xref: /freebsd/sys/amd64/include/pmap.h (revision c8f9c1f3d96b60b1e298b5a0f3838c033bf72e05)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1991 Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department and William Jolitz of UUNET Technologies Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Derived from hp300 version by Mike Hibler, this version by William
37  * Jolitz uses a recursive map [a pde points to the page directory] to
38  * map the page tables using the pagetables themselves. This is done to
39  * reduce the impact on kernel virtual memory for lots of sparse address
40  * space, and to reduce the cost of memory to each process.
41  *
42  *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
43  *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
44  * $FreeBSD$
45  */
46 
47 #ifndef _MACHINE_PMAP_H_
48 #define	_MACHINE_PMAP_H_
49 
50 /*
51  * Page-directory and page-table entries follow this format, with a few
52  * of the fields not present here and there, depending on a lot of things.
53  */
54 				/* ---- Intel Nomenclature ---- */
55 #define	X86_PG_V	0x001	/* P	Valid			*/
56 #define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
57 #define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
58 #define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
59 #define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
60 #define	X86_PG_A	0x020	/* A	Accessed		*/
61 #define	X86_PG_M	0x040	/* D	Dirty			*/
62 #define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
63 #define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
64 #define	X86_PG_G	0x100	/* G	Global			*/
65 #define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
66 #define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
67 #define	X86_PG_AVAIL3	0x800	/*    \				*/
68 #define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
69 #define	X86_PG_NX	(1ul<<63) /* No-execute */
70 #define	X86_PG_AVAIL(x)	(1ul << (x))
71 
72 /* Page level cache control fields used to determine the PAT type */
73 #define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
74 #define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
75 
76 /*
77  * Intel extended page table (EPT) bit definitions.
78  */
79 #define	EPT_PG_READ		0x001	/* R	Read		*/
80 #define	EPT_PG_WRITE		0x002	/* W	Write		*/
81 #define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
82 #define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
83 #define	EPT_PG_PS		0x080	/* PS	Page size	*/
84 #define	EPT_PG_A		0x100	/* A	Accessed	*/
85 #define	EPT_PG_M		0x200	/* D	Dirty		*/
86 #define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
87 
88 /*
89  * Define the PG_xx macros in terms of the bits on x86 PTEs.
90  */
91 #define	PG_V		X86_PG_V
92 #define	PG_RW		X86_PG_RW
93 #define	PG_U		X86_PG_U
94 #define	PG_NC_PWT	X86_PG_NC_PWT
95 #define	PG_NC_PCD	X86_PG_NC_PCD
96 #define	PG_A		X86_PG_A
97 #define	PG_M		X86_PG_M
98 #define	PG_PS		X86_PG_PS
99 #define	PG_PTE_PAT	X86_PG_PTE_PAT
100 #define	PG_G		X86_PG_G
101 #define	PG_AVAIL1	X86_PG_AVAIL1
102 #define	PG_AVAIL2	X86_PG_AVAIL2
103 #define	PG_AVAIL3	X86_PG_AVAIL3
104 #define	PG_PDE_PAT	X86_PG_PDE_PAT
105 #define	PG_NX		X86_PG_NX
106 #define	PG_PDE_CACHE	X86_PG_PDE_CACHE
107 #define	PG_PTE_CACHE	X86_PG_PTE_CACHE
108 
109 /* Our various interpretations of the above */
110 #define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
111 #define	PG_MANAGED	X86_PG_AVAIL2
112 #define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
113 #define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
114 #define	PG_PROMOTED	X86_PG_AVAIL(54)	/* PDE only */
115 #define	PG_FRAME	(0x000ffffffffff000ul)
116 #define	PG_PS_FRAME	(0x000fffffffe00000ul)
117 
118 /*
119  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
120  * (PTE) page mappings have identical settings for the following fields:
121  */
122 #define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
123 	    PG_M | PG_A | PG_U | PG_RW | PG_V)
124 
125 /*
126  * Page Protection Exception bits
127  */
128 
129 #define PGEX_P		0x01	/* Protection violation vs. not present */
130 #define PGEX_W		0x02	/* during a Write cycle */
131 #define PGEX_U		0x04	/* access from User mode (UPL) */
132 #define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
133 #define PGEX_I		0x10	/* during an instruction fetch */
134 
135 /*
136  * undef the PG_xx macros that define bits in the regular x86 PTEs that
137  * have a different position in nested PTEs. This is done when compiling
138  * code that needs to be aware of the differences between regular x86 and
139  * nested PTEs.
