1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #ifndef _VMM_H_ 32 #define _VMM_H_ 33 34 #include <sys/cpuset.h> 35 #include <sys/sdt.h> 36 #include <x86/segments.h> 37 38 struct vcpu; 39 struct vm_snapshot_meta; 40 41 #ifdef _KERNEL 42 SDT_PROVIDER_DECLARE(vmm); 43 #endif 44 45 enum vm_suspend_how { 46 VM_SUSPEND_NONE, 47 VM_SUSPEND_RESET, 48 VM_SUSPEND_POWEROFF, 49 VM_SUSPEND_HALT, 50 VM_SUSPEND_TRIPLEFAULT, 51 VM_SUSPEND_LAST 52 }; 53 54 /* 55 * Identifiers for architecturally defined registers. 56 */ 57 enum vm_reg_name { 58 VM_REG_GUEST_RAX, 59 VM_REG_GUEST_RBX, 60 VM_REG_GUEST_RCX, 61 VM_REG_GUEST_RDX, 62 VM_REG_GUEST_RSI, 63 VM_REG_GUEST_RDI, 64 VM_REG_GUEST_RBP, 65 VM_REG_GUEST_R8, 66 VM_REG_GUEST_R9, 67 VM_REG_GUEST_R10, 68 VM_REG_GUEST_R11, 69 VM_REG_GUEST_R12, 70 VM_REG_GUEST_R13, 71 VM_REG_GUEST_R14, 72 VM_REG_GUEST_R15, 73 VM_REG_GUEST_CR0, 74 VM_REG_GUEST_CR3, 75 VM_REG_GUEST_CR4, 76 VM_REG_GUEST_DR7, 77 VM_REG_GUEST_RSP, 78 VM_REG_GUEST_RIP, 79 VM_REG_GUEST_RFLAGS, 80 VM_REG_GUEST_ES, 81 VM_REG_GUEST_CS, 82 VM_REG_GUEST_SS, 83 VM_REG_GUEST_DS, 84 VM_REG_GUEST_FS, 85 VM_REG_GUEST_GS, 86 VM_REG_GUEST_LDTR, 87 VM_REG_GUEST_TR, 88 VM_REG_GUEST_IDTR, 89 VM_REG_GUEST_GDTR, 90 VM_REG_GUEST_EFER, 91 VM_REG_GUEST_CR2, 92 VM_REG_GUEST_PDPTE0, 93 VM_REG_GUEST_PDPTE1, 94 VM_REG_GUEST_PDPTE2, 95 VM_REG_GUEST_PDPTE3, 96 VM_REG_GUEST_INTR_SHADOW, 97 VM_REG_GUEST_DR0, 98 VM_REG_GUEST_DR1, 99 VM_REG_GUEST_DR2, 100 VM_REG_GUEST_DR3, 101 VM_REG_GUEST_DR6, 102 VM_REG_GUEST_ENTRY_INST_LENGTH, 103 VM_REG_LAST 104 }; 105 106 enum x2apic_state { 107 X2APIC_DISABLED, 108 X2APIC_ENABLED, 109 X2APIC_STATE_LAST 110 }; 111 112 #define VM_INTINFO_VECTOR(info) ((info) & 0xff) 113 #define VM_INTINFO_DEL_ERRCODE 0x800 114 #define VM_INTINFO_RSVD 0x7ffff000 115 #define VM_INTINFO_VALID 0x80000000 116 #define VM_INTINFO_TYPE 0x700 117 #define VM_INTINFO_HWINTR (0 << 8) 118 #define VM_INTINFO_NMI (2 << 8) 119 #define VM_INTINFO_HWEXCEPTION (3 << 8) 120 #define VM_INTINFO_SWINTR (4 << 8) 121 122 /* 123 * The VM name has to fit into the pathname length constraints of devfs, 124 * governed primarily by SPECNAMELEN. The length is the total number of 125 * characters in the full path, relative to the mount point and not 126 * including any leading '/' characters. 127 * A prefix and a suffix are added to the name specified by the user. 128 * The prefix is usually "vmm/" or "vmm.io/", but can be a few characters 129 * longer for future use. 130 * The suffix is a string that identifies a bootrom image or some similar 131 * image that is attached to the VM. A separator character gets added to 132 * the suffix automatically when generating the full path, so it must be 133 * accounted for, reducing the effective length by 1. 134 * The effective length of a VM name is 229 bytes for FreeBSD 13 and 37 135 * bytes for FreeBSD 12. A minimum length is set for safety and supports 136 * a SPECNAMELEN as small as 32 on old systems. 137 */ 138 #define VM_MAX_PREFIXLEN 10 139 #define VM_MAX_SUFFIXLEN 15 140 #define VM_MIN_NAMELEN 6 141 #define VM_MAX_NAMELEN \ 142 (SPECNAMELEN - VM_MAX_PREFIXLEN - VM_MAX_SUFFIXLEN - 1) 143 144 #ifdef _KERNEL 145 CTASSERT(VM_MAX_NAMELEN >= VM_MIN_NAMELEN); 146 147 struct vm; 148 struct vm_exception; 149 struct seg_desc; 150 struct vm_exit; 151 struct vm_run; 152 struct vhpet; 153 struct vioapic; 154 struct vlapic; 155 struct vmspace; 156 struct vm_object; 157 struct vm_guest_paging; 158 struct pmap; 159 enum snapshot_req; 160 161 struct