1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2004 Tim J. Robbins 5 * Copyright (c) 2002 Doug Rabson 6 * Copyright (c) 2000 Marcel Moolenaar 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/fcntl.h> 35 #include <sys/imgact.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mutex.h> 40 #include <sys/priv.h> 41 #include <sys/proc.h> 42 #include <sys/reg.h> 43 #include <sys/syscallsubr.h> 44 45 #include <machine/frame.h> 46 #include <machine/md_var.h> 47 #include <machine/pcb.h> 48 #include <machine/psl.h> 49 #include <machine/segments.h> 50 #include <machine/specialreg.h> 51 #include <x86/ifunc.h> 52 53 #include <vm/pmap.h> 54 #include <vm/vm.h> 55 #include <vm/vm_map.h> 56 57 #include <security/audit/audit.h> 58 59 #include <compat/freebsd32/freebsd32_util.h> 60 #include <amd64/linux32/linux.h> 61 #include <amd64/linux32/linux32_proto.h> 62 #include <compat/linux/linux_emul.h> 63 #include <compat/linux/linux_fork.h> 64 #include <compat/linux/linux_ipc.h> 65 #include <compat/linux/linux_misc.h> 66 #include <compat/linux/linux_mmap.h> 67 #include <compat/linux/linux_signal.h> 68 #include <compat/linux/linux_util.h> 69 70 static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru); 71 72 struct l_old_select_argv { 73 l_int nfds; 74 l_uintptr_t readfds; 75 l_uintptr_t writefds; 76 l_uintptr_t exceptfds; 77 l_uintptr_t timeout; 78 } __packed; 79 80 static void 81 bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru) 82 { 83 84 lru->ru_utime.tv_sec = ru->ru_utime.tv_sec; 85 lru->ru_utime.tv_usec = ru->ru_utime.tv_usec; 86 lru->ru_stime.tv_sec = ru->ru_stime.tv_sec; 87 lru->ru_stime.tv_usec = ru->ru_stime.tv_usec; 88 lru->ru_maxrss = ru->ru_maxrss; 89 lru->ru_ixrss = ru->ru_ixrss; 90 lru->ru_idrss = ru->ru_idrss; 91 lru->ru_isrss = ru->ru_isrss; 92 lru->ru_minflt = ru->ru_minflt; 93 lru->ru_majflt = ru->ru_majflt; 94 lru->ru_nswap = ru->ru_nswap; 95 lru->ru_inblock = ru->ru_inblock; 96 lru->ru_oublock = ru->ru_oublock; 97 lru->ru_msgsnd = ru->ru_msgsnd; 98 lru->ru_msgrcv = ru->ru_msgrcv; 99 lru->ru_nsignals = ru->ru_nsignals; 100 lru->ru_nvcsw = ru->ru_nvcsw; 101 lru->ru_nivcsw = ru->ru_nivcsw; 102 } 103 104 int 105 linux_copyout_rusage(struct rusage *ru, void *uaddr) 106 { 107 struct l_rusage lru; 108 109 bsd_to_linux_rusage(ru, &lru); 110 111 return (copyout(&lru, uaddr, sizeof(struct l_rusage))); 112 } 113 114 CTASSERT(sizeof(struct l_iovec32) == 8); 115 116 int 117 linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop) 118 { 119 struct l_iovec32 iov32; 120 struct iovec *iov; 121 struct uio *uio; 122 uint32_t iovlen; 123 int error, i; 124 125 *uiop = NULL; 126 if (iovcnt > UIO_MAXIOV) 127 return (EINVAL); 128 iovlen = iovcnt * sizeof(struct iovec); 129 uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK); 130 iov = (struct iovec *)(uio + 1); 131 for (i = 0; i < iovcnt; i++) { 132 error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32)); 133 if (error) { 134 free(uio, M_IOV); 135 return (error); 136 } 137 iov[i].iov_base = PTRIN(iov32.iov_base); 138 iov[i].iov_len = iov32.iov_len; 139 } 140 uio->uio_iov = iov; 141 uio->uio_iovcnt = iovcnt; 142 uio->uio_segflg = UIO_USERSPACE; 143 uio->uio_offset = -1; 144 uio->uio_resid = 0; 145 for (i = 0; i < iovcnt; i++) { 146 if (iov->iov_len > INT_MAX - uio->uio_resid) { 147 free(uio, M_IOV); 148 return (EINVAL); 149 } 150 uio->uio_resid += iov->iov_len; 151 iov++; 152 } 153 *uiop = uio; 154 return (0); 155 } 156 157 int 158 linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp, 159 int error) 160 { 161 struct l_iovec32 iov32; 162 struct iovec *iov; 163 uint32_t iovlen; 164 int i; 165 166 *iovp = NULL; 167 if (iovcnt > UIO_MAXIOV) 168 return (error); 169 iovlen = iovcnt * sizeof(struct iovec); 170 iov = malloc(iovlen, M_IOV, M_WAITOK); 171 for (i = 0; i < iovcnt; i++) { 172 error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32)); 173 if (error) { 174 free(iov, M_IOV); 175 return (error); 176 } 177 iov[i].iov_base = PTRIN(iov32.iov_base); 178 iov[i].iov_len = iov32.iov_len; 179 } 180 *iovp = iov; 181 return(0); 182 183 } 184 185 int 186 linux_readv(struct thread *td, struct linux_readv_args *uap) 187 { 188 struct uio *auio; 189 int error; 190 191 error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); 192 if (error) 193 return (error); 194 error = kern_readv(td, uap->fd, auio); 195 free(auio, M_IOV); 196 return (error); 197 } 198 199 int 200 linux_writev(struct thread *td, struct linux_writev_args *uap) 201 { 202 struct uio *auio; 203 int error; 204 205 error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); 206 if (error) 207 return (error); 208 error = kern_writev(td, uap->fd, auio); 209 free(auio, M_IOV); 210 return (error); 211 } 212 213 struct l_ipc_kludge { 214 l_uintptr_t msgp; 215 l_long msgtyp; 216 } __packed; 217 218 int 219 linux_ipc(struct thread *td, struct linux_ipc_args *args) 220 { 221 222 switch (args->what & 0xFFFF) { 223 case LINUX_SEMOP: { 224 225 return (kern_semop(td, args->arg1, PTRIN(args->ptr), 226 args->arg2, NULL)); 227 } 228 case LINUX_SEMGET: { 229 struct linux_semget_args a; 230 231 a.key = args->arg1; 232 a.nsems = args->arg2; 233 a.semflg = args->arg3; 234 return (linux_semget(td, &a)); 235 } 236 case LINUX_SEMCTL: { 237 struct linux_semctl_args a; 238 int error; 239 240 a.semid = args->arg1; 241 a.semnum = args->arg2; 242 a.cmd = args->arg3; 243 error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg)); 244 if (error) 245 return (error); 246 return (linux_semctl(td, &a)); 247 } 248 case LINUX_SEMTIMEDOP: { 249 struct linux_semtimedop_args a; 250 251 a.semid = args->arg1; 252 a.tsops = PTRIN(args->ptr); 253 a.nsops = args->arg2; 254 a.timeout = PTRIN(args->arg5); 255 return (linux_semtimedop(td, &a)); 256 } 257 case LINUX_MSGSND: { 258 struct linux_msgsnd_args a; 259 260 a.msqid = args->arg1; 261 a.msgp = PTRIN(args->ptr); 262 a.msgsz = args->arg2; 263 a.msgflg = args->arg3; 264 return (linux_msgsnd(td, &a)); 265 } 266 case LINUX_MSGRCV: { 267 struct linux_msgrcv_args a; 268 269 a.msqid = args->arg1; 270 a.msgsz = args->arg2; 271 a.msgflg = args->arg3; 272 if ((args->what >> 16) == 0) { 273 struct l_ipc_kludge tmp; 274 int error; 275 276 if (args->ptr == 0) 277 return (EINVAL); 278 error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp)); 279 if (error) 280 return (error); 281 a.msgp = PTRIN(tmp.msgp); 282 a.msgtyp = tmp.msgtyp; 283 } else { 284 a.msgp = PTRIN(args->ptr); 285 a.msgtyp = args->arg5; 286 } 287 return (linux_msgrcv(td, &a)); 288 } 289 case LINUX_MSGGET: { 290 struct linux_msgget_args a; 291 292 a.key = args->arg1; 293 a.msgflg = args->arg2; 294 return (linux_msgget(td, &a)); 295 } 296 case LINUX_MSGCTL: { 297 struct linux_msgctl_args a; 298 299 a.msqid = args->arg1; 300 a.cmd = args->arg2; 301 a.buf = PTRIN(args->ptr); 302 return (linux_msgctl(td, &a)); 303 } 304 case LINUX_SHMAT: { 305 struct linux_shmat_args a; 306 l_uintptr_t addr; 307 int error; 308 309 a.shmid = args->arg1; 310 a.shmaddr = PTRIN(args->ptr); 311 a.shmflg = args->arg2; 312 error = linux_shmat(td, &a); 313 if (error != 0) 314 return (error); 315 addr = td->td_retval[0]; 316 error = copyout(&addr, PTRIN(args->arg3), sizeof(addr)); 317 td->td_retval[0] = 0; 318 return (error); 319 } 320 case LINUX_SHMDT: { 321 struct linux_shmdt_args a; 322 323 a.shmaddr = PTRIN(args->ptr); 324 return (linux_shmdt(td, &a)); 325 } 326 case LINUX_SHMGET: { 327 struct linux_shmget_args a; 328 