140  *
141  * The appropriate bitmask will be calculated at runtime based on the pmap
142  * type.
143  */
144 #ifdef AMD64_NPT_AWARE
145 #undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
146 #undef PG_G
147 #undef PG_A
148 #undef PG_M
149 #undef PG_PDE_PAT
150 #undef PG_PDE_CACHE
151 #undef PG_PTE_PAT
152 #undef PG_PTE_CACHE
153 #undef PG_RW
154 #undef PG_V
155 #endif
156 
157 /*
158  * Pte related macros.  This is complicated by having to deal with
159  * the sign extension of the 48th bit.
160  */
161 #define KVADDR(l4, l3, l2, l1) ( \
162 	((unsigned long)-1 << 47) | \
163 	((unsigned long)(l4) << PML4SHIFT) | \
164 	((unsigned long)(l3) << PDPSHIFT) | \
165 	((unsigned long)(l2) << PDRSHIFT) | \
166 	((unsigned long)(l1) << PAGE_SHIFT))
167 
168 #define UVADDR(l4, l3, l2, l1) ( \
169 	((unsigned long)(l4) << PML4SHIFT) | \
170 	((unsigned long)(l3) << PDPSHIFT) | \
171 	((unsigned long)(l2) << PDRSHIFT) | \
172 	((unsigned long)(l1) << PAGE_SHIFT))
173 
174 /*
175  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
176  * but setting it larger than NDMPML4E makes no sense.
177  *
178  * Each slot provides .5 TB of kernel virtual space.
179  */
180 #define NKPML4E		4
181 
182 #define	NUPML4E		(NPML4EPG/2)	/* number of userland PML4 pages */
183 #define	NUPDPE		(NUPML4E*NPDPEPG)/* number of userland PDP pages */
184 #define	NUPDE		(NUPDPE*NPDEPG)	/* number of userland PD entries */
185 
186 /*
187  * NDMPML4E is the maximum number of PML4 entries that will be
188  * used to implement the direct map.  It must be a power of two,
189  * and should generally exceed NKPML4E.  The maximum possible
190  * value is 64; using 128 will make the direct map intrude into
191  * the recursive page table map.
192  */
193 #define	NDMPML4E	8
194 
195 /*
196  * These values control the layout of virtual memory.  The starting address
197  * of the direct map, which is controlled by DMPML4I, must be a multiple of
198  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
199  *
200  * Note: KPML4I is the index of the (single) level 4 page that maps
201  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
202  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
203  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
204  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
205  * KERNBASE.
206  *
207  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
208  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
209  * and KPDPI provides bits 30..38.)
210  */
211 #define	PML4PML4I	(NPML4EPG/2)	/* Index of recursive pml4 mapping */
212 
213 #define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
214 #define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
215 
216 #define	KPML4I		(NPML4EPG-1)
217 #define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
218 
219 /*
220  * XXX doesn't really belong here I guess...
221  */
222 #define ISA_HOLE_START    0xa0000
223 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
224 
225 #define	PMAP_PCID_NONE		0xffffffff
226 #define	PMAP_PCID_KERN		0
227 #define	PMAP_PCID_OVERMAX	0x1000
228 #define	PMAP_PCID_OVERMAX_KERN	0x800
229 #define	PMAP_PCID_USER_PT	0x800
230 
231 #define	PMAP_NO_CR3		(~0UL)
232 
233 #ifndef LOCORE
234 
235 #include <sys/queue.h>
236 #include <sys/_cpuset.h>
237 #include <sys/_lock.h>
238 #include <sys/_mutex.h>
239 
240 #include <vm/_vm_radix.h>
241 
242 typedef u_int64_t pd_entry_t;
243 typedef u_int64_t pt_entry_t;
244 typedef u_int64_t pdp_entry_t;
245 typedef u_int64_t pml4_entry_t;
246 
247 /*
248  * Address of current address space page table maps and directories.