vm_eventinfo { 162 cpuset_t *rptr; /* rendezvous cookie */ 163 int *sptr; /* suspend cookie */ 164 int *iptr; /* reqidle cookie */ 165 }; 166 167 typedef int (*vmm_init_func_t)(int ipinum); 168 typedef int (*vmm_cleanup_func_t)(void); 169 typedef void (*vmm_resume_func_t)(void); 170 typedef void * (*vmi_init_func_t)(struct vm *vm, struct pmap *pmap); 171 typedef int (*vmi_run_func_t)(void *vcpui, register_t rip, 172 struct pmap *pmap, struct vm_eventinfo *info); 173 typedef void (*vmi_cleanup_func_t)(void *vmi); 174 typedef void * (*vmi_vcpu_init_func_t)(void *vmi, struct vcpu *vcpu, 175 int vcpu_id); 176 typedef void (*vmi_vcpu_cleanup_func_t)(void *vcpui); 177 typedef int (*vmi_get_register_t)(void *vcpui, int num, uint64_t *retval); 178 typedef int (*vmi_set_register_t)(void *vcpui, int num, uint64_t val); 179 typedef int (*vmi_get_desc_t)(void *vcpui, int num, struct seg_desc *desc); 180 typedef int (*vmi_set_desc_t)(void *vcpui, int num, struct seg_desc *desc); 181 typedef int (*vmi_get_cap_t)(void *vcpui, int num, int *retval); 182 typedef int (*vmi_set_cap_t)(void *vcpui, int num, int val); 183 typedef struct vmspace * (*vmi_vmspace_alloc)(vm_offset_t min, vm_offset_t max); 184 typedef void (*vmi_vmspace_free)(struct vmspace *vmspace); 185 typedef struct vlapic * (*vmi_vlapic_init)(void *vcpui); 186 typedef void (*vmi_vlapic_cleanup)(struct vlapic *vlapic); 187 typedef int (*vmi_snapshot_vcpu_t)(void *vcpui, struct vm_snapshot_meta *meta); 188 typedef int (*vmi_restore_tsc_t)(void *vcpui, uint64_t now); 189 190 struct vmm_ops { 191 vmm_init_func_t modinit; /* module wide initialization */ 192 vmm_cleanup_func_t modcleanup; 193 vmm_resume_func_t modresume; 194 195 vmi_init_func_t init; /* vm-specific initialization */ 196 vmi_run_func_t run; 197 vmi_cleanup_func_t cleanup; 198 vmi_vcpu_init_func_t vcpu_init; 199 vmi_vcpu_cleanup_func_t vcpu_cleanup; 200 vmi_get_register_t getreg; 201 vmi_set_register_t setreg; 202 vmi_get_desc_t getdesc; 203 vmi_set_desc_t setdesc; 204 vmi_get_cap_t getcap; 205 vmi_set_cap_t setcap; 206 vmi_vmspace_alloc vmspace_alloc; 207 vmi_vmspace_free vmspace_free; 208 vmi_vlapic_init vlapic_init; 209 vmi_vlapic_cleanup vlapic_cleanup; 210 211 /* checkpoint operations */ 212 vmi_snapshot_vcpu_t vcpu_snapshot; 213 vmi_restore_tsc_t restore_tsc; 214 }; 215 216 extern const struct vmm_ops vmm_ops_intel; 217 extern const struct vmm_ops vmm_ops_amd; 218 219 extern u_int vm_maxcpu; /* maximum virtual cpus */ 220 221 int vm_create(const char *name, struct vm **retvm); 222 struct vcpu *vm_alloc_vcpu(struct vm *vm, int vcpuid); 223 void vm_disable_vcpu_creation(struct vm *vm); 224 void vm_slock_vcpus(struct vm *vm); 225 void vm_unlock_vcpus(struct vm *vm); 226 void vm_destroy(struct vm *vm); 227 int vm_reinit(struct vm *vm); 228 const char *vm_name(struct vm *vm); 229 uint16_t vm_get_maxcpus(struct vm *vm); 230 void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 231 uint16_t *threads, uint16_t *maxcpus); 232 int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 233 uint16_t threads, uint16_t maxcpus); 234 235 /* 236 * APIs that modify the guest memory map require all vcpus to be frozen. 