1 /*- 2 * Copyright (c) 1990 The Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 2003 Peter Wemm 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * William Jolitz. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91 41 * $FreeBSD$ 42 */ 43 44 45 #ifndef _MACHINE_VMPARAM_H_ 46 #define _MACHINE_VMPARAM_H_ 1 47 48 /* 49 * Machine dependent constants for AMD64. 50 */ 51 52 /* 53 * Virtual memory related constants, all in bytes 54 */ 55 #define MAXTSIZ (128UL*1024*1024) /* max text size */ 56 #ifndef DFLDSIZ 57 #define DFLDSIZ (32768UL*1024*1024) /* initial data size limit */ 58 #endif 59 #ifndef MAXDSIZ 60 #define MAXDSIZ (32768UL*1024*1024) /* max data size */ 61 #endif 62 #ifndef DFLSSIZ 63 #define DFLSSIZ (8UL*1024*1024) /* initial stack size limit */ 64 #endif 65 #ifndef MAXSSIZ 66 #define MAXSSIZ (512UL*1024*1024) /* max stack size */ 67 #endif 68 #ifndef SGROWSIZ 69 #define SGROWSIZ (128UL*1024) /* amount to grow stack */ 70 #endif 71 72 /* 73 * We provide a machine specific single page allocator through the use 74 * of the direct mapped segment. This uses 2MB pages for reduced 75 * TLB pressure. 76 */ 77 #define UMA_MD_SMALL_ALLOC 78 79 /* 80 * The physical address space is densely populated. 81 */ 82 #define VM_PHYSSEG_DENSE 83 84 /* 85 * The number of PHYSSEG entries must be one greater than the number 86 * of phys_avail entries because the phys_avail entry that spans the 87 * largest physical address that is accessible by ISA DMA is split 88 * into two PHYSSEG entries. 89 */ 90 #define VM_PHYSSEG_MAX 63 91 92 /* 93 * Create three free page pools: VM_FREEPOOL_DEFAULT is the default pool 94 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is 95 * the pool from which physical pages for page tables and small UMA 96 * objects are allocated. 97 */ 98 #define VM_NFREEPOOL 3 99 #define VM_FREEPOOL_CACHE 2 100 #define VM_FREEPOOL_DEFAULT 0 101 #define VM_FREEPOOL_DIRECT 1 102 103 /* 104 * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages 105 * that have physical addresses below 4G but are not accessible by ISA DMA, 106 * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA 107 * DMA. 108 */ 109 #define VM_NFREELIST 3 110 #define VM_FREELIST_DEFAULT 0 111 #define VM_FREELIST_DMA32 1 112 #define VM_FREELIST_ISADMA 2 113 114 /* 115 * Create the DMA32 free list only if the number of physical pages above 116 * physical address 4G is at least 16M, which amounts to 64GB of physical 117 * memory. 118 */ 119 #define VM_DMA32_NPAGES_THRESHOLD 16777216 120 121 /* 122 * An allocation size of 16MB is supported in order to optimize the 123 * use of the direct map by UMA. Specifically, a cache line contains 124 * at most 8 PDEs, collectively mapping 16MB of physical memory. By 125 * reducing the number of distinct 16MB "pages" that are used by UMA, 126 * the physical memory allocator reduces the likelihood of both 2MB 127 * page TLB misses and cache misses caused by 2MB page TLB misses. 128 */ 129 #define VM_NFREEORDER 13 130 131 /* 132 * Enable superpage reservations: 1 level. 133 */ 134 #ifndef VM_NRESERVLEVEL 135 #define VM_NRESERVLEVEL 1 136 #endif 137 138 /* 139 * Level 0 reservations consist of 512 pages. 140 */ 141 #ifndef VM_LEVEL_0_ORDER 142 #define VM_LEVEL_0_ORDER 9 143 #endif 144 145 #ifdef SMP 146 #define PA_LOCK_COUNT 256 147 #endif 148 149 /* 150 * Virtual addresses of things. Derived from the page directory and 151 * page table indexes from pmap.h for precision. 152 * 153 * 0x0000000000000000 - 0x00007fffffffffff user map 154 * 0x0000800000000000 - 0xffff7fffffffffff does not exist (hole) 155 * 0xffff800000000000 - 0xffff804020100fff recursive page table (512GB slot) 156 * 0xffff804020101000 - 0xfffff7ffffffffff unused 157 * 0xfffff80000000000 - 0xfffffbffffffffff 4TB direct map 158 * 0xfffffc0000000000 - 0xfffffdffffffffff unused 159 * 0xfffffe0000000000 - 0xffffffffffffffff 2TB kernel map 160 * 161 * Within the kernel map: 162 * 163 * 0xffffffff80000000 KERNBASE 164 */ 165 166 #define VM_MIN_KERNEL_ADDRESS KVADDR(KPML4BASE, 0, 0, 0) 167 #define VM_MAX_KERNEL_ADDRESS KVADDR(KPML4BASE + NKPML4E - 1, \ 168 NPDPEPG-1, NPDEPG-1, NPTEPG-1) 169 170 #define DMAP_MIN_ADDRESS KVADDR(DMPML4I, 0, 0, 0) 171 #define DMAP_MAX_ADDRESS KVADDR(DMPML4I + NDMPML4E, 0, 0, 0) 172 173 #define KERNBASE KVADDR(KPML4I, KPDPI, 0, 0) 174 175 #define UPT_MAX_ADDRESS KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I) 176 #define UPT_MIN_ADDRESS KVADDR(PML4PML4I, 0, 0, 0) 177 178 #define VM_MAXUSER_ADDRESS UVADDR(NUPML4E, 0, 0, 0) 179 180 #define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE) 181 #define USRSTACK SHAREDPAGE 182 183 #define VM_MAX_ADDRESS UPT_MAX_ADDRESS 184 #define VM_MIN_ADDRESS (0) 185 186 /* 187 * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's 188 * early use of PHYS_TO_DMAP before the mapping is actually setup. This works 189 * because the result is not actually accessed until later, but the early 190 * vt fb startup needs to be reworked. 191 */ 192 #define PHYS_TO_DMAP(x) ({ \ 193 KASSERT(dmaplimit == 0 || (x) < dmaplimit, \ 194 ("physical address %#jx not covered by the DMAP", \ 195 (uintmax_t)x)); \ 196 (x) | DMAP_MIN_ADDRESS; }) 197 198 #define DMAP_TO_PHYS(x) ({ \ 199 KASSERT((x) < (DMAP_MIN_ADDRESS + dmaplimit) && \ 200 (x) >= DMAP_MIN_ADDRESS, \ 201 ("virtual address %#jx not covered by the DMAP", \ 202 (uintmax_t)x)); \ 203 (x) & ~DMAP_MIN_ADDRESS; }) 204 205 /* 206 * How many physical pages per kmem arena virtual page. 207 */ 208 #ifndef VM_KMEM_SIZE_SCALE 209 #define VM_KMEM_SIZE_SCALE (1) 210 #endif 211 212 /* 213 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the 214 * kernel map. 215 */ 216 #ifndef VM_KMEM_SIZE_MAX 217 #define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \ 218 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5) 219 #endif 220 221 /* initial pagein size of beginning of executable file */ 222 #ifndef VM_INITIAL_PAGEIN 223 #define VM_INITIAL_PAGEIN 16 224 #endif 225 226 #define ZERO_REGION_SIZE (2 * 1024 * 1024) /* 2MB */ 227 228 #endif /* _MACHINE_VMPARAM_H_ */ 229