249  */
250 #ifdef _KERNEL
251 #define	addr_PTmap	(KVADDR(PML4PML4I, 0, 0, 0))
252 #define	addr_PDmap	(KVADDR(PML4PML4I, PML4PML4I, 0, 0))
253 #define	addr_PDPmap	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
254 #define	addr_PML4map	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
255 #define	addr_PML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
256 #define	PTmap		((pt_entry_t *)(addr_PTmap))
257 #define	PDmap		((pd_entry_t *)(addr_PDmap))
258 #define	PDPmap		((pd_entry_t *)(addr_PDPmap))
259 #define	PML4map		((pd_entry_t *)(addr_PML4map))
260 #define	PML4pml4e	((pd_entry_t *)(addr_PML4pml4e))
261 
262 extern int nkpt;		/* Initial number of kernel page tables */
263 extern u_int64_t KPDPphys;	/* physical address of kernel level 3 */
264 extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
265 
266 /*
267  * virtual address to page table entry and
268  * to physical address.
269  * Note: these work recursively, thus vtopte of a pte will give
270  * the corresponding pde that in turn maps it.
271  */
272 pt_entry_t *vtopte(vm_offset_t);
273 #define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
274 
275 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
276 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
277 #define	pte_store(ptep, pte) do { \
278 	*(u_long *)(ptep) = (u_long)(pte); \
279 } while (0)
280 #define	pte_clear(ptep)			pte_store(ptep, 0)
281 
282 #define	pde_store(pdep, pde)		pte_store(pdep, pde)
283 
284 extern pt_entry_t pg_nx;
285 
286 #endif /* _KERNEL */
287 
288 /*
289  * Pmap stuff
290  */
291 struct	pv_entry;
292 struct	pv_chunk;
293 
294 /*
295  * Locks
296  * (p) PV list lock
297  */
298 struct md_page {
299 	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
300 	int			pv_gen;   /* (p) */
301 	int			pat_mode;
302 };
303 
304 enum pmap_type {
305 	PT_X86,			/* regular x86 page tables */
306 	PT_EPT,			/* Intel's nested page tables */
307 	PT_RVI,			/* AMD's nested page tables */
308 };
309 
310 struct pmap_pcids {
311 	uint32_t	pm_pcid;
312 	uint32_t	pm_gen;
313 };
314 
315 /*
316  * The kernel virtual address (KVA) of the level 4 page table page is always
317  * within the direct map (DMAP) region.
318  */
319 struct pmap {
320 	struct mtx		pm_mtx;
321 	pml4_entry_t		*pm_pml4;	/* KVA of level 4 page table */
322 	pml4_entry_t		*pm_pml4u;	/* KVA of user l4 page table */
323 	uint64_t		pm_cr3;
324 	uint64_t		pm_ucr3;
325 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
326 	cpuset_t		pm_active;	/* active on cpus */
327 	enum pmap_type		pm_type;	/* regular or nested tables */
328 	struct pmap_statistics	pm_stats;	/* pmap statistics */
329 	struct vm_radix		pm_root;	/* spare page table pages */
330 	long			pm_eptgen;	/* EPT pmap generation id */
331 	int			pm_flags;
332 	struct pmap_pcids	pm_pcids[MAXCPU];
333 };
334 
335 /* flags */
336 #define	PMAP_NESTED_IPIMASK	0xff
337 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
338 #define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
339 #define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
340 
341 typedef struct pmap	*pmap_t;
342 
343 #ifdef _KERNEL
344 extern struct pmap	kernel_pmap_store;
345 #define kernel_pmap	(&kernel_pmap_store)
346 
347 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
348 #define	PMAP_LOCK_ASSERT(pmap, type) \
349 				mtx_assert(&(pmap)->pm_mtx, (type))
350 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
351 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
352 				    NULL, MTX_DEF | MTX_DUPOK)
353 #define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
354 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
355 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
356 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
357 
358 int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
359 int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
360 #endif
361 
362 /*
363  * For each vm_page_t, there is a list of all currently valid virtual
364  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
365  */
366 typedef struct pv_entry {
367 	vm_offset_t	pv_va;		/* virtual address for mapping */
368 	TAILQ_ENTRY(pv_entry)	pv_next;
369 } *pv_entry_t;
370 
371 /*
372  * pv_entries are allocated in chunks per-process.  This avoids the
373  * need to track per-pmap assignments.