237 */ 238 void vm_slock_memsegs(struct vm *vm); 239 void vm_xlock_memsegs(struct vm *vm); 240 void vm_unlock_memsegs(struct vm *vm); 241 int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off, 242 size_t len, int prot, int flags); 243 int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len); 244 int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem); 245 void vm_free_memseg(struct vm *vm, int ident); 246 int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa); 247 int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len); 248 int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func); 249 int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func); 250 251 /* 252 * APIs that inspect the guest memory map require only a *single* vcpu to 253 * be frozen. This acts like a read lock on the guest memory map since any 254 * modification requires *all* vcpus to be frozen. 255 */ 256 int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 257 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags); 258 int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 259 struct vm_object **objptr); 260 vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm); 261 void *vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, 262 int prot, void **cookie); 263 void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, 264 int prot, void **cookie); 265 void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, 266 int prot, void **cookie); 267 void vm_gpa_release(void *cookie); 268 bool vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa); 269 270 int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval); 271 int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val); 272 int vm_get_seg_desc(struct vcpu *vcpu, int reg, 273 struct seg_desc *ret_desc); 274 int vm_set_seg_desc(struct vcpu *vcpu, int reg, 275 struct seg_desc *desc); 276 int vm_run(struct vcpu *vcpu); 277 int vm_suspend(struct vm *vm, enum vm_suspend_how how); 278 int vm_inject_nmi(struct vcpu *vcpu); 279 int vm_nmi_pending(struct vcpu *vcpu); 280 void vm_nmi_clear(struct vcpu *vcpu); 281 int vm_inject_extint(struct vcpu *vcpu); 282 int vm_extint_pending(struct vcpu *vcpu); 283 void vm_extint_clear(struct vcpu *vcpu); 284 int vcpu_vcpuid(struct vcpu *vcpu); 285 struct vm *vcpu_vm(struct vcpu *vcpu); 286 struct vcpu *vm_vcpu(struct vm *vm, int cpu); 287 struct vlapic *vm_lapic(struct vcpu *vcpu); 288 struct vioapic *vm_ioapic(struct vm *vm); 289 struct vhpet *vm_hpet(struct vm *vm); 290 int vm_get_capability(struct vcpu *vcpu, int type, int *val); 291 int vm_set_capability(struct vcpu *vcpu, int type, int val); 292 int vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state); 293 int vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state); 294 int vm_apicid2vcpuid(struct vm *vm, int apicid); 295 int vm_activate_cpu(struct vcpu *vcpu); 296 int vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu); 297 int vm_resume_cpu(struct vm *vm, struct vcpu *vcpu); 298 int vm_restart_instruction(struct vcpu *vcpu); 299 struct vm_exit *vm_exitinfo(struct vcpu *vcpu); 300 cpuset_t *vm_exitinfo_cpuset(struct vcpu *vcpu); 301 void vm_exit_suspended(struct vcpu *vcpu, uint64_t rip); 302 void vm_exit_debug(struct vcpu *vcpu, uint64_t rip); 303 void vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip); 304 void vm_exit_astpending(struct vcpu *vcpu, uint64_t rip); 305 void vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip); 306 int vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta); 307 int vm_restore_time(struct vm *vm); 308 309 #ifdef _SYS__CPUSET_H_ 310 /* 311 * Rendezvous all vcpus specified in 'dest' and execute 'func(arg)'. 312 * The rendezvous 'func(arg)' is not allowed to do anything that will 313 * cause the thread to be put to sleep. 