329 a.key = args->arg1; 330 a.size = args->arg2; 331 a.shmflg = args->arg3; 332 return (linux_shmget(td, &a)); 333 } 334 case LINUX_SHMCTL: { 335 struct linux_shmctl_args a; 336 337 a.shmid = args->arg1; 338 a.cmd = args->arg2; 339 a.buf = PTRIN(args->ptr); 340 return (linux_shmctl(td, &a)); 341 } 342 default: 343 break; 344 } 345 346 return (EINVAL); 347 } 348 349 int 350 linux_old_select(struct thread *td, struct linux_old_select_args *args) 351 { 352 struct l_old_select_argv linux_args; 353 struct linux_select_args newsel; 354 int error; 355 356 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 357 if (error) 358 return (error); 359 360 newsel.nfds = linux_args.nfds; 361 newsel.readfds = PTRIN(linux_args.readfds); 362 newsel.writefds = PTRIN(linux_args.writefds); 363 newsel.exceptfds = PTRIN(linux_args.exceptfds); 364 newsel.timeout = PTRIN(linux_args.timeout); 365 return (linux_select(td, &newsel)); 366 } 367 368 int 369 linux_set_cloned_tls(struct thread *td, void *desc) 370 { 371 struct l_user_desc info; 372 struct pcb *pcb; 373 int error; 374 375 error = copyin(desc, &info, sizeof(struct l_user_desc)); 376 if (error) { 377 linux_msg(td, "set_cloned_tls copyin info failed!"); 378 } else { 379 /* We might copy out the entry_number as GUGS32_SEL. */ 380 info.entry_number = GUGS32_SEL; 381 error = copyout(&info, desc, sizeof(struct l_user_desc)); 382 if (error) 383 linux_msg(td, "set_cloned_tls copyout info failed!"); 384 385 pcb = td->td_pcb; 386 update_pcb_bases(pcb); 387 pcb->pcb_gsbase = (register_t)info.base_addr; 388 td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL); 389 } 390 391 return (error); 392 } 393 394 int 395 linux_set_upcall(struct thread *td, register_t stack) 396 { 397 398 if (stack) 399 td->td_frame->tf_rsp = stack; 400 401 /* 402 * The newly created Linux thread returns 403 * to the user space by the same path that a parent do. 404 */ 405 td->td_frame->tf_rax = 0; 406 return (0); 407 } 408 409 int 410 linux_mmap2(struct thread *td, struct linux_mmap2_args *args) 411 { 412 413 return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot, 414 args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * 415 PAGE_SIZE)); 416 } 417 418 int 419 linux_mmap(struct thread *td, struct linux_mmap_args *args) 420 { 421 int error; 422 struct l_mmap_argv linux_args; 423 424 error = copyin(args->ptr, &linux_args, sizeof(linux_args)); 425 if (error) 426 return (error); 427 428 return (linux_mmap_common(td, linux_args.addr, linux_args.len, 429 linux_args.prot, linux_args.flags, linux_args.fd, 430 (uint32_t)linux_args.pgoff)); 431 } 432 433 int 434 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) 435 { 436 437 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot)); 438 } 439 440 int 441 linux_madvise(struct thread *td, struct linux_madvise_args *uap) 442 { 443 444 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav)); 445 } 446 447 int 448 linux_iopl(struct thread *td, struct linux_iopl_args *args) 449 { 450 int error; 451 452 if (args->level < 0 || args->level > 3) 453 return (EINVAL); 454 if ((error = priv_check(td, PRIV_IO)) != 0) 455 return (error); 456 if ((error = securelevel_gt(td->td_ucred, 0)) != 0) 457 return (error); 458 td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) | 459 (args->level * (PSL_IOPL / 3)); 460 461 return (0); 462 } 463 464 int 465 linux_sigaction(struct thread *td, struct linux_sigaction_args *args) 466 { 467 l_osigaction_t osa; 468 l_sigaction_t act, oact; 469 int error; 470 471 if (args->nsa != NULL) { 472 error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); 473 if (error) 474 return (error); 475 act.lsa_handler = osa.lsa_handler; 476 act.lsa_flags = osa.lsa_flags; 477 act.lsa_restorer = osa.lsa_restorer; 478 LINUX_SIGEMPTYSET(act.lsa_mask); 479 act.lsa_mask.