374  */
375 #define	_NPCM	3
376 #define	_NPCPV	168
377 #define	PV_CHUNK_HEADER							\
378 	pmap_t			pc_pmap;				\
379 	TAILQ_ENTRY(pv_chunk)	pc_list;				\
380 	uint64_t		pc_map[_NPCM];	/* bitmap; 1 = free */	\
381 	TAILQ_ENTRY(pv_chunk)	pc_lru;
382 
383 struct pv_chunk_header {
384 	PV_CHUNK_HEADER
385 };
386 
387 struct pv_chunk {
388 	PV_CHUNK_HEADER
389 	struct pv_entry		pc_pventry[_NPCPV];
390 };
391 
392 #ifdef	_KERNEL
393 
394 extern caddr_t	CADDR1;
395 extern pt_entry_t *CMAP1;
396 extern vm_paddr_t phys_avail[];
397 extern vm_paddr_t dump_avail[];
398 extern vm_offset_t virtual_avail;
399 extern vm_offset_t virtual_end;
400 extern vm_paddr_t dmaplimit;
401 extern int pmap_pcid_enabled;
402 extern int invpcid_works;
403 
404 #define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
405 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
406 #define	pmap_unmapbios(va, sz)	pmap_unmapdev((va), (sz))
407 
408 struct thread;
409 
410 void	pmap_activate_sw(struct thread *);
411 void	pmap_bootstrap(vm_paddr_t *);
412 int	pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
413 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
414 void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
415 void	pmap_init_pat(void);
416 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
417 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
418 vm_paddr_t pmap_kextract(vm_offset_t);
419 void	pmap_kremove(vm_offset_t);
420 void	*pmap_mapbios(vm_paddr_t, vm_size_t);
421 void	*pmap_mapdev(vm_paddr_t, vm_size_t);
422 void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
423 boolean_t pmap_page_is_mapped(vm_page_t m);
424 void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
425 void	pmap_pinit_pml4(vm_page_t);
426 bool	pmap_ps_enabled(pmap_t pmap);
427 void	pmap_unmapdev(vm_offset_t, vm_size_t);
428 void	pmap_invalidate_page(pmap_t, vm_offset_t);
429 void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
430 void	pmap_invalidate_all(pmap_t);
431 void	pmap_invalidate_cache(void);
432 void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
433 void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva,
434 	    boolean_t force);
435 void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
436 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
437 void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
438 void	pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
439 void	pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
440 void	pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
441 void	pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
442 void	pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
443 	    vm_offset_t eva);
444 #endif /* _KERNEL */
445 
446 /* Return various clipped indexes for a given VA */
447 static __inline vm_pindex_t
448 pmap_pte_index(vm_offset_t va)
449 {
450 
451 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
452 }
453 
454 static __inline vm_pindex_t
455 pmap_pde_index(vm_offset_t va)
456 {
457 
458 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
459 }
460 
461 static __inline vm_pindex_t
462 pmap_pdpe_index(vm_offset_t va)
463 {
464 
465 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
466 }
467 
468 static __inline vm_pindex_t
469 pmap_pml4e_index(vm_offset_t va)
470 {
471 
472 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
473 }
474 
475 #endif /* !LOCORE */
476 
477 #endif /* !_MACHINE_PMAP_H_ */
478