)
161 			error = linux_proc_init(td, 0, 0);
162 	return (error);
163 }
164 
165 CTASSERT(sizeof(struct l_iovec32) == 8);
166 
167 static int
168 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
169 {
170 	struct l_iovec32 iov32;
171 	struct iovec *iov;
172 	struct uio *uio;
173 	uint32_t iovlen;
174 	int error, i;
175 
176 	*uiop = NULL;
177 	if (iovcnt > UIO_MAXIOV)
178 		return (EINVAL);
179 	iovlen = iovcnt * sizeof(struct iovec);
180 	uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
181 	iov = (struct iovec *)(uio + 1);
182 	for (i = 0; i < iovcnt; i++) {
183 		error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
184 		if (error) {
185 			free(uio, M_IOV);
186 			return (error);
187 		}
188 		iov[i].iov_base = PTRIN(iov32.iov_base);
189 		iov[i].iov_len = iov32.iov_len;
190 	}
191 	uio->uio_iov = iov;
192 	uio->uio_iovcnt = iovcnt;
193 	uio->uio_segflg = UIO_USERSPACE;
194 	uio->uio_offset = -1;
195 	uio->uio_resid = 0;
196 	for (i = 0; i < iovcnt; i++) {
197 		if (iov->iov_len > INT_MAX - uio->uio_resid) {
198 			free(uio, M_IOV);
199 			return (EINVAL);
200 		}
201 		uio->uio_resid += iov->iov_len;
202 		iov++;
203 	}
204 	*uiop = uio;
205 	return (0);
206 }
207 
208 int
209 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
210     int error)
211 {
212 	struct l_iovec32 iov32;
213 	struct iovec *iov;
214 	uint32_t iovlen;
215 	int i;
216 
217 	*iovp = NULL;
218 	if (iovcnt > UIO_MAXIOV)
219 		return (error);
220 	iovlen = iovcnt * sizeof(struct iovec);
221 	iov = malloc(iovlen, M_IOV, M_WAITOK);
222 	for (i = 0; i < iovcnt; i++) {
223 		error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
224 		if (error) {
225 			free(iov, M_IOV);
226 			return (error);
227 		}
228 		iov[i].iov_base = PTRIN(iov32.iov_base);
229 		iov[i].iov_len = iov32.iov_len;
230 	}
231 	*iovp = iov;
232 	return(0);
233 
234 }
235 
236 int
237 linux_readv(struct thread *td, struct linux_readv_args *uap)
238 {
239 	struct uio *auio;
240 	int error;
241 
242 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
243 	if (error)
244 		return (error);
245 	error = kern_readv(td, uap->fd, auio);
246 	free(auio, M_IOV);
247 	return (error);
248 }
249 
250 int
251 linux_writev(struct thread *td, struct linux_writev_args *uap)
252 {
253 	struct uio *auio;
254 	int error;
255 
256 	error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
257 	if (error)
258 		return (error);
259 	error = kern_writev(td, uap->fd, auio);
260 	free(auio, M_IOV);
261 	return (error);
262 }
263 
264 struct l_ipc_kludge {
265 	l_uintptr_t msgp;
266 	l_long msgtyp;
267 } __packed;
268 
269 int
270 linux_ipc(struct thread *td, struct linux_ipc_args *args)
271 {
272 
273 	switch (args->what & 0xFFFF) {
274 	case LINUX_SEMOP: {
275 		struct linux_semop_args a;
276 
277 		a.semid = args->arg1;
278 		a.tsops = args->ptr;
279 		a.nsops = args->arg2;
280 		return (linux_semop(td, &a));
281 	}
282 	case LINUX_SEMGET: {
283 		struct linux_semget_args a;
284 
285 		a.key = args->arg1;
286 		a.nsems = args->arg2;
287 		a.semflg = args->arg3;
288 		return (linux_semget(td, &a));
289 	}
290 	case LINUX_SEMCTL: {
291 		struct linux_semctl_args a;
292 		int error;
293 
294 		a.semid = args->arg1;
295 		a.semnum = args->arg2;
296 		a.cmd = args->arg3;
297 		error = copyin(args->ptr, &a.arg, sizeof(a.arg));
298 		if (error)
299 			return (error);
300 		return (linux_semctl(td, &a));
301 	}
302 	case LINUX_MSGSND: {
303 		struct linux_msgsnd_args a;
304 
305 		a.msqid = args->arg1;
306 		a.msgp = args->ptr;
307 		a.msgsz = args->arg2;
308 		a.msgflg = args->arg3;
309 		return (linux_msgsnd(td, &a));
310 	}
311 	case LINUX_MSGRCV: {
312 		struct linux_msgrcv_args a;
313 
314 		a.msqid = args->arg1;
315 		a.msgsz = args->arg2;
316 		a.msgflg = args->arg3;
317 		if ((args->what >> 16) == 0) {
318 			struct l_ipc_kludge tmp;
319 			int error;
320 
