xref: /freebsd/sys/amd64/include/vmparam.h (revision e9ac41698b2f322d55ccf9da50a3596edb2c1800)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * William Jolitz.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 #ifdef __i386__
44 #include <i386/vmparam.h>
45 #else /* !__i386__ */
46 
47 #ifndef _MACHINE_VMPARAM_H_
48 #define	_MACHINE_VMPARAM_H_ 1
49 
50 /*
51  * Machine dependent constants for AMD64.
52  */
53 
54 /*
55  * Virtual memory related constants, all in bytes
56  */
57 #define	MAXTSIZ		(32768UL*1024*1024)	/* max text size */
58 #ifndef DFLDSIZ
59 #define	DFLDSIZ		(32768UL*1024*1024)	/* initial data size limit */
60 #endif
61 #ifndef MAXDSIZ
62 #define	MAXDSIZ		(32768UL*1024*1024)	/* max data size */
63 #endif
64 #ifndef	DFLSSIZ
65 #define	DFLSSIZ		(8UL*1024*1024)		/* initial stack size limit */
66 #endif
67 #ifndef	MAXSSIZ
68 #define	MAXSSIZ		(512UL*1024*1024)	/* max stack size */
69 #endif
70 #ifndef SGROWSIZ
71 #define	SGROWSIZ	(128UL*1024)		/* amount to grow stack */
72 #endif
73 
74 /*
75  * We provide a single page allocator through the use of the
76  * direct mapped segment.  This uses 2MB pages for reduced
77  * TLB pressure.
78  */
79 #if !defined(KASAN) && !defined(KMSAN)
80 #define UMA_USE_DMAP
81 #endif
82 
83 /*
84  * The physical address space is densely populated.
85  */
86 #define	VM_PHYSSEG_DENSE
87 
88 /*
89  * The number of PHYSSEG entries must be one greater than the number
90  * of phys_avail entries because the phys_avail entry that spans the
91  * largest physical address that is accessible by ISA DMA is split
92  * into two PHYSSEG entries.
93  */
94 #define	VM_PHYSSEG_MAX		63
95 
96 /*
97  * Create three free page pools: VM_FREEPOOL_DEFAULT is the default pool from
98  * which physical pages are allocated and VM_FREEPOOL_DIRECT is the pool from
99  * which physical pages for page tables and small UMA objects are allocated.
100  * VM_FREEPOOL_LAZYINIT is a special-purpose pool that is populated only during
101  * boot and is used to implement deferred initialization of page structures.
102  */
103 #define	VM_NFREEPOOL		3
104 #define	VM_FREEPOOL_LAZYINIT	0
105 #define	VM_FREEPOOL_DEFAULT	1
106 #define	VM_FREEPOOL_DIRECT	2
107 
108 /*
109  * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
110  * that have physical addresses below 4G but are not accessible by ISA DMA,
111  * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
112  * DMA.
113  */
114 #define	VM_NFREELIST		3
115 #define	VM_FREELIST_DEFAULT	0
116 #define	VM_FREELIST_DMA32	1
117 #define	VM_FREELIST_LOWMEM	2
118 
119 #define VM_LOWMEM_BOUNDARY	(16 << 20)	/* 16MB ISA DMA limit */
120 
121 /*
122  * Create the DMA32 free list only if the number of physical pages above
123  * physical address 4G is at least 16M, which amounts to 64GB of physical
124  * memory.
125  */
126 #define	VM_DMA32_NPAGES_THRESHOLD	16777216
127 
128 /*
129  * An allocation size of 16MB is supported in order to optimize the
130  * use of the direct map by UMA.  Specifically, a cache line contains
131  * at most 8 PDEs, collectively mapping 16MB of physical memory.  By
132  * reducing the number of distinct 16MB "pages" that are used by UMA,
133  * the physical memory allocator reduces the likelihood of both 2MB
134  * page TLB misses and cache misses caused by 2MB page TLB misses.
135  */
136 #define	VM_NFREEORDER		13
137 
138 /*
139  * Enable superpage reservations: 1 level.
