xref: /freebsd/sys/amd64/include/vmparam.h (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * William Jolitz.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vmparam.h	5.9 (Berkeley) 5/12/91
43  * $FreeBSD$
44  */
45 
46 #ifndef _MACHINE_VMPARAM_H_
47 #define	_MACHINE_VMPARAM_H_ 1
48 
49 /*
50  * Machine dependent constants for AMD64.
51  */
52 
53 /*
54  * Virtual memory related constants, all in bytes
55  */
56 #define	MAXTSIZ		(32768UL*1024*1024)	/* max text size */
57 #ifndef DFLDSIZ
58 #define	DFLDSIZ		(32768UL*1024*1024)	/* initial data size limit */
59 #endif
60 #ifndef MAXDSIZ
61 #define	MAXDSIZ		(32768UL*1024*1024)	/* max data size */
62 #endif
63 #ifndef	DFLSSIZ
64 #define	DFLSSIZ		(8UL*1024*1024)		/* initial stack size limit */
65 #endif
66 #ifndef	MAXSSIZ
67 #define	MAXSSIZ		(512UL*1024*1024)	/* max stack size */
68 #endif
69 #ifndef SGROWSIZ
70 #define	SGROWSIZ	(128UL*1024)		/* amount to grow stack */
71 #endif
72 
73 /*
74  * We provide a machine specific single page allocator through the use
75  * of the direct mapped segment.  This uses 2MB pages for reduced
76  * TLB pressure.
77  */
78 #if !defined(KASAN) && !defined(KMSAN)
79 #define	UMA_MD_SMALL_ALLOC
80 #endif
81 
82 /*
83  * The physical address space is densely populated.
84  */
85 #define	VM_PHYSSEG_DENSE
86 
87 /*
88  * The number of PHYSSEG entries must be one greater than the number
89  * of phys_avail entries because the phys_avail entry that spans the
90  * largest physical address that is accessible by ISA DMA is split
91  * into two PHYSSEG entries.
92  */
93 #define	VM_PHYSSEG_MAX		63
94 
95 /*
96  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
97  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
98  * the pool from which physical pages for page tables and small UMA
99  * objects are allocated.
100  */
101 #define	VM_NFREEPOOL		2
102 #define	VM_FREEPOOL_DEFAULT	0
103 #define	VM_FREEPOOL_DIRECT	1
104 
105 /*
106  * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
107  * that have physical addresses below 4G but are not accessible by ISA DMA,
108  * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
109  * DMA.
110  */
111 #define	VM_NFREELIST		3
112 #define	VM_FREELIST_DEFAULT	0
113 #define	VM_FREELIST_DMA32	1
114 #define	VM_FREELIST_LOWMEM	2
115 
116 #define VM_LOWMEM_BOUNDARY	(16 << 20)	/* 16MB ISA DMA limit */
117 
118 /*
119  * Create the DMA32 free list only if the number of physical pages above
120  * physical address 4G is at least 16M, which amounts to 64GB of physical
121  * memory.
122  */
123 #define	VM_DMA32_NPAGES_THRESHOLD	16777216
124 
125 /*
126  * An allocation size of 16MB is supported in order to optimize the
127  * use of the direct map by UMA.  Specifically, a cache line contains
128  * at most 8 PDEs, collectively mapping 16MB of physical memory.  By
129  * reducing the number of distinct 16MB "pages" that are used by UMA,
130  * the physical memory allocator reduces the likelihood of both 2MB
131  * page TLB misses and cache misses caused by 2MB page TLB misses.
132  */
133 #define	VM_NFREEORDER		13
134 
135 /*
136  * Enable superpage reservations: 1 level.
137  */
138 #ifndef	VM_NRESERVLEVEL
139 #define	VM_NRESERVLEVEL		1
140 #endif
141 
142 /*
143  * Level 0 reservations consist of 512 pages.