321 			if (args->ptr == 0)
322 				return (EINVAL);
323 			error = copyin(args->ptr, &tmp, sizeof(tmp));
324 			if (error)
325 				return (error);
326 			a.msgp = PTRIN(tmp.msgp);
327 			a.msgtyp = tmp.msgtyp;
328 		} else {
329 			a.msgp = args->ptr;
330 			a.msgtyp = args->arg5;
331 		}
332 		return (linux_msgrcv(td, &a));
333 	}
334 	case LINUX_MSGGET: {
335 		struct linux_msgget_args a;
336 
337 		a.key = args->arg1;
338 		a.msgflg = args->arg2;
339 		return (linux_msgget(td, &a));
340 	}
341 	case LINUX_MSGCTL: {
342 		struct linux_msgctl_args a;
343 
344 		a.msqid = args->arg1;
345 		a.cmd = args->arg2;
346 		a.buf = args->ptr;
347 		return (linux_msgctl(td, &a));
348 	}
349 	case LINUX_SHMAT: {
350 		struct linux_shmat_args a;
351 
352 		a.shmid = args->arg1;
353 		a.shmaddr = args->ptr;
354 		a.shmflg = args->arg2;
355 		a.raddr = PTRIN((l_uint)args->arg3);
356 		return (linux_shmat(td, &a));
357 	}
358 	case LINUX_SHMDT: {
359 		struct linux_shmdt_args a;
360 
361 		a.shmaddr = args->ptr;
362 		return (linux_shmdt(td, &a));
363 	}
364 	case LINUX_SHMGET: {
365 		struct linux_shmget_args a;
366 
367 		a.key = args->arg1;
368 		a.size = args->arg2;
369 		a.shmflg = args->arg3;
370 		return (linux_shmget(td, &a));
371 	}
372 	case LINUX_SHMCTL: {
373 		struct linux_shmctl_args a;
374 
375 		a.shmid = args->arg1;
376 		a.cmd = args->arg2;
377 		a.buf = args->ptr;
378 		return (linux_shmctl(td, &a));
379 	}
380 	default:
381 		break;
382 	}
383 
384 	return (EINVAL);
385 }
386 
387 int
388 linux_old_select(struct thread *td, struct linux_old_select_args *args)
389 {
390 	struct l_old_select_argv linux_args;
391 	struct linux_select_args newsel;
392 	int error;
393 
394 #ifdef DEBUG
395 	if (ldebug(old_select))
396 		printf(ARGS(old_select, "%p"), args->ptr);
397 #endif
398 
399 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
400 	if (error)
401 		return (error);
402 
403 	newsel.nfds = linux_args.nfds;
404 	newsel.readfds = PTRIN(linux_args.readfds);
405 	newsel.writefds = PTRIN(linux_args.writefds);
406 	newsel.exceptfds = PTRIN(linux_args.exceptfds);
407 	newsel.timeout = PTRIN(linux_args.timeout);
408 	return (linux_select(td, &newsel));
409 }
410 
411 int
412 linux_fork(struct thread *td, struct linux_fork_args *args)
413 {
414 	int error;
415 	struct proc *p2;
416 	struct thread *td2;
417 
418 #ifdef DEBUG
419 	if (ldebug(fork))
420 		printf(ARGS(fork, ""));
421 #endif
422 
423 	if ((error = fork1(td, RFFDG | RFPROC | RFSTOPPED, 0, &p2)) != 0)
424 		return (error);
425 
426 	if (error == 0) {
427 		td->td_retval[0] = p2->p_pid;
428 		td->td_retval[1] = 0;
429 	}
430 
431 	if (td->td_retval[1] == 1)
432 		td->td_retval[0] = 0;
433 	error = linux_proc_init(td, td->td_retval[0], 0);
434 	if (error)
435 		return (error);
436 
437 	td2 = FIRST_THREAD_IN_PROC(p2);
438 
439 	/*
440 	 * Make this runnable after we are finished with it.
441 	 */
442 	thread_lock(td2);
443 	TD_SET_CAN_RUN(td2);
444 	sched_add(td2, SRQ_BORING);
445 	thread_unlock(td2);
446 
447 	return (0);
448 }
449 
450 int
451 linux_vfork(struct thread *td, struct linux_vfork_args *args)
452 {
453 	int error;
454 	struct proc *p2;
455 	struct thread *td2;
456 
457 #ifdef DEBUG
458 	if (ldebug(vfork))
459 		printf(ARGS(vfork, ""));
460 #endif
461 
462 	/* Exclude RFPPWAIT */
463 	if ((error = fork1(td, RFFDG | RFPROC | RFMEM | RFSTOPPED, 0, &p2)) != 0)
464 		return (error);
465 	if (error == 0) {
466 	   	td->td_retval[0] = p2->p_pid;
467 		td->td_retval[1] = 0;
468 	}
469 	/* Are we the child? */
470 	if (td->td_retval[1] == 1)
471 		td->td_retval[0] = 0;
472 	error = linux_proc_init(td, td->td_retval[0], 0);
473 	if (error)
474 		return (error);
475 
476 	PROC_LOCK(p2);
477 	p2->p_flag |= P_PPWAIT;
478 	PROC_UNLOCK(p2);
479 
480 	td2 = FIRST_THREAD_IN_PROC(p2);
481 
482 	/*
483 	 * Make this runnable after we are finished with it.