__mask = osa.lsa_mask; 480 } 481 482 error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, 483 args->osa ? &oact : NULL); 484 485 if (args->osa != NULL && !error) { 486 osa.lsa_handler = oact.lsa_handler; 487 osa.lsa_flags = oact.lsa_flags; 488 osa.lsa_restorer = oact.lsa_restorer; 489 osa.lsa_mask = oact.lsa_mask.__mask; 490 error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); 491 } 492 493 return (error); 494 } 495 496 /* 497 * Linux has two extra args, restart and oldmask. We don't use these, 498 * but it seems that "restart" is actually a context pointer that 499 * enables the signal to happen with a different register set. 500 */ 501 int 502 linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) 503 { 504 sigset_t sigmask; 505 l_sigset_t mask; 506 507 LINUX_SIGEMPTYSET(mask); 508 mask.__mask = args->mask; 509 linux_to_bsd_sigset(&mask, &sigmask); 510 return (kern_sigsuspend(td, sigmask)); 511 } 512 513 int 514 linux_pause(struct thread *td, struct linux_pause_args *args) 515 { 516 struct proc *p = td->td_proc; 517 sigset_t sigmask; 518 519 PROC_LOCK(p); 520 sigmask = td->td_sigmask; 521 PROC_UNLOCK(p); 522 return (kern_sigsuspend(td, sigmask)); 523 } 524 525 int 526 linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) 527 { 528 struct timeval atv; 529 l_timeval atv32; 530 struct timezone rtz; 531 int error = 0; 532 533 if (uap->tp) { 534 microtime(&atv); 535 atv32.tv_sec = atv.tv_sec; 536 atv32.tv_usec = atv.tv_usec; 537 error = copyout(&atv32, uap->tp, sizeof(atv32)); 538 } 539 if (error == 0 && uap->tzp != NULL) { 540 rtz.tz_minuteswest = 0; 541 rtz.tz_dsttime = 0; 542 error = copyout(&rtz, uap->tzp, sizeof(rtz)); 543 } 544 return (error); 545 } 546 547 int 548 linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap) 549 { 550 l_timeval atv32; 551 struct timeval atv, *tvp; 552 struct timezone atz, *tzp; 553 int error; 554 555 if (uap->tp) { 556 error = copyin(uap->tp, &atv32, sizeof(atv32)); 557 if (error) 558 return (error); 559 atv.tv_sec = atv32.tv_sec; 560 atv.tv_usec = atv32.tv_usec; 561 tvp = &atv; 562 } else 563 tvp = NULL; 564 if (uap->tzp) { 565 error = copyin(uap->tzp, &atz, sizeof(atz)); 566 if (error) 567 return (error); 568 tzp = &atz; 569 } else 570 tzp = NULL; 571 return (kern_settimeofday(td, tvp, tzp)); 572 } 573 574 int 575 linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) 576 { 577 struct rusage s; 578 int error; 579 580 error = kern_getrusage(td, uap->who, &s); 581 if (error != 0) 582 return (error); 583 if (uap->rusage != NULL) 584 error = linux_copyout_rusage(&s, uap->rusage); 585 return (error); 586 } 587 588 int 589 linux_set_thread_area(struct thread *td, 590 struct linux_set_thread_area_args *args) 591 { 592 struct l_user_desc info; 593 struct pcb *pcb; 594 int error; 595 596 error = copyin(args->desc, &info, sizeof(struct l_user_desc)); 597 if (error) 598 return (error); 599 600 /* 601 * Semantics of Linux version: every thread in the system has array 602 * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. 603 * This syscall loads one of the selected TLS descriptors with a value 604 * and also loads GDT descriptors 6, 7 and 8 with the content of 605 * the per-thread descriptors. 606 * 607 * Semantics of FreeBSD version: I think we can ignore that Linux has 608 * three per-thread descriptors and use just the first one. 609 * The tls_array[] is used only in [gs]et_thread_area() syscalls and 610 * for loading the GDT descriptors. We use just one GDT descriptor 611 * for TLS, so we will load just one. 612 * 613 * XXX: This doesn't work when a user space process tries to use more 614 * than one TLS segment. Comment in the Linux source says wine might 615 * do this. 616 */ 617 618 /* 619 * GLIBC reads current %gs and call set_thread_area() with it. 620 * We should let GUDATA_SEL and GUGS32_SEL proceed as well because 621 * we use these segments. 