144  */
145 #ifndef	VM_LEVEL_0_ORDER
146 #define	VM_LEVEL_0_ORDER	9
147 #endif
148 
149 #ifdef	SMP
150 #define	PA_LOCK_COUNT	256
151 #endif
152 
153 /*
154  * Kernel physical load address for non-UEFI boot and for legacy UEFI loader.
155  * Newer UEFI loader loads kernel anywhere below 4G, with memory allocated
156  * by boot services.
157  * Needs to be aligned at 2MB superpage boundary.
158  */
159 #ifndef KERNLOAD
160 #define	KERNLOAD	0x200000
161 #endif
162 
163 /*
164  * Virtual addresses of things.  Derived from the page directory and
165  * page table indexes from pmap.h for precision.
166  *
167  * 0x0000000000000000 - 0x00007fffffffffff   user map
168  * 0x0000800000000000 - 0xffff7fffffffffff   does not exist (hole)
169  * 0xffff800000000000 - 0xffff804020100fff   recursive page table (512GB slot)
170  * 0xffff804020100fff - 0xffff807fffffffff   unused
171  * 0xffff808000000000 - 0xffff847fffffffff   large map (can be tuned up)
172  * 0xffff848000000000 - 0xfffff77fffffffff   unused (large map extends there)
173  * 0xfffff60000000000 - 0xfffff7ffffffffff   2TB KMSAN origin map, optional
174  * 0xfffff78000000000 - 0xfffff7bfffffffff   512GB KASAN shadow map, optional
175  * 0xfffff80000000000 - 0xfffffbffffffffff   4TB direct map
176  * 0xfffffc0000000000 - 0xfffffdffffffffff   2TB KMSAN shadow map, optional
177  * 0xfffffe0000000000 - 0xffffffffffffffff   2TB kernel map
178  *
179  * Within the kernel map:
180  *
181  * 0xfffffe0000000000                        vm_page_array
182  * 0xffffffff80000000                        KERNBASE
183  */
184 
185 #define	VM_MIN_KERNEL_ADDRESS	KV4ADDR(KPML4BASE, 0, 0, 0)
186 #define	VM_MAX_KERNEL_ADDRESS	KV4ADDR(KPML4BASE + NKPML4E - 1, \
187 					NPDPEPG-1, NPDEPG-1, NPTEPG-1)
188 
189 #define	DMAP_MIN_ADDRESS	KV4ADDR(DMPML4I, 0, 0, 0)
190 #define	DMAP_MAX_ADDRESS	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0)
191 
192 #define	KASAN_MIN_ADDRESS	KV4ADDR(KASANPML4I, 0, 0, 0)
193 #define	KASAN_MAX_ADDRESS	KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0)
194 
195 #define	KMSAN_SHAD_MIN_ADDRESS	KV4ADDR(KMSANSHADPML4I, 0, 0, 0)
196 #define	KMSAN_SHAD_MAX_ADDRESS	KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E, \
197 					0, 0, 0)
198 
199 #define	KMSAN_ORIG_MIN_ADDRESS	KV4ADDR(KMSANORIGPML4I, 0, 0, 0)
200 #define	KMSAN_ORIG_MAX_ADDRESS	KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E, \
201 					0, 0, 0)
202 
203 #define	LARGEMAP_MIN_ADDRESS	KV4ADDR(LMSPML4I, 0, 0, 0)
204 #define	LARGEMAP_MAX_ADDRESS	KV4ADDR(LMEPML4I + 1, 0, 0, 0)
205 
206 /*
207  * Formally kernel mapping starts at KERNBASE, but kernel linker
208  * script leaves first PDE reserved.  For legacy BIOS boot, kernel is
209  * loaded at KERNLOAD = 2M, and initial kernel page table maps
210  * physical memory from zero to KERNend starting at KERNBASE.
211  *
212  * KERNSTART is where the first actual kernel page is mapped, after
213  * the compatibility mapping.