484 	 */
485 	thread_lock(td2);
486 	TD_SET_CAN_RUN(td2);
487 	sched_add(td2, SRQ_BORING);
488 	thread_unlock(td2);
489 
490 	/* wait for the children to exit, ie. emulate vfork */
491 	PROC_LOCK(p2);
492 	while (p2->p_flag & P_PPWAIT)
493 		cv_wait(&p2->p_pwait, &p2->p_mtx);
494 	PROC_UNLOCK(p2);
495 
496 	return (0);
497 }
498 
499 int
500 linux_clone(struct thread *td, struct linux_clone_args *args)
501 {
502 	int error, ff = RFPROC | RFSTOPPED;
503 	struct proc *p2;
504 	struct thread *td2;
505 	int exit_signal;
506 	struct linux_emuldata *em;
507 
508 #ifdef DEBUG
509 	if (ldebug(clone)) {
510 		printf(ARGS(clone, "flags %x, stack %p, parent tid: %p, "
511 		    "child tid: %p"), (unsigned)args->flags,
512 		    args->stack, args->parent_tidptr, args->child_tidptr);
513 	}
514 #endif
515 
516 	exit_signal = args->flags & 0x000000ff;
517 	if (LINUX_SIG_VALID(exit_signal)) {
518 		if (exit_signal <= LINUX_SIGTBLSZ)
519 			exit_signal =
520 			    linux_to_bsd_signal[_SIG_IDX(exit_signal)];
521 	} else if (exit_signal != 0)
522 		return (EINVAL);
523 
524 	if (args->flags & LINUX_CLONE_VM)
525 		ff |= RFMEM;
526 	if (args->flags & LINUX_CLONE_SIGHAND)
527 		ff |= RFSIGSHARE;
528 	/*
529 	 * XXX: In Linux, sharing of fs info (chroot/cwd/umask)
530 	 * and open files is independant.  In FreeBSD, its in one
531 	 * structure but in reality it does not cause any problems
532 	 * because both of these flags are usually set together.
533 	 */
534 	if (!(args->flags & (LINUX_CLONE_FILES | LINUX_CLONE_FS)))
535 		ff |= RFFDG;
536 
537 	/*
538 	 * Attempt to detect when linux_clone(2) is used for creating
539 	 * kernel threads. Unfortunately despite the existence of the
540 	 * CLONE_THREAD flag, version of linuxthreads package used in
541 	 * most popular distros as of beginning of 2005 doesn't make
542 	 * any use of it. Therefore, this detection relies on
543 	 * empirical observation that linuxthreads sets certain
544 	 * combination of flags, so that we can make more or less
545 	 * precise detection and notify the FreeBSD kernel that several
546 	 * processes are in fact part of the same threading group, so
547 	 * that special treatment is necessary for signal delivery
548 	 * between those processes and fd locking.
549 	 */
550 	if ((args->flags & 0xffffff00) == LINUX_THREADING_FLAGS)
551 		ff |= RFTHREAD;
552 
553 	if (args->flags & LINUX_CLONE_PARENT_SETTID)
554 		if (args->parent_tidptr == NULL)
555 			return (EINVAL);
556 
557 	error = fork1(td, ff, 0, &p2);
558 	if (error)
559 		return (error);
560 
561 	if (args->flags & (LINUX_CLONE_PARENT | LINUX_CLONE_THREAD)) {
562 	   	sx_xlock(&proctree_lock);
563 		PROC_LOCK(p2);
564 		proc_reparent(p2, td->td_proc->p_pptr);
565 		PROC_UNLOCK(p2);
566 		sx_xunlock(&proctree_lock);
567 	}
568 
569 	/* create the emuldata */
570 	error = linux_proc_init(td, p2->p_pid, args->flags);
571 	/* reference it - no need to check this */
572 	em = em_find(p2, EMUL_DOLOCK);
573 	KASSERT(em != NULL, ("clone: emuldata not found.\n"));
574 	/* and adjust it */
575 
576 	if (args->flags & LINUX_CLONE_THREAD) {
577 #ifdef notyet
578 	   	PROC_LOCK(p2);
579 	   	p2->p_pgrp = td->td_proc->p_pgrp;
580 	   	PROC_UNLOCK(p2);
581 #endif
582 		exit_signal = 0;
583 	}
584 
585 	if (args->flags & LINUX_CLONE_CHILD_SETTID)
586 		em->child_set_tid = args->child_tidptr;
587 	else
588 	   	em->child_set_tid = NULL;
589 
590 	if (args->flags & LINUX_CLONE_CHILD_CLEARTID)
591 		em->child_clear_tid = args->child_tidptr;
592 	else
593 	   	em->child_clear_tid = NULL;
594 
595 	EMUL_UNLOCK(&emul_lock);
596 
597 	if (args->flags & LINUX_CLONE_PARENT_SETTID) {
598 		error = copyout(&p2->p_pid, args->parent_tidptr,
599 		    sizeof(p2->p_pid));
600 		if (error)
601 			printf(LMSG("copyout failed!"));
602 	}
603 
604 	PROC_LOCK(p2);
605 	p2->p_sigparent = exit_signal;
606 	PROC_UNLOCK(p2);
607 	td2 = FIRST_THREAD_IN_PROC(p2);
608 	/*
609 	 * In a case of stack = NULL, we are supposed to COW calling process
610 	 * stack. This is what normal fork() does, so we just keep tf_rsp arg
611 	 * intact.
