1 /*- 2 * Copyright (c) 2003 Peter Wemm. 3 * Copyright (c) 1991 Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * the Systems Programming Group of the University of Utah Computer 8 * Science Department and William Jolitz of UUNET Technologies Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Derived from hp300 version by Mike Hibler, this version by William 35 * Jolitz uses a recursive map [a pde points to the page directory] to 36 * map the page tables using the pagetables themselves. This is done to 37 * reduce the impact on kernel virtual memory for lots of sparse address 38 * space, and to reduce the cost of memory to each process. 39 * 40 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 41 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 42 * $FreeBSD$ 43 */ 44 45 #ifndef _MACHINE_PMAP_H_ 46 #define _MACHINE_PMAP_H_ 47 48 /* 49 * Page-directory and page-table entries follow this format, with a few 50 * of the fields not present here and there, depending on a lot of things. 51 */ 52 /* ---- Intel Nomenclature ---- */ 53 #define X86_PG_V 0x001 /* P Valid */ 54 #define X86_PG_RW 0x002 /* R/W Read/Write */ 55 #define X86_PG_U 0x004 /* U/S User/Supervisor */ 56 #define X86_PG_NC_PWT 0x008 /* PWT Write through */ 57 #define X86_PG_NC_PCD 0x010 /* PCD Cache disable */ 58 #define X86_PG_A 0x020 /* A Accessed */ 59 #define X86_PG_M 0x040 /* D Dirty */ 60 #define X86_PG_PS 0x080 /* PS Page size (0=4k,1=2M) */ 61 #define X86_PG_PTE_PAT 0x080 /* PAT PAT index */ 62 #define X86_PG_G 0x100 /* G Global */ 63 #define X86_PG_AVAIL1 0x200 /* / Available for system */ 64 #define X86_PG_AVAIL2 0x400 /* < programmers use */ 65 #define X86_PG_AVAIL3 0x800 /* \ */ 66 #define X86_PG_PDE_PAT 0x1000 /* PAT PAT index */ 67 #define X86_PG_NX (1ul<<63) /* No-execute */ 68 #define X86_PG_AVAIL(x) (1ul << (x)) 69 70 /* Page level cache control fields used to determine the PAT type */ 71 #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) 72 #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) 73 74 /* 75 * Intel extended page table (EPT) bit definitions. 76 */ 77 #define EPT_PG_READ 0x001 /* R Read */ 78 #define EPT_PG_WRITE 0x002 /* W Write */ 79 #define EPT_PG_EXECUTE 0x004 /* X Execute */ 80 #define EPT_PG_IGNORE_PAT 0x040 /* IPAT Ignore PAT */ 81 #define EPT_PG_PS 0x080 /* PS Page size */ 82 #define EPT_PG_A 0x100 /* A Accessed */ 83 #define EPT_