214  */
215 #define	KERNBASE		KV4ADDR(KPML4I, KPDPI, 0, 0)
216 #define	KERNSTART		(KERNBASE + NBPDR)
217 
218 #define	UPT_MAX_ADDRESS		KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)
219 #define	UPT_MIN_ADDRESS		KV4ADDR(PML4PML4I, 0, 0, 0)
220 
221 #define	VM_MAXUSER_ADDRESS_LA57	UVADDR(NUPML5E, 0, 0, 0, 0)
222 #define	VM_MAXUSER_ADDRESS_LA48	UVADDR(0, NUP4ML4E, 0, 0, 0)
223 #define	VM_MAXUSER_ADDRESS	VM_MAXUSER_ADDRESS_LA57
224 
225 #define	SHAREDPAGE_LA57		(VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE)
226 #define	SHAREDPAGE_LA48		(VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE)
227 #define	USRSTACK_LA57		SHAREDPAGE_LA57
228 #define	USRSTACK_LA48		SHAREDPAGE_LA48
229 #define	USRSTACK		USRSTACK_LA48
230 #define	PS_STRINGS_LA57		(USRSTACK_LA57 - sizeof(struct ps_strings))
231 #define	PS_STRINGS_LA48		(USRSTACK_LA48 - sizeof(struct ps_strings))
232 
233 #define	VM_MAX_ADDRESS		UPT_MAX_ADDRESS
234 #define	VM_MIN_ADDRESS		(0)
235 
236 /*
237  * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's
238  * early use of PHYS_TO_DMAP before the mapping is actually setup. This works
239  * because the result is not actually accessed until later, but the early
240  * vt fb startup needs to be reworked.
241  */
242 #define	PHYS_IN_DMAP(pa)	(dmaplimit == 0 || (pa) < dmaplimit)
243 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS &&		\
244     (va) < (DMAP_MIN_ADDRESS + dmaplimit))
245 
246 #define	PMAP_HAS_DMAP	1
247 #define	PHYS_TO_DMAP(x)	({						\
248 	KASSERT(PHYS_IN_DMAP(x),					\
249 	    ("physical address %#jx not covered by the DMAP",		\
250 	    (uintmax_t)x));						\
251 	(x) | DMAP_MIN_ADDRESS; })
252 
253 #define	DMAP_TO_PHYS(x)	({						\
254 	KASSERT(VIRT_IN_DMAP(x),					\
255 	    ("virtual address %#jx not covered by the DMAP",		\
256 	    (uintmax_t)x));						\
257 	(x) & ~DMAP_MIN_ADDRESS; })
258 
259 /*
260  * amd64 maps the page array into KVA so that it can be more easily
261  * allocated on the correct memory domains.
262  */
263 #define	PMAP_HAS_PAGE_ARRAY	1
264 
265 /*
266  * How many physical pages per kmem arena virtual page.
267  */
268 #ifndef VM_KMEM_SIZE_SCALE
269 #define	VM_KMEM_SIZE_SCALE	(1)
270 #endif
271 
272 /*
273  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
274  * kernel map.
275  */
276 #ifndef VM_KMEM_SIZE_MAX
277 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
278     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
279 #endif
280 
281 /* initial pagein size of beginning of executable file */
282 #ifndef VM_INITIAL_PAGEIN
283 #define	VM_INITIAL_PAGEIN	16
284 #endif
285 
286 #define	ZERO_REGION_SIZE	(2 * 1024 * 1024)	/* 2MB */
287 
288 /*
289  * Use a fairly large batch size since we expect amd64 systems to have lots of
290  * memory.
291  */
292 #define	VM_BATCHQUEUE_SIZE	31
293 
294 /*
295  * The pmap can create non-transparent large page mappings.
296  */
297 #define	PMAP_HAS_LARGEPAGES	1
298 
299 /*
300  * Need a page dump array for minidump.
301  */
302 #define MINIDUMP_PAGE_TRACKING	1
303 
304 #endif /* _MACHINE_VMPARAM_H_ */
305