612 	 */
613 	if (args->stack)
614 		td2->td_frame->tf_rsp = PTROUT(args->stack);
615 
616 	if (args->flags & LINUX_CLONE_SETTLS) {
617 		struct user_segment_descriptor sd;
618 		struct l_user_desc info;
619 		struct pcb *pcb;
620 		int a[2];
621 
622 		error = copyin((void *)td->td_frame->tf_rsi, &info,
623 		    sizeof(struct l_user_desc));
624 		if (error) {
625 			printf(LMSG("copyin failed!"));
626 		} else {
627 			/* We might copy out the entry_number as GUGS32_SEL. */
628 			info.entry_number = GUGS32_SEL;
629 			error = copyout(&info, (void *)td->td_frame->tf_rsi,
630 			    sizeof(struct l_user_desc));
631 			if (error)
632 				printf(LMSG("copyout failed!"));
633 
634 			a[0] = LINUX_LDT_entry_a(&info);
635 			a[1] = LINUX_LDT_entry_b(&info);
636 
637 			memcpy(&sd, &a, sizeof(a));
638 #ifdef DEBUG
639 			if (ldebug(clone))
640 				printf("Segment created in clone with "
641 				    "CLONE_SETTLS: lobase: %x, hibase: %x, "
642 				    "lolimit: %x, hilimit: %x, type: %i, "
643 				    "dpl: %i, p: %i, xx: %i, long: %i, "
644 				    "def32: %i, gran: %i\n", sd.sd_lobase,
645 				    sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit,
646 				    sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx,
647 				    sd.sd_long, sd.sd_def32, sd.sd_gran);
648 #endif
649 			pcb = td2->td_pcb;
650 			pcb->pcb_gsbase = (register_t)info.base_addr;
651 /* XXXKIB		pcb->pcb_gs32sd = sd; */
652 			td2->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
653 			set_pcb_flags(pcb, PCB_GS32BIT | PCB_32BIT);
654 		}
655 	}
656 
657 #ifdef DEBUG
658 	if (ldebug(clone))
659 		printf(LMSG("clone: successful rfork to %d, "
660 		    "stack %p sig = %d"), (int)p2->p_pid, args->stack,
661 		    exit_signal);
662 #endif
663 	if (args->flags & LINUX_CLONE_VFORK) {
664 	   	PROC_LOCK(p2);
665 	   	p2->p_flag |= P_PPWAIT;
666 	   	PROC_UNLOCK(p2);
667 	}
668 
669 	/*
670 	 * Make this runnable after we are finished with it.
671 	 */
672 	thread_lock(td2);
673 	TD_SET_CAN_RUN(td2);
674 	sched_add(td2, SRQ_BORING);
675 	thread_unlock(td2);
676 
677 	td->td_retval[0] = p2->p_pid;
678 	td->td_retval[1] = 0;
679 
680 	if (args->flags & LINUX_CLONE_VFORK) {
681 		/* wait for the children to exit, ie. emulate vfork */
682 		PROC_LOCK(p2);
683 		while (p2->p_flag & P_PPWAIT)
684 			cv_wait(&p2->p_pwait, &p2->p_mtx);
685 		PROC_UNLOCK(p2);
686 	}
687 
688 	return (0);
689 }
690 
691 #define STACK_SIZE  (2 * 1024 * 1024)
692 #define GUARD_SIZE  (4 * PAGE_SIZE)
693 
694 int
695 linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
696 {
697 
698 #ifdef DEBUG
699 	if (ldebug(mmap2))
700 		printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"),
701 		    args->addr, args->len, args->prot,
702 		    args->flags, args->fd, args->pgoff);
703 #endif
704 
705 	return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
706 		args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
707 		PAGE_SIZE));
708 }
709 
710 int
711 linux_mmap(struct thread *td, struct linux_mmap_args *args)
712 {
713 	int error;
714 	struct l_mmap_argv linux_args;
715 
716 	error = copyin(args->ptr, &linux_args, sizeof(linux_args));
717 	if (error)
718 		return (error);
719 
720 #ifdef DEBUG
721 	if (ldebug(mmap))
722 		printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"),
723 		    linux_args.addr, linux_args.len, linux_args.prot,
724 		    linux_args.flags, linux_args.fd, linux_args.pgoff);
725 #endif
726 
727 	return (linux_mmap_common(td, linux_args.addr, linux_args.len,
728 	    linux_args.prot, linux_args.flags, linux_args.fd,
729 	    (uint32_t)linux_args.pgoff));
730 }
731 
732 static int
733 linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot,
734     l_int flags, l_int fd, l_loff_t pos)
735 {
736 	struct proc *p = td->td_proc;
737 	struct mmap_args /* {
738 		caddr_t addr;
739 		size_t len;
740 		int prot;
741 		int flags;
742 		int fd;
743 		long pad;
744 		off_t pos;
745 	} */ bsd_args;
746 	int error;
747 	struct file *fp;
748 
749 	error = 0;
750 	bsd_args.flags = 0;
751 	fp = NULL;
752 
753 	/*
754 	 * Linux mmap(2):
