xref: /freebsd/sys/amd64/include/vmparam.h (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 2003 Peter Wemm
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * William Jolitz.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 #ifdef __i386__
44 #include <i386/vmparam.h>
45 #else /* !__i386__ */
46 
47 #ifndef _MACHINE_VMPARAM_H_
48 #define	_MACHINE_VMPARAM_H_ 1
49 
50 /*
51  * Machine dependent constants for AMD64.
52  */
53 
54 /*
55  * Virtual memory related constants, all in bytes
56  */
57 #define	MAXTSIZ		(32768UL*1024*1024)	/* max text size */
58 #ifndef DFLDSIZ
59 #define	DFLDSIZ		(32768UL*1024*1024)	/* initial data size limit */
60 #endif
61 #ifndef MAXDSIZ
62 #define	MAXDSIZ		(32768UL*1024*1024)	/* max data size */
63 #endif
64 #ifndef	DFLSSIZ
65 #define	DFLSSIZ		(8UL*1024*1024)		/* initial stack size limit */
66 #endif
67 #ifndef	MAXSSIZ
68 #define	MAXSSIZ		(512UL*1024*1024)	/* max stack size */
69 #endif
70 #ifndef SGROWSIZ
71 #define	SGROWSIZ	(128UL*1024)		/* amount to grow stack */
72 #endif
73 
74 /*
75  * We provide a machine specific single page allocator through the use
76  * of the direct mapped segment.  This uses 2MB pages for reduced
77  * TLB pressure.
78  */
79 #if !defined(KASAN) && !defined(KMSAN)
80 #define	UMA_MD_SMALL_ALLOC
81 #endif
82 
83 /*
84  * The physical address space is densely populated.
85  */
86 #define	VM_PHYSSEG_DENSE
87 
88 /*
89  * The number of PHYSSEG entries must be one greater than the number
90  * of phys_avail entries because the phys_avail entry that spans the
91  * largest physical address that is accessible by ISA DMA is split
92  * into two PHYSSEG entries.
93  */
94 #define	VM_PHYSSEG_MAX		63
95 
96 /*
97  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
98  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
99  * the pool from which physical pages for page tables and small UMA
100  * objects are allocated.
101  */
102 #define	VM_NFREEPOOL		2
103 #define	VM_FREEPOOL_DEFAULT	0
104 #define	VM_FREEPOOL_DIRECT	1
105 
106 /*
107  * Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
108  * that have physical addresses below 4G but are not accessible by ISA DMA,
109  * and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
110  * DMA.
111  */
112 #define	VM_NFREELIST		3
113 #define	VM_FREELIST_DEFAULT	0
114 #define	VM_FREELIST_DMA32	1
115 #define	VM_FREELIST_LOWMEM	2
116 
117 #define VM_LOWMEM_BOUNDARY	(16 << 20)	/* 16MB ISA DMA limit */
118 
119 /*
120  * Create the DMA32 free list only if the number of physical pages above
121  * physical address 4G is at least 16M, which amounts to 64GB of physical
122  * memory.
123  */
124 #define	VM_DMA32_NPAGES_THRESHOLD	16777216
125 
126 /*
127  * An allocation size of 16MB is supported in order to optimize the
128  * use of the direct map by UMA.  Specifically, a cache line contains
129  * at most 8 PDEs, collectively mapping 16MB of physical memory.  By
130  * reducing the number of distinct 16MB "pages" that are used by UMA,
131  * the physical memory allocator reduces the likelihood of both 2MB
132  * page TLB misses and cache misses caused by 2MB page TLB misses.
133  */
134 #define	VM_NFREEORDER		13
135 
136 /*
137  * Enable superpage reservations: 1 level.
138  */
139 #ifndef	VM_NRESERVLEVEL
140 #define	VM_NRESERVLEVEL		1
141 #endif
142 
143 /*
144  * Level 0 reservations consist of 512 pages.