140  */
141 #ifndef	VM_NRESERVLEVEL
142 #define	VM_NRESERVLEVEL		1
143 #endif
144 
145 /*
146  * Level 0 reservations consist of 512 pages.
147  */
148 #ifndef	VM_LEVEL_0_ORDER
149 #define	VM_LEVEL_0_ORDER	9
150 #endif
151 
152 #ifdef	SMP
153 #define	PA_LOCK_COUNT	256
154 #endif
155 
156 /*
157  * Kernel physical load address for non-UEFI boot and for legacy UEFI loader.
158  * Newer UEFI loader loads kernel anywhere below 4G, with memory allocated
159  * by boot services.
160  * Needs to be aligned at 2MB superpage boundary.
161  */
162 #ifndef KERNLOAD
163 #define	KERNLOAD	0x200000
164 #endif
165 
166 /*
167  * Virtual addresses of things.  Derived from the page directory and
168  * page table indexes from pmap.h for precision.
169  *
170  * 0x0000000000000000 - 0x00007fffffffffff   user map
171  * 0x0000800000000000 - 0xffff7fffffffffff   does not exist (hole)
172  * 0xffff800000000000 - 0xffff804020100fff   recursive page table (512GB slot)
173  * 0xffff804020100fff - 0xffff807fffffffff   unused
174  * 0xffff808000000000 - 0xffff847fffffffff   large map (can be tuned up)
175  * 0xffff848000000000 - 0xfffff77fffffffff   unused (large map extends there)
176  * 0xfffff60000000000 - 0xfffff7ffffffffff   2TB KMSAN origin map, optional
177  * 0xfffff78000000000 - 0xfffff7bfffffffff   512GB KASAN shadow map, optional
178  * 0xfffff80000000000 - 0xfffffbffffffffff   4TB direct map
179  * 0xfffffc0000000000 - 0xfffffdffffffffff   2TB KMSAN shadow map, optional
180  * 0xfffffe0000000000 - 0xffffffffffffffff   2TB kernel map
181  *
182  * Within the kernel map:
183  *
184  * 0xfffffe0000000000                        vm_page_array
185  * 0xffffffff80000000                        KERNBASE
186  */
187 
188 #define	VM_MIN_KERNEL_ADDRESS	KV4ADDR(KPML4BASE, 0, 0, 0)
189 #define	VM_MAX_KERNEL_ADDRESS	KV4ADDR(KPML4BASE + NKPML4E - 1, \
190 					NPDPEPG-1, NPDEPG-1, NPTEPG-1)
191 
192 #define	DMAP_MIN_ADDRESS	KV4ADDR(DMPML4I, 0, 0, 0)
193 #define	DMAP_MAX_ADDRESS	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0)
194 
195 #define	KASAN_MIN_ADDRESS	KV4ADDR(KASANPML4I, 0, 0, 0)
196 #define	KASAN_MAX_ADDRESS	KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0)
197 
198 #define	KMSAN_SHAD_MIN_ADDRESS	KV4ADDR(KMSANSHADPML4I, 0, 0, 0)
199 #define	KMSAN_SHAD_MAX_ADDRESS	KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E, \
200 					0, 0, 0)
201 
202 #define	KMSAN_ORIG_MIN_ADDRESS	KV4ADDR(KMSANORIGPML4I, 0, 0, 0)
203 #define	KMSAN_ORIG_MAX_ADDRESS	KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E, \
204 					0, 0, 0)
205 
206 #define	LARGEMAP_MIN_ADDRESS	KV4ADDR(LMSPML4I, 0, 0, 0)
207 #define	LARGEMAP_MAX_ADDRESS	KV4ADDR(LMEPML4I + 1, 0, 0, 0)
208 
209 /*
210  * Formally kernel mapping starts at KERNBASE, but kernel linker
211  * script leaves first PDE reserved.  For legacy BIOS boot, kernel is
212  * loaded at KERNLOAD = 2M, and initial kernel page table maps
213  * physical memory from zero to KERNend starting at KERNBASE.