755 	 * You must specify exactly one of MAP_SHARED and MAP_PRIVATE
756 	 */
757 	if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE)))
758 		return (EINVAL);
759 
760 	if (flags & LINUX_MAP_SHARED)
761 		bsd_args.flags |= MAP_SHARED;
762 	if (flags & LINUX_MAP_PRIVATE)
763 		bsd_args.flags |= MAP_PRIVATE;
764 	if (flags & LINUX_MAP_FIXED)
765 		bsd_args.flags |= MAP_FIXED;
766 	if (flags & LINUX_MAP_ANON) {
767 		/* Enforce pos to be on page boundary, then ignore. */
768 		if ((pos & PAGE_MASK) != 0)
769 			return (EINVAL);
770 		pos = 0;
771 		bsd_args.flags |= MAP_ANON;
772 	} else
773 		bsd_args.flags |= MAP_NOSYNC;
774 	if (flags & LINUX_MAP_GROWSDOWN)
775 		bsd_args.flags |= MAP_STACK;
776 
777 	/*
778 	 * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC
779 	 * on Linux/i386. We do this to ensure maximum compatibility.
780 	 * Linux/ia64 does the same in i386 emulation mode.
781 	 */
782 	bsd_args.prot = prot;
783 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
784 		bsd_args.prot |= PROT_READ | PROT_EXEC;
785 
786 	/* Linux does not check file descriptor when MAP_ANONYMOUS is set. */
787 	bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd;
788 	if (bsd_args.fd != -1) {
789 		/*
790 		 * Linux follows Solaris mmap(2) description:
791 		 * The file descriptor fildes is opened with
792 		 * read permission, regardless of the
793 		 * protection options specified.
794 		 */
795 
796 		if ((error = fget(td, bsd_args.fd, &fp)) != 0)
797 			return (error);
798 		if (fp->f_type != DTYPE_VNODE) {
799 			fdrop(fp, td);
800 			return (EINVAL);
801 		}
802 
803 		/* Linux mmap() just fails for O_WRONLY files */
804 		if (!(fp->f_flag & FREAD)) {
805 			fdrop(fp, td);
806 			return (EACCES);
807 		}
808 
809 		fdrop(fp, td);
810 	}
811 
812 	if (flags & LINUX_MAP_GROWSDOWN) {
813 		/*
814 		 * The Linux MAP_GROWSDOWN option does not limit auto
815 		 * growth of the region.  Linux mmap with this option
816 		 * takes as addr the inital BOS, and as len, the initial
817 		 * region size.  It can then grow down from addr without
818 		 * limit.  However, Linux threads has an implicit internal
819 		 * limit to stack size of STACK_SIZE.  Its just not
820 		 * enforced explicitly in Linux.  But, here we impose
821 		 * a limit of (STACK_SIZE - GUARD_SIZE) on the stack
822 		 * region, since we can do this with our mmap.
823 		 *
824 		 * Our mmap with MAP_STACK takes addr as the maximum
825 		 * downsize limit on BOS, and as len the max size of
826 		 * the region.  It then maps the top SGROWSIZ bytes,
827 		 * and auto grows the region down, up to the limit
828 		 * in addr.
829 		 *
830 		 * If we don't use the MAP_STACK option, the effect
831 		 * of this code is to allocate a stack region of a
832 		 * fixed size of (STACK_SIZE - GUARD_SIZE).
833 		 */
834 
835 		if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) {
836 			/*
837 			 * Some Linux apps will attempt to mmap
838 			 * thread stacks near the top of their
839 			 * address space.  If their TOS is greater
840 			 * than vm_maxsaddr, vm_map_growstack()
841 			 * will confuse the thread stack with the
842 			 * process stack and deliver a SEGV if they
843 			 * attempt to grow the thread stack past their
844 			 * current stacksize rlimit.  To avoid this,
845 			 * adjust vm_maxsaddr upwards to reflect
846 			 * the current stacksize rlimit rather
847 			 * than the maximum possible stacksize.
848 			 * It would be better to adjust the
849 			 * mmap'ed region, but some apps do not check
850 			 * mmap's return value.
851 			 */
852 			PROC_LOCK(p);
853 			p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK -
854 			    lim_cur(p, RLIMIT_STACK);
855 			PROC_UNLOCK(p);
856 		}
857 
858 		/*
859 		 * This gives us our maximum stack size and a new BOS.
860 		 * If we're using VM_STACK, then mmap will just map
861 		 * the top SGROWSIZ bytes, and let the stack grow down
862 		 * to the limit at BOS.  If we're not using VM_STACK
863 		 * we map the full stack, since we don't have a way
864 		 * to autogrow it.