622 */ 623 switch (info.entry_number) { 624 case GUGS32_SEL: 625 case GUDATA_SEL: 626 case 6: 627 case -1: 628 info.entry_number = GUGS32_SEL; 629 break; 630 default: 631 return (EINVAL); 632 } 633 634 /* 635 * We have to copy out the GDT entry we use. 636 * 637 * XXX: What if a user space program does not check the return value 638 * and tries to use 6, 7 or 8? 639 */ 640 error = copyout(&info, args->desc, sizeof(struct l_user_desc)); 641 if (error) 642 return (error); 643 644 pcb = td->td_pcb; 645 update_pcb_bases(pcb); 646 pcb->pcb_gsbase = (register_t)info.base_addr; 647 update_gdt_gsbase(td, info.base_addr); 648 649 return (0); 650 } 651 652 void 653 bsd_to_linux_regset32(const struct reg32 *b_reg, 654 struct linux_pt_regset32 *l_regset) 655 { 656 657 l_regset->ebx = b_reg->r_ebx; 658 l_regset->ecx = b_reg->r_ecx; 659 l_regset->edx = b_reg->r_edx; 660 l_regset->esi = b_reg->r_esi; 661 l_regset->edi = b_reg->r_edi; 662 l_regset->ebp = b_reg->r_ebp; 663 l_regset->eax = b_reg->r_eax; 664 l_regset->ds = b_reg->r_ds; 665 l_regset->es = b_reg->r_es; 666 l_regset->fs = b_reg->r_fs; 667 l_regset->gs = b_reg->r_gs; 668 l_regset->orig_eax = b_reg->r_eax; 669 l_regset->eip = b_reg->r_eip; 670 l_regset->cs = b_reg->r_cs; 671 l_regset->eflags = b_reg->r_eflags; 672 l_regset->esp = b_reg->r_esp; 673 l_regset->ss = b_reg->r_ss; 674 } 675 676 int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval); 677 int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval); 678 DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *)) 679 { 680 681 return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? 682 futex_xchgl_smap : futex_xchgl_nosmap); 683 } 684 685 int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval); 686 int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval); 687 DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *)) 688 { 689 690 return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? 691 futex_addl_smap : futex_addl_nosmap); 692 } 693 694 int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval); 695 int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval); 696 DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *)) 697 { 698 699 return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? 700 futex_orl_smap : futex_orl_nosmap); 701 } 702 703 int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval); 704 int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval); 705 DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *)) 706 { 707 708 return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? 709 futex_andl_smap : futex_andl_nosmap); 710 } 711 712 int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval); 713 int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval); 714 DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *)) 715 { 716 717 return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? 718 futex_xorl_smap : futex_xorl_nosmap); 719 } 720 721 int 722 linux_ptrace_peekuser(struct thread *td, pid_t pid, void *addr, void *data) 723 { 724 725 LINUX_RATELIMIT_MSG_OPT1("PTRACE_PEEKUSER offset %ld not implemented; " 726 "returning EINVAL", (uintptr_t)addr); 727 return (EINVAL); 728 } 729 730 int 731 linux_ptrace_pokeuser(struct thread *td, pid_t pid, void *addr, void *data) 732 { 733 734 LINUX_RATELIMIT_MSG_OPT1("PTRACE_POKEUSER offset %ld " 735 "not implemented; returning EINVAL", (uintptr_t)addr); 736 return (EINVAL); 737 } 738