xref: /freebsd/sys/amd64/include/vmparam.h (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * William Jolitz.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vmparam.h	5.9 (Berkeley) 5/12/91
43  * $FreeBSD$
44  */
45 
46 #ifndef _MACHINE_VMPARAM_H_
47 #define	_MACHINE_VMPARAM_H_ 1
48 
49 /*
50  * Machine dependent constants for AMD64.
51  */
52 
53 /*
54  * Virtual memory related constants, all in bytes
55  */
56 #define	MAXTSIZ		(32768UL*1024*1024)	/* max text size */
57 #ifndef DFLDSIZ
58 #define	DFLDSIZ		(32768UL*1024*1024)	/* initial data size limit */
59 #endif
60 #ifndef MAXDSIZ
61 #define	MAXDSIZ		(32768UL*1024*1024)	/* max data size */
62 #endif
63 #ifndef	DFLSSIZ
64 #define	DFLSSIZ		(8UL*1024*1024)		/* initial stack size limit */
65 #endif
66 #ifndef	MAXSSIZ
67 #define	MAXSSIZ		(512UL*1024*1024)	/* max stack size */
68 #endif
69 #ifndef SGROWSIZ
70 #define	SGROWSIZ	(128UL*1024)		/* amount to grow stack */
71 #endif
72 
73 /*
74  * We provide a machine specific single page allocator through the use
75  * of the direct mapped segment.  This uses 2MB pages for reduced
76  * TLB pressure.
77  */
78 #define	UMA_MD_SMALL_ALLOC
79 
80 /*
81  * The physical address space is densely populated.
82  */
83 #define	VM_PHYSSEG_DENSE
84 
85 /*
86  * The number of PHYSSEG entries must be one greater than the number
87  * of phys_avail entries because the phys_avail entry that spans the
88  * largest physical address that is accessible by ISA DMA is split
89  * into two PHYSSEG entries.
90  */
91 #define	VM_PHYSSEG_MAX		63
92 
93 /*
94  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
95  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
96  * the pool from which physical pages for page tables and small UMA
97  * objects are allocated.
98  */
99 #define	VM_NFREEPOOL		2
100 #define	VM_FREEPOOL_DEFAULT	0
101 #define	VM_FREEPOOL_DIRECT	1
102 
103 /*
104  * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
105  * that have physical addresses below 4G but are not accessible by ISA DMA,
106  * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
107  * DMA.
108  */
109 #define	VM_NFREELIST		3
110 #define	VM_FREELIST_DEFAULT	0
111 #define	VM_FREELIST_DMA32	1
112 #define	VM_FREELIST_LOWMEM	2
113 
114 #define VM_LOWMEM_BOUNDARY	(16 << 20)	/* 16MB ISA DMA limit */
115 
116 /*
117  * Create the DMA32 free list only if the number of physical pages above
118  * physical address 4G is at least 16M, which amounts to 64GB of physical
119  * memory.
120  */
121 #define	VM_DMA32_NPAGES_THRESHOLD	16777216
122 
123 /*
124  * An allocation size of 16MB is supported in order to optimize the
125  * use of the direct map by UMA.  Specifically, a cache line contains
126  * at most 8 PDEs, collectively mapping 16MB of physical memory.  By
127  * reducing the number of distinct 16MB "pages" that are used by UMA,
128  * the physical memory allocator reduces the likelihood of both 2MB
129  * page TLB misses and cache misses caused by 2MB page TLB misses.
130  */
131 #define	VM_NFREEORDER		13
132 
133 /*
134  * Enable superpage reservations: 1 level.
135  */
136 #ifndef	VM_NRESERVLEVEL
137 #define	VM_NRESERVLEVEL		1
138 #endif
139 
140 /*
141  * Level 0 reservations consist of 512 pages.
142  */
143 #ifndef	VM_LEVEL_0_ORDER
144 #define	VM_LEVEL_0_ORDER	9
145 #endif
146 
147 #ifdef	SMP
148 #define	PA_LOCK_COUNT	256
149 #endif
150 
151 /*
152  * Virtual addresses of things.  Derived from the page directory and
153  * page table indexes from pmap.h for precision.