865 		 */
866 		if (len > STACK_SIZE - GUARD_SIZE) {
867 			bsd_args.addr = (caddr_t)PTRIN(addr);
868 			bsd_args.len = len;
869 		} else {
870 			bsd_args.addr = (caddr_t)PTRIN(addr) -
871 			    (STACK_SIZE - GUARD_SIZE - len);
872 			bsd_args.len = STACK_SIZE - GUARD_SIZE;
873 		}
874 	} else {
875 		bsd_args.addr = (caddr_t)PTRIN(addr);
876 		bsd_args.len  = len;
877 	}
878 	bsd_args.pos = pos;
879 
880 #ifdef DEBUG
881 	if (ldebug(mmap))
882 		printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n",
883 		    __func__,
884 		    (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot,
885 		    bsd_args.flags, bsd_args.fd, (int)bsd_args.pos);
886 #endif
887 	error = mmap(td, &bsd_args);
888 #ifdef DEBUG
889 	if (ldebug(mmap))
890 		printf("-> %s() return: 0x%x (0x%08x)\n",
891 			__func__, error, (u_int)td->td_retval[0]);
892 #endif
893 	return (error);
894 }
895 
896 int
897 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
898 {
899 	struct mprotect_args bsd_args;
900 
901 	bsd_args.addr = uap->addr;
902 	bsd_args.len = uap->len;
903 	bsd_args.prot = uap->prot;
904 	if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC))
905 		bsd_args.prot |= PROT_READ | PROT_EXEC;
906 	return (mprotect(td, &bsd_args));
907 }
908 
909 int
910 linux_iopl(struct thread *td, struct linux_iopl_args *args)
911 {
912 	int error;
913 
914 	if (args->level < 0 || args->level > 3)
915 		return (EINVAL);
916 	if ((error = priv_check(td, PRIV_IO)) != 0)
917 		return (error);
918 	if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
919 		return (error);
920 	td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
921 	    (args->level * (PSL_IOPL / 3));
922 
923 	return (0);
924 }
925 
926 int
927 linux_pipe(struct thread *td, struct linux_pipe_args *args)
928 {
929 	int error;
930 	int fildes[2];
931 
932 #ifdef DEBUG
933 	if (ldebug(pipe))
934 		printf(ARGS(pipe, "*"));
935 #endif
936 
937 	error = kern_pipe(td, fildes);
938 	if (error)
939 		return (error);
940 
941 	/* XXX: Close descriptors on error. */
942 	return (copyout(fildes, args->pipefds, sizeof fildes));
943 }
944 
945 int
946 linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
947 {
948 	l_osigaction_t osa;
949 	l_sigaction_t act, oact;
950 	int error;
951 
952 #ifdef DEBUG
953 	if (ldebug(sigaction))
954 		printf(ARGS(sigaction, "%d, %p, %p"),
955 		    args->sig, (void *)args->nsa, (void *)args->osa);
956 #endif
957 
958 	if (args->nsa != NULL) {
959 		error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
960 		if (error)
961 			return (error);
962 		act.lsa_handler = osa.lsa_handler;
963 		act.lsa_flags = osa.lsa_flags;
964 		act.lsa_restorer = osa.lsa_restorer;
965 		LINUX_SIGEMPTYSET(act.lsa_mask);
966 		act.lsa_mask.__bits[0] = osa.lsa_mask;
967 	}
968 
969 	error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
970 	    args->osa ? &oact : NULL);
971 
972 	if (args->osa != NULL && !error) {
973 		osa.lsa_handler = oact.lsa_handler;
974 		osa.lsa_flags = oact.lsa_flags;
975 		osa.lsa_restorer = oact.lsa_restorer;
976 		osa.lsa_mask = oact.lsa_mask.__bits[0];
977 		error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
978 	}
979 
980 	return (error);
981 }
982 
983 /*
984  * Linux has two extra args, restart and oldmask.  We don't use these,
985  * but it seems that "restart" is actually a context pointer that
986  * enables the signal to happen with a different register set.