314 * 315 * The caller cannot hold any locks when initiating the rendezvous. 316 * 317 * The implementation of this API may cause vcpus other than those specified 318 * by 'dest' to be stalled. The caller should not rely on any vcpus making 319 * forward progress when the rendezvous is in progress. 320 */ 321 typedef void (*vm_rendezvous_func_t)(struct vcpu *vcpu, void *arg); 322 int vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 323 vm_rendezvous_func_t func, void *arg); 324 325 cpuset_t vm_active_cpus(struct vm *vm); 326 cpuset_t vm_debug_cpus(struct vm *vm); 327 cpuset_t vm_suspended_cpus(struct vm *vm); 328 cpuset_t vm_start_cpus(struct vm *vm, const cpuset_t *tostart); 329 void vm_await_start(struct vm *vm, const cpuset_t *waiting); 330 #endif /* _SYS__CPUSET_H_ */ 331 332 static __inline int 333 vcpu_rendezvous_pending(struct vcpu *vcpu, struct vm_eventinfo *info) 334 { 335 /* 336 * This check isn't done with atomic operations or under a lock because 337 * there's no need to. If the vcpuid bit is set, the vcpu is part of a 338 * rendezvous and the bit won't be cleared until the vcpu enters the 339 * rendezvous. On rendezvous exit, the cpuset is cleared and the vcpu 340 * will see an empty cpuset. So, the races are harmless. 341 */ 342 return (CPU_ISSET(vcpu_vcpuid(vcpu), info->rptr)); 343 } 344 345 static __inline int 346 vcpu_suspended(struct vm_eventinfo *info) 347 { 348 349 return (*info->sptr); 350 } 351 352 static __inline int 353 vcpu_reqidle(struct vm_eventinfo *info) 354 { 355 356 return (*info->iptr); 357 } 358 359 int vcpu_debugged(struct vcpu *vcpu); 360 361 /* 362 * Return true if device indicated by bus/slot/func is supposed to be a 363 * pci passthrough device. 364 * 365 * Return false otherwise. 366 */ 367 bool vmm_is_pptdev(int bus, int slot, int func); 368 369 void *vm_iommu_domain(struct vm *vm); 370 371 enum vcpu_state { 372 VCPU_IDLE, 373 VCPU_FROZEN, 374 VCPU_RUNNING, 375 VCPU_SLEEPING, 376 }; 377 378 int vcpu_set_state(struct vcpu *vcpu, enum vcpu_state state, bool from_idle); 379 enum vcpu_state vcpu_get_state(struct vcpu *vcpu, int *hostcpu); 380 381 static int __inline 382 vcpu_is_running(struct vcpu *vcpu, int *hostcpu) 383 { 384 return (vcpu_get_state(vcpu, hostcpu) == VCPU_RUNNING); 385 } 386 387 #ifdef _SYS_PROC_H_ 388 static int __inline 389 vcpu_should_yield(struct vcpu *vcpu) 390 { 391 struct thread *td; 392 393 td = curthread; 394 return (td->td_ast != 0 || td->td_owepreempt != 0); 395 } 396 #endif 397 398 void *vcpu_stats(struct vcpu *vcpu); 399 void vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr); 400 struct vmspace *vm_get_vmspace(struct vm *vm); 401 struct vatpic *vm_atpic(struct vm *vm); 402 struct vatpit *vm_atpit(struct vm *vm); 403 struct vpmtmr *vm_pmtmr(struct vm *vm); 404 struct vrtc *vm_rtc(struct vm *vm); 405 406 /* 407 * Inject exception 'vector' into the guest vcpu. This function returns 0 on 408 * success and non-zero on failure. 409 * 410 * Wrapper functions like 'vm_inject_gp()' should be preferred to calling 411 * this function directly because they enforce the trap-like or fault-like 412 * behavior of an exception. 413 * 414 * This function should only be called in the context of the thread that is 415 * executing this vcpu. 416 */ 417 int vm_inject_exception(struct vcpu *vcpu, int vector, int err_valid, 418 uint32_t errcode, int restart_instruction); 419 420 /* 421 * This function is called after a VM-exit that occurred during exception or 422 * interrupt delivery through the IDT. The format of 'intinfo' is described 423 * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2. 