154  *
155  * 0x0000000000000000 - 0x00007fffffffffff   user map
156  * 0x0000800000000000 - 0xffff7fffffffffff   does not exist (hole)
157  * 0xffff800000000000 - 0xffff804020100fff   recursive page table (512GB slot)
158  * 0xffff804020100fff - 0xffff807fffffffff   unused
159  * 0xffff808000000000 - 0xffff847fffffffff   large map (can be tuned up)
160  * 0xffff848000000000 - 0xfffff7ffffffffff   unused (large map extends there)
161  * 0xfffff80000000000 - 0xfffffbffffffffff   4TB direct map
162  * 0xfffffc0000000000 - 0xfffffdffffffffff   unused
163  * 0xfffffe0000000000 - 0xffffffffffffffff   2TB kernel map
164  *
165  * Within the kernel map:
166  *
167  * 0xfffffe0000000000                        vm_page_array
168  * 0xffffffff80000000                        KERNBASE
169  */
170 
171 #define	VM_MIN_KERNEL_ADDRESS	KV4ADDR(KPML4BASE, 0, 0, 0)
172 #define	VM_MAX_KERNEL_ADDRESS	KV4ADDR(KPML4BASE + NKPML4E - 1, \
173 					NPDPEPG-1, NPDEPG-1, NPTEPG-1)
174 
175 #define	DMAP_MIN_ADDRESS	KV4ADDR(DMPML4I, 0, 0, 0)
176 #define	DMAP_MAX_ADDRESS	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0)
177 
178 #define	LARGEMAP_MIN_ADDRESS	KV4ADDR(LMSPML4I, 0, 0, 0)
179 #define	LARGEMAP_MAX_ADDRESS	KV4ADDR(LMEPML4I + 1, 0, 0, 0)
180 
181 #define	KERNBASE		KV4ADDR(KPML4I, KPDPI, 0, 0)
182 
183 #define	UPT_MAX_ADDRESS		KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)
184 #define	UPT_MIN_ADDRESS		KV4ADDR(PML4PML4I, 0, 0, 0)
185 
186 #define	VM_MAXUSER_ADDRESS_LA57	UVADDR(NUPML5E, 0, 0, 0, 0)
187 #define	VM_MAXUSER_ADDRESS_LA48	UVADDR(0, NUP4ML4E, 0, 0, 0)
188 #define	VM_MAXUSER_ADDRESS	VM_MAXUSER_ADDRESS_LA57
189 
190 #define	SHAREDPAGE_LA57		(VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE)
191 #define	SHAREDPAGE_LA48		(VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE)
192 #define	USRSTACK_LA57		SHAREDPAGE_LA57
193 #define	USRSTACK_LA48		SHAREDPAGE_LA48
194 #define	USRSTACK		USRSTACK_LA48
195 #define	PS_STRINGS_LA57		(USRSTACK_LA57 - sizeof(struct ps_strings))
196 #define	PS_STRINGS_LA48		(USRSTACK_LA48 - sizeof(struct ps_strings))
197 
198 #define	VM_MAX_ADDRESS		UPT_MAX_ADDRESS
199 #define	VM_MIN_ADDRESS		(0)
200 
201 /*
202  * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's
203  * early use of PHYS_TO_DMAP before the mapping is actually setup. This works
204  * because the result is not actually accessed until later, but the early
205  * vt fb startup needs to be reworked.
206  */
207 #define	PMAP_HAS_DMAP	1
208 #define	PHYS_TO_DMAP(x)	({						\
209 	KASSERT(dmaplimit == 0 || (x) < dmaplimit,			\
210 	    ("physical address %#jx not covered by the DMAP",		\
211 	    (uintmax_t)x));						\
212 	(x) | DMAP_MIN_ADDRESS; })
213 
214 #define	DMAP_TO_PHYS(x)	({						\
215 	KASSERT((x) < (DMAP_MIN_ADDRESS + dmaplimit) &&			\
216 	    (x) >= DMAP_MIN_ADDRESS,					\
217 	    ("virtual address %#jx not covered by the DMAP",		\
218 	    (uintmax_t)x));						\
219 	(x) & ~DMAP_MIN_ADDRESS; })
220 
221 /*
222  * amd64 maps the page array into KVA so that it can be more easily
223  * allocated on the correct memory domains.
224  */
225 #define	PMAP_HAS_PAGE_ARRAY	1
226 
227 /*
228  * How many physical pages per kmem arena virtual page.
229  */
230 #ifndef VM_KMEM_SIZE_SCALE
231 #define	VM_KMEM_SIZE_SCALE	(1)
232 #endif
233 
234 /*
235  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
236  * kernel map.
237  */
238 #ifndef VM_KMEM_SIZE_MAX
239 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
240     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
241 #endif
242 
243 /* initial pagein size of beginning of executable file */
244 #ifndef VM_INITIAL_PAGEIN
245 #define	VM_INITIAL_PAGEIN	16
246 #endif
247 
248 #define	ZERO_REGION_SIZE	(2 * 1024 * 1024)	/* 2MB */
249 
250 /*
251  * Use a fairly large batch size since we expect amd64 systems to have lots of
252  * memory.
253  */
254 #define	VM_BATCHQUEUE_SIZE	31
255 
256 #endif /* _MACHINE_VMPARAM_H_ */
257