987  */
988 int
989 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
990 {
991 	sigset_t sigmask;
992 	l_sigset_t mask;
993 
994 #ifdef DEBUG
995 	if (ldebug(sigsuspend))
996 		printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask);
997 #endif
998 
999 	LINUX_SIGEMPTYSET(mask);
1000 	mask.__bits[0] = args->mask;
1001 	linux_to_bsd_sigset(&mask, &sigmask);
1002 	return (kern_sigsuspend(td, sigmask));
1003 }
1004 
1005 int
1006 linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
1007 {
1008 	l_sigset_t lmask;
1009 	sigset_t sigmask;
1010 	int error;
1011 
1012 #ifdef DEBUG
1013 	if (ldebug(rt_sigsuspend))
1014 		printf(ARGS(rt_sigsuspend, "%p, %d"),
1015 		    (void *)uap->newset, uap->sigsetsize);
1016 #endif
1017 
1018 	if (uap->sigsetsize != sizeof(l_sigset_t))
1019 		return (EINVAL);
1020 
1021 	error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
1022 	if (error)
1023 		return (error);
1024 
1025 	linux_to_bsd_sigset(&lmask, &sigmask);
1026 	return (kern_sigsuspend(td, sigmask));
1027 }
1028 
1029 int
1030 linux_pause(struct thread *td, struct linux_pause_args *args)
1031 {
1032 	struct proc *p = td->td_proc;
1033 	sigset_t sigmask;
1034 
1035 #ifdef DEBUG
1036 	if (ldebug(pause))
1037 		printf(ARGS(pause, ""));
1038 #endif
1039 
1040 	PROC_LOCK(p);
1041 	sigmask = td->td_sigmask;
1042 	PROC_UNLOCK(p);
1043 	return (kern_sigsuspend(td, sigmask));
1044 }
1045 
1046 int
1047 linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
1048 {
1049 	stack_t ss, oss;
1050 	l_stack_t lss;
1051 	int error;
1052 
1053 #ifdef DEBUG
1054 	if (ldebug(sigaltstack))
1055 		printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss);
1056 #endif
1057 
1058 	if (uap->uss != NULL) {
1059 		error = copyin(uap->uss, &lss, sizeof(l_stack_t));
1060 		if (error)
1061 			return (error);
1062 
1063 		ss.ss_sp = PTRIN(lss.ss_sp);
1064 		ss.ss_size = lss.ss_size;
1065 		ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
1066 	}
1067 	error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
1068 	    (uap->uoss != NULL) ? &oss : NULL);
1069 	if (!error && uap->uoss != NULL) {
1070 		lss.ss_sp = PTROUT(oss.ss_sp);
1071 		lss.ss_size = oss.ss_size;
1072 		lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
1073 		error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
1074 	}
1075 
1076 	return (error);
1077 }
1078 
1079 int
1080 linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args)
1081 {
1082 	struct ftruncate_args sa;
1083 
1084 #ifdef DEBUG
1085 	if (ldebug(ftruncate64))
1086 		printf(ARGS(ftruncate64, "%u, %jd"), args->fd,
1087 		    (intmax_t)args->length);
1088 #endif
1089 
1090 	sa.fd = args->fd;
1091 	sa.length = args->length;
1092 	return ftruncate(td, &sa);
1093 }
1094 
1095 int
1096 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
1097 {
1098 	struct timeval atv;
1099 	l_timeval atv32;
1100 	struct timezone rtz;
1101 	int error = 0;
1102 
1103 	if (uap->tp) {
1104 		microtime(&atv);
1105 		atv32.tv_sec = atv.tv_sec;
1106 		atv32.tv_usec = atv.tv_usec;
1107 		error = copyout(&atv32, uap->tp, sizeof(atv32));
1108 	}
1109 	if (error == 0 && uap->tzp != NULL) {
1110 		rtz.tz_minuteswest = tz_minuteswest;
1111 		rtz.tz_dsttime = tz_dsttime;
1112 		error = copyout(&rtz, uap->tzp, sizeof(rtz));
1113 	}
1114 	return (error);
1115 }
1116 
1117 int
1118 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
1119 {
1120 	l_timeval atv32;
1121 	struct timeval atv, *tvp;
1122 	struct timezone atz, *tzp;
1123 	int error;
1124 
1125 	if (uap->tp) {
1126 		error = copyin(uap->tp, &atv32, sizeof(atv32));
1127 		if (error)
1128 			return (error);
1129 		atv.tv_sec = atv32.tv_sec;
1130 		atv.tv_usec = atv32.tv_usec;
1131 		tvp = &atv;
1132 	} else
1133 		tvp = NULL;
1134 	if (uap->tzp) {
1135 		error = copyin(uap->tzp, &atz, sizeof(atz));
1136 		if (error)
1137 			return (error);
1138 		tzp = &atz;
1139 	} else
1140 		tzp = NULL;
1141 	return (kern_settimeofday(td, tvp, tzp));
1142 }
1143 
1144 int
1145 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
1146 {
1147 	struct l_rusage s32;
1148 	struct rusage s;
1149 	int error;
1150 
1151 	error = kern_getrusage(td, uap->who, &s);
1152 	if (error != 0)
1153 		return (error);
1154 	if (uap->rusage != NULL) {
1155 		bsd_to_linux_rusage(&s, &s32);
1156 		error = copyout(&s32, uap->rusage, sizeof(s32));
1157 	}
1158 	return (error);
1159 }
1160 
1161 int
1162 linux_sched_rr_get_interval(struct thread *td,
1163     struct linux_sched_rr_get_interval_args *uap)
1164 {
1165 	struct timespec ts;
1166 	struct l_timespec ts32;
1167 	int error;
1168 
1169 	error = kern_sched_rr_get_interval(td, uap->pid, &ts);
1170 	if (error != 0)
1171 		return (error);
1172 	ts32.tv_sec = ts.tv_sec;
1173 	ts32.tv_nsec = ts.tv_nsec;
1174 	return (copyout(&ts32, uap->interval, sizeof(ts32)));
1175 }
1176 
1177 int
1178 linux_set_thread_area(struct thread *td,
1179     struct linux_set_thread_area_args *args)
1180 {
1181 	struct l_user_desc info;
1182 	struct user_segment_descriptor sd;
1183 	struct pcb *pcb;
1184 	int a[2];
1185 	int error;
1186 
1187 	error = copyin(args->desc, &info, sizeof(struct l_user_desc));
1188 	if (error)
1189 		return (error);
1190 
1191 #ifdef DEBUG
1192 	if (ldebug(set_thread_area))
1193 		printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, "
1194 		    "%i, %i, %i"), info.entry_number, info.base_addr,
1195 		    info.limit, info.seg_32bit, info.contents,
1196 		    info.read_exec_only, info.limit_in_pages,
1197 		    info.seg_not_present, info.useable);
1198 #endif
1199 
1200 	/*
1201 	 * Semantics of Linux version: every thread in the system has array
1202 	 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
1203 	 * This syscall loads one of the selected TLS decriptors with a value
1204 	 * and also loads GDT descriptors 6, 7 and 8 with the content of
1205 	 * the per-thread descriptors.