145  */
146 #ifndef	VM_LEVEL_0_ORDER
147 #define	VM_LEVEL_0_ORDER	9
148 #endif
149 
150 #ifdef	SMP
151 #define	PA_LOCK_COUNT	256
152 #endif
153 
154 /*
155  * Kernel physical load address for non-UEFI boot and for legacy UEFI loader.
156  * Newer UEFI loader loads kernel anywhere below 4G, with memory allocated
157  * by boot services.
158  * Needs to be aligned at 2MB superpage boundary.
159  */
160 #ifndef KERNLOAD
161 #define	KERNLOAD	0x200000
162 #endif
163 
164 /*
165  * Virtual addresses of things.  Derived from the page directory and
166  * page table indexes from pmap.h for precision.
167  *
168  * 0x0000000000000000 - 0x00007fffffffffff   user map
169  * 0x0000800000000000 - 0xffff7fffffffffff   does not exist (hole)
170  * 0xffff800000000000 - 0xffff804020100fff   recursive page table (512GB slot)
171  * 0xffff804020100fff - 0xffff807fffffffff   unused
172  * 0xffff808000000000 - 0xffff847fffffffff   large map (can be tuned up)
173  * 0xffff848000000000 - 0xfffff77fffffffff   unused (large map extends there)
174  * 0xfffff60000000000 - 0xfffff7ffffffffff   2TB KMSAN origin map, optional
175  * 0xfffff78000000000 - 0xfffff7bfffffffff   512GB KASAN shadow map, optional
176  * 0xfffff80000000000 - 0xfffffbffffffffff   4TB direct map
177  * 0xfffffc0000000000 - 0xfffffdffffffffff   2TB KMSAN shadow map, optional
178  * 0xfffffe0000000000 - 0xffffffffffffffff   2TB kernel map
179  *
180  * Within the kernel map:
181  *
182  * 0xfffffe0000000000                        vm_page_array
183  * 0xffffffff80000000                        KERNBASE
184  */
185 
186 #define	VM_MIN_KERNEL_ADDRESS	KV4ADDR(KPML4BASE, 0, 0, 0)
187 #define	VM_MAX_KERNEL_ADDRESS	KV4ADDR(KPML4BASE + NKPML4E - 1, \
188 					NPDPEPG-1, NPDEPG-1, NPTEPG-1)
189 
190 #define	DMAP_MIN_ADDRESS	KV4ADDR(DMPML4I, 0, 0, 0)
191 #define	DMAP_MAX_ADDRESS	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0)
192 
193 #define	KASAN_MIN_ADDRESS	KV4ADDR(KASANPML4I, 0, 0, 0)
194 #define	KASAN_MAX_ADDRESS	KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0)
195 
196 #define	KMSAN_SHAD_MIN_ADDRESS	KV4ADDR(KMSANSHADPML4I, 0, 0, 0)
197 #define	KMSAN_SHAD_MAX_ADDRESS	KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E, \
198 					0, 0, 0)
199 
200 #define	KMSAN_ORIG_MIN_ADDRESS	KV4ADDR(KMSANORIGPML4I, 0, 0, 0)
201 #define	KMSAN_ORIG_MAX_ADDRESS	KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E, \
202 					0, 0, 0)
203 
204 #define	LARGEMAP_MIN_ADDRESS	KV4ADDR(LMSPML4I, 0, 0, 0)
205 #define	LARGEMAP_MAX_ADDRESS	KV4ADDR(LMEPML4I + 1, 0, 0, 0)
206 
207 /*
208  * Formally kernel mapping starts at KERNBASE, but kernel linker
209  * script leaves first PDE reserved.  For legacy BIOS boot, kernel is
210  * loaded at KERNLOAD = 2M, and initial kernel page table maps
211  * physical memory from zero to KERNend starting at KERNBASE.
212  *
213  * KERNSTART is where the first actual kernel page is mapped, after
214  * the compatibility mapping.