214  *
215  * KERNSTART is where the first actual kernel page is mapped, after
216  * the compatibility mapping.
217  */
218 #define	KERNBASE		KV4ADDR(KPML4I, KPDPI, 0, 0)
219 #define	KERNSTART		(KERNBASE + NBPDR)
220 
221 #define	UPT_MAX_ADDRESS		KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)
222 #define	UPT_MIN_ADDRESS		KV4ADDR(PML4PML4I, 0, 0, 0)
223 
224 #define	VM_MAXUSER_ADDRESS_LA57	UVADDR(NUPML5E, 0, 0, 0, 0)
225 #define	VM_MAXUSER_ADDRESS_LA48	UVADDR(0, NUP4ML4E, 0, 0, 0)
226 #define	VM_MAXUSER_ADDRESS	VM_MAXUSER_ADDRESS_LA57
227 
228 #define	SHAREDPAGE_LA57		(VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE)
229 #define	SHAREDPAGE_LA48		(VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE)
230 #define	USRSTACK_LA57		SHAREDPAGE_LA57
231 #define	USRSTACK_LA48		SHAREDPAGE_LA48
232 #define	USRSTACK		USRSTACK_LA48
233 #define	PS_STRINGS_LA57		(USRSTACK_LA57 - sizeof(struct ps_strings))
234 #define	PS_STRINGS_LA48		(USRSTACK_LA48 - sizeof(struct ps_strings))
235 
236 #define	VM_MAX_ADDRESS		UPT_MAX_ADDRESS
237 #define	VM_MIN_ADDRESS		(0)
238 
239 /*
240  * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's
241  * early use of PHYS_TO_DMAP before the mapping is actually setup. This works
242  * because the result is not actually accessed until later, but the early
243  * vt fb startup needs to be reworked.
244  */
245 #define	PHYS_IN_DMAP(pa)	(dmaplimit == 0 || (pa) < dmaplimit)
246 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS &&		\
247     (va) < (DMAP_MIN_ADDRESS + dmaplimit))
248 
249 #define	PMAP_HAS_DMAP	1
250 #define	PHYS_TO_DMAP(x)	({						\
251 	KASSERT(PHYS_IN_DMAP(x),					\
252 	    ("physical address %#jx not covered by the DMAP",		\
253 	    (uintmax_t)x));						\
254 	(x) | DMAP_MIN_ADDRESS; })
255 
256 #define	DMAP_TO_PHYS(x)	({						\
257 	KASSERT(VIRT_IN_DMAP(x),					\
258 	    ("virtual address %#jx not covered by the DMAP",		\
259 	    (uintmax_t)x));						\
260 	(x) & ~DMAP_MIN_ADDRESS; })
261 
262 /*
263  * amd64 maps the page array into KVA so that it can be more easily
264  * allocated on the correct memory domains.
265  */
266 #define	PMAP_HAS_PAGE_ARRAY	1
267 
268 /*
269  * How many physical pages per kmem arena virtual page.
270  */
271 #ifndef VM_KMEM_SIZE_SCALE
272 #define	VM_KMEM_SIZE_SCALE	(1)
273 #endif
274 
275 /*
276  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
277  * kernel map.
278  */
279 #ifndef VM_KMEM_SIZE_MAX
280 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
281     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
282 #endif
283 
284 /* initial pagein size of beginning of executable file */
285 #ifndef VM_INITIAL_PAGEIN
286 #define	VM_INITIAL_PAGEIN	16
287 #endif
288 
289 #define	ZERO_REGION_SIZE	(2 * 1024 * 1024)	/* 2MB */
290 
291 /*
292  * The pmap can create non-transparent large page mappings.
293  */
294 #define	PMAP_HAS_LARGEPAGES	1
295 
296 /*
297  * Need a page dump array for minidump.
298  */
299 #define MINIDUMP_PAGE_TRACKING	       1
300 #define MINIDUMP_STARTUP_PAGE_TRACKING 1
301 
302 #endif /* _MACHINE_VMPARAM_H_ */
303 
304 #endif /* __i386__ */
305