424 * 425 * If a VM-exit handler completes the event delivery successfully then it 426 * should call vm_exit_intinfo() to extinguish the pending event. For e.g., 427 * if the task switch emulation is triggered via a task gate then it should 428 * call this function with 'intinfo=0' to indicate that the external event 429 * is not pending anymore. 430 * 431 * Return value is 0 on success and non-zero on failure. 432 */ 433 int vm_exit_intinfo(struct vcpu *vcpu, uint64_t intinfo); 434 435 /* 436 * This function is called before every VM-entry to retrieve a pending 437 * event that should be injected into the guest. This function combines 438 * nested events into a double or triple fault. 439 * 440 * Returns 0 if there are no events that need to be injected into the guest 441 * and non-zero otherwise. 442 */ 443 int vm_entry_intinfo(struct vcpu *vcpu, uint64_t *info); 444 445 int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2); 446 447 /* 448 * Function used to keep track of the guest's TSC offset. The 449 * offset is used by the virutalization extensions to provide a consistent 450 * value for the Time Stamp Counter to the guest. 451 */ 452 void vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset); 453 454 enum vm_reg_name vm_segment_name(int seg_encoding); 455 456 struct vm_copyinfo { 457 uint64_t gpa; 458 size_t len; 459 void *hva; 460 void *cookie; 461 }; 462 463 /* 464 * Set up 'copyinfo[]' to copy to/from guest linear address space starting 465 * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for 466 * a copyin or PROT_WRITE for a copyout. 467 * 468 * retval is_fault Interpretation 469 * 0 0 Success 470 * 0 1 An exception was injected into the guest 471 * EFAULT N/A Unrecoverable error 472 * 473 * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if 474 * the return value is 0. The 'copyinfo[]' resources should be freed by calling 475 * 'vm_copy_teardown()' after the copy is done. 476 */ 477 int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 478 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 479 int num_copyinfo, int *is_fault); 480 void vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo); 481 void vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len); 482 void vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len); 483 484 int vcpu_trace_exceptions(struct vcpu *vcpu); 485 int vcpu_trap_wbinvd(struct vcpu *vcpu); 486 #endif /* KERNEL */ 487 488 /* 489 * Identifiers for optional vmm capabilities 490 */ 491 enum vm_cap_type { 492 VM_CAP_HALT_EXIT, 493 VM_CAP_MTRAP_EXIT, 494 VM_CAP_PAUSE_EXIT, 495 VM_CAP_UNRESTRICTED_GUEST, 496 VM_CAP_ENABLE_INVPCID, 497 VM_CAP_BPT_EXIT, 498 VM_CAP_RDPID, 499 VM_CAP_RDTSCP, 500 VM_CAP_IPI_EXIT, 501 VM_CAP_MASK_HWINTR, 502 VM_CAP_MAX 503 }; 504 505 enum vm_intr_trigger { 506 EDGE_TRIGGER, 507 LEVEL_TRIGGER 508 }; 509 510 /* 511 * The 'access' field has the format specified in Table 21-2 of the Intel 512 * Architecture Manual vol 3b. 513 * 514 * XXX The contents of the 'access' field are architecturally defined except 515 * bit 16 - Segment Unusable. 516 */ 517 struct seg_desc { 518 uint64_t base; 519 uint32_t limit; 520 uint32_t access; 521 }; 522 #define SEG_DESC_TYPE(access) ((access) & 0x001f) 523 #define SEG_DESC_DPL(access) (((access) >> 5) & 0x3) 524 #define SEG_DESC_PRESENT(access) (((access) & 0x0080) ? 