215  */
216 #define	KERNBASE		KV4ADDR(KPML4I, KPDPI, 0, 0)
217 #define	KERNSTART		(KERNBASE + NBPDR)
218 
219 #define	UPT_MAX_ADDRESS		KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)
220 #define	UPT_MIN_ADDRESS		KV4ADDR(PML4PML4I, 0, 0, 0)
221 
222 #define	VM_MAXUSER_ADDRESS_LA57	UVADDR(NUPML5E, 0, 0, 0, 0)
223 #define	VM_MAXUSER_ADDRESS_LA48	UVADDR(0, NUP4ML4E, 0, 0, 0)
224 #define	VM_MAXUSER_ADDRESS	VM_MAXUSER_ADDRESS_LA57
225 
226 #define	SHAREDPAGE_LA57		(VM_MAXUSER_ADDRESS_LA57 - PAGE_SIZE)
227 #define	SHAREDPAGE_LA48		(VM_MAXUSER_ADDRESS_LA48 - PAGE_SIZE)
228 #define	USRSTACK_LA57		SHAREDPAGE_LA57
229 #define	USRSTACK_LA48		SHAREDPAGE_LA48
230 #define	USRSTACK		USRSTACK_LA48
231 #define	PS_STRINGS_LA57		(USRSTACK_LA57 - sizeof(struct ps_strings))
232 #define	PS_STRINGS_LA48		(USRSTACK_LA48 - sizeof(struct ps_strings))
233 
234 #define	VM_MAX_ADDRESS		UPT_MAX_ADDRESS
235 #define	VM_MIN_ADDRESS		(0)
236 
237 /*
238  * XXX Allowing dmaplimit == 0 is a temporary workaround for vt(4) efifb's
239  * early use of PHYS_TO_DMAP before the mapping is actually setup. This works
240  * because the result is not actually accessed until later, but the early
241  * vt fb startup needs to be reworked.
242  */
243 #define	PHYS_IN_DMAP(pa)	(dmaplimit == 0 || (pa) < dmaplimit)
244 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS &&		\
245     (va) < (DMAP_MIN_ADDRESS + dmaplimit))
246 
247 #define	PMAP_HAS_DMAP	1
248 #define	PHYS_TO_DMAP(x)	({						\
249 	KASSERT(PHYS_IN_DMAP(x),					\
250 	    ("physical address %#jx not covered by the DMAP",		\
251 	    (uintmax_t)x));						\
252 	(x) | DMAP_MIN_ADDRESS; })
253 
254 #define	DMAP_TO_PHYS(x)	({						\
255 	KASSERT(VIRT_IN_DMAP(x),					\
256 	    ("virtual address %#jx not covered by the DMAP",		\
257 	    (uintmax_t)x));						\
258 	(x) & ~DMAP_MIN_ADDRESS; })
259 
260 /*
261  * amd64 maps the page array into KVA so that it can be more easily
262  * allocated on the correct memory domains.
263  */
264 #define	PMAP_HAS_PAGE_ARRAY	1
265 
266 /*
267  * How many physical pages per kmem arena virtual page.
268  */
269 #ifndef VM_KMEM_SIZE_SCALE
270 #define	VM_KMEM_SIZE_SCALE	(1)
271 #endif
272 
273 /*
274  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
275  * kernel map.
276  */
277 #ifndef VM_KMEM_SIZE_MAX
278 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
279     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
280 #endif
281 
282 /* initial pagein size of beginning of executable file */
283 #ifndef VM_INITIAL_PAGEIN
284 #define	VM_INITIAL_PAGEIN	16
285 #endif
286 
287 #define	ZERO_REGION_SIZE	(2 * 1024 * 1024)	/* 2MB */
288 
289 /*
290  * The pmap can create non-transparent large page mappings.
291  */
292 #define	PMAP_HAS_LARGEPAGES	1
293 
294 /*
295  * Need a page dump array for minidump.
296  */
297 #define MINIDUMP_PAGE_TRACKING	1
298 
299 #endif /* _MACHINE_VMPARAM_H_ */
300 
301 #endif /* __i386__ */
302