1206 	 *
1207 	 * Semantics of FreeBSD version: I think we can ignore that Linux has
1208 	 * three per-thread descriptors and use just the first one.
1209 	 * The tls_array[] is used only in [gs]et_thread_area() syscalls and
1210 	 * for loading the GDT descriptors. We use just one GDT descriptor
1211 	 * for TLS, so we will load just one.
1212 	 *
1213 	 * XXX: This doesn't work when a user space process tries to use more
1214 	 * than one TLS segment. Comment in the Linux source says wine might
1215 	 * do this.
1216 	 */
1217 
1218 	/*
1219 	 * GLIBC reads current %gs and call set_thread_area() with it.
1220 	 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because
1221 	 * we use these segments.
1222 	 */
1223 	switch (info.entry_number) {
1224 	case GUGS32_SEL:
1225 	case GUDATA_SEL:
1226 	case 6:
1227 	case -1:
1228 		info.entry_number = GUGS32_SEL;
1229 		break;
1230 	default:
1231 		return (EINVAL);
1232 	}
1233 
1234 	/*
1235 	 * We have to copy out the GDT entry we use.
1236 	 *
1237 	 * XXX: What if a user space program does not check the return value
1238 	 * and tries to use 6, 7 or 8?
1239 	 */
1240 	error = copyout(&info, args->desc, sizeof(struct l_user_desc));
1241 	if (error)
1242 		return (error);
1243 
1244 	if (LINUX_LDT_empty(&info)) {
1245 		a[0] = 0;
1246 		a[1] = 0;
1247 	} else {
1248 		a[0] = LINUX_LDT_entry_a(&info);
1249 		a[1] = LINUX_LDT_entry_b(&info);
1250 	}
1251 
1252 	memcpy(&sd, &a, sizeof(a));
1253 #ifdef DEBUG
1254 	if (ldebug(set_thread_area))
1255 		printf("Segment created in set_thread_area: "
1256 		    "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, "
1257 		    "type: %i, dpl: %i, p: %i, xx: %i, long: %i, "
1258 		    "def32: %i, gran: %i\n",
1259 		    sd.sd_lobase,
1260 		    sd.sd_hibase,
1261 		    sd.sd_lolimit,
1262 		    sd.sd_hilimit,
1263 		    sd.sd_type,
1264 		    sd.sd_dpl,
1265 		    sd.sd_p,
1266 		    sd.sd_xx,
1267 		    sd.sd_long,
1268 		    sd.sd_def32,
1269 		    sd.sd_gran);
1270 #endif
1271 
1272 	pcb = td->td_pcb;
1273 	pcb->pcb_gsbase = (register_t)info.base_addr;
1274 	set_pcb_flags(pcb, PCB_32BIT | PCB_GS32BIT);
1275 	update_gdt_gsbase(td, info.base_addr);
1276 
1277 	return (0);
1278 }
1279 
1280 int
1281 linux_wait4(struct thread *td, struct linux_wait4_args *args)
1282 {
1283 	int error, options;
1284 	struct rusage ru, *rup;
1285 	struct l_rusage lru;
1286 
1287 #ifdef DEBUG
1288 	if (ldebug(wait4))
1289 		printf(ARGS(wait4, "%d, %p, %d, %p"),
1290 		    args->pid, (void *)args->status, args->options,
1291 		    (void *)args->rusage);
1292 #endif
1293 
1294 	options = (args->options & (WNOHANG | WUNTRACED));
1295 	/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
1296 	if (args->options & __WCLONE)
1297 		options |= WLINUXCLONE;
1298 
1299 	if (args->rusage != NULL)
1300 		rup = &ru;
1301 	else
1302 		rup = NULL;
1303 	error = linux_common_wait(td, args->pid, args->status, options, rup);
1304 	if (error)
1305 		return (error);
1306 	if (args->rusage != NULL) {
1307 		bsd_to_linux_rusage(rup, &lru);
1308 		error = copyout(&lru, args->rusage, sizeof(lru));
1309 	}
1310 
1311 	return (error);
1312 }
1313