1 : 0) 525 #define SEG_DESC_DEF32(access) (((access) & 0x4000) ? 1 : 0) 526 #define SEG_DESC_GRANULARITY(access) (((access) & 0x8000) ? 1 : 0) 527 #define SEG_DESC_UNUSABLE(access) (((access) & 0x10000) ? 1 : 0) 528 529 enum vm_cpu_mode { 530 CPU_MODE_REAL, 531 CPU_MODE_PROTECTED, 532 CPU_MODE_COMPATIBILITY, /* IA-32E mode (CS.L = 0) */ 533 CPU_MODE_64BIT, /* IA-32E mode (CS.L = 1) */ 534 }; 535 536 enum vm_paging_mode { 537 PAGING_MODE_FLAT, 538 PAGING_MODE_32, 539 PAGING_MODE_PAE, 540 PAGING_MODE_64, 541 PAGING_MODE_64_LA57, 542 }; 543 544 struct vm_guest_paging { 545 uint64_t cr3; 546 int cpl; 547 enum vm_cpu_mode cpu_mode; 548 enum vm_paging_mode paging_mode; 549 }; 550 551 /* 552 * The data structures 'vie' and 'vie_op' are meant to be opaque to the 553 * consumers of instruction decoding. The only reason why their contents 554 * need to be exposed is because they are part of the 'vm_exit' structure. 555 */ 556 struct vie_op { 557 uint8_t op_byte; /* actual opcode byte */ 558 uint8_t op_type; /* type of operation (e.g. MOV) */ 559 uint16_t op_flags; 560 }; 561 _Static_assert(sizeof(struct vie_op) == 4, "ABI"); 562 _Static_assert(_Alignof(struct vie_op) == 2, "ABI"); 563 564 #define VIE_INST_SIZE 15 565 struct vie { 566 uint8_t inst[VIE_INST_SIZE]; /* instruction bytes */ 567 uint8_t num_valid; /* size of the instruction */ 568 569 /* The following fields are all zeroed upon restart. */ 570 #define vie_startzero num_processed 571 uint8_t num_processed; 572 573 uint8_t addrsize:4, opsize:4; /* address and operand sizes */ 574 uint8_t rex_w:1, /* REX prefix */ 575 rex_r:1, 576 rex_x:1, 577 rex_b:1, 578 rex_present:1, 579 repz_present:1, /* REP/REPE/REPZ prefix */ 580 repnz_present:1, /* REPNE/REPNZ prefix */ 581 opsize_override:1, /* Operand size override */ 582 addrsize_override:1, /* Address size override */ 583 segment_override:1; /* Segment override */ 584 585 uint8_t mod:2, /* ModRM byte */ 586 reg:4, 587 rm:4; 588 589 uint8_t ss:2, /* SIB byte */ 590 vex_present:1, /* VEX prefixed */ 591 vex_l:1, /* L bit */ 592 index:4, /* SIB byte */ 593 base:4; /* SIB byte */ 594 595 uint8_t disp_bytes; 596 uint8_t imm_bytes; 597 598 uint8_t scale; 599 600 uint8_t vex_reg:4, /* vvvv: first source register specifier */ 601 vex_pp:2, /* pp */ 602 _sparebits:2; 603 604 uint8_t _sparebytes[2]; 605 606 int base_register; /* VM_REG_GUEST_xyz */ 607 int index_register; /* VM_REG_GUEST_xyz */ 608 int segment_register; /* VM_REG_GUEST_xyz */ 609 610 int64_t displacement; /* optional addr displacement */ 611 int64_t immediate; /* optional immediate operand */ 612 613 uint8_t decoded; /* set to 1 if successfully decoded */ 614 615 uint8_t _sparebyte; 616 617 struct vie_op op; /* opcode description */ 618 }; 619 _Static_assert(sizeof(struct vie) == 64, "ABI"); 620 _Static_assert(__offsetof(struct vie, disp_bytes) == 22, "ABI"); 621 _Static_assert(__offsetof(struct vie, scale) == 24, "ABI"); 622 _Static_assert(__offsetof(struct vie, base_register) == 28, "ABI"); 623 624 enum vm_exitcode { 625 VM_EXITCODE_INOUT, 626 VM_EXITCODE_VMX, 627 VM_EXITCODE_BOGUS, 628 VM_EXITCODE_RDMSR, 629 VM_EXITCODE_WRMSR, 630 VM_EXITCODE_HLT, 631 VM_EXITCODE_MTRAP, 632 VM_EXITCODE_PAUSE, 633 VM_EXITCODE_PAGING, 634 VM_EXITCODE_INST_EMUL, 635 VM_EXITCODE_SPINUP_AP, 636 VM_EXITCODE_DEPRECATED1, /* used to be SPINDOWN_CPU */ 637 VM_EXITCODE_RENDEZVOUS, 638 VM_EXITCODE_IOAPIC_EOI, 639 VM_EXITCODE_SUSPENDED, 640 VM_EXITCODE_INOUT_STR, 641 VM_EXITCODE_TASK_SWITCH, 642 VM_EXITCODE_MONITOR, 643 VM_EXITCODE_MWAIT, 644 VM_EXITCODE_SVM, 645 VM_EXITCODE_REQIDLE, 646 VM_EXITCODE_DEBUG, 647 VM_EXITCODE_VMINSN, 648 VM_EXITCODE_BPT, 649 VM_EXITCODE_IPI, 650 VM_EXITCODE_MAX 651 }; 652 653 struct vm_inout { 654 uint16_t bytes:3; /* 1 or 2 or 4 */ 655 uint16_t in:1; 656 uint16_t string:1; 657 uint16_t rep:1; 658 uint16_t port; 659 uint32_t eax; /* valid for out */ 660 }; 661 662 struct vm_inout_str { 663 struct vm_inout inout; /* must be the first element */ 664 struct vm_guest_paging paging; 665 uint64_t rflags; 666 uint64_t cr0; 667 uint64_t index; 668 uint64_t count; /* rep=1 (%rcx), rep=0 (1) */ 669 int addrsize; 670 enum vm_reg_name seg_name; 671 struct seg_desc seg_desc; 672 }; 673 674 enum task_switch_reason { 675 TSR_CALL, 676 TSR_IRET, 677 TSR_JMP, 678 TSR_IDT_GATE, /* task gate in IDT */ 679 }; 680 681 struct vm_task_switch { 682 uint16_t tsssel; /* new TSS selector */ 683 int ext; /* task switch due to external event */ 684 uint32_t errcode; 685 int errcode_valid; /* push 'errcode' on the new stack */ 686 enum task_switch_reason reason; 687 struct vm_guest_paging paging; 688 }; 689 690 struct vm_exit { 691 enum vm_exitcode exitcode; 692 int inst_length; /* 0 means unknown */ 693 uint64_t rip; 694 union { 695 struct vm_inout inout; 696 struct vm_inout_str inout_str; 697 struct { 698 uint64_t gpa; 699 int fault_type; 700 } paging; 701 struct { 702 uint64_t gpa; 703 uint64_t gla; 704 uint64_t cs_base; 705 int cs_d; /* CS.D */ 706 struct vm_guest_paging paging; 707 struct vie vie; 708 } inst_emul; 709 /* 710 * VMX specific payload. Used when there is no "better" 711 * exitcode to represent the VM-exit. 712 */ 713 struct { 714 int status; /* vmx inst status */ 715 /* 716 * 'exit_reason' and 'exit_qualification' are valid 717 * only if 'status' is zero. 718 */ 719 uint32_t exit_reason; 720 uint64_t exit_qualification; 721 /* 722 * 'inst_error' and 'inst_type' are valid 723 * only if 'status' is non-zero. 724 */ 725 int inst_type; 726 int inst_error; 727 } vmx; 728 /* 729 * SVM specific payload. 730 */ 731 struct { 732 uint64_t exitcode; 733 uint64_t exitinfo1; 734 uint64_t exitinfo2; 735 } svm; 736 struct { 737 int inst_length; 738 } bpt; 739 struct { 740 uint32_t code; /* ecx value */ 741 uint64_t wval; 742 } msr; 743 struct { 744 int vcpu; 745 uint64_t rip; 746 } spinup_ap; 747 struct { 748 uint64_t rflags; 749 uint64_t intr_status; 750 } hlt; 751 struct { 752 int vector; 753 } ioapic_eoi; 754 struct { 755 enum vm_suspend_how how; 756 } suspended; 757 struct { 758 /* 759 * The destination vCPU mask is saved in vcpu->cpuset 760 * and is copied out to userspace separately to avoid 761 * ABI concerns. 762 */ 763 uint32_t mode; 764 uint8_t vector; 765 } ipi; 766 struct vm_task_switch task_switch; 767 } u; 768 }; 769 770 /* APIs to inject faults into the guest */ 771 void vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, 772 int errcode); 773 774 static __inline void 775 vm_inject_ud(struct vcpu *vcpu) 776 { 777 vm_inject_fault(vcpu, IDT_UD, 0, 0); 778 } 779 780 static __inline void 781 vm_inject_gp(struct vcpu *vcpu) 782 { 783 vm_inject_fault(vcpu, IDT_GP, 1, 0); 784 } 785 786 static __inline void 787 vm_inject_ac(struct vcpu *vcpu, int errcode) 788 { 789 vm_inject_fault(vcpu, IDT_AC, 1, errcode); 790 } 791 792 static __inline void 793 vm_inject_ss(struct vcpu *vcpu, int errcode) 794 { 795 vm_inject_fault(vcpu, IDT_SS, 1, errcode); 796 } 797 798 void vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2); 799 800 #endif /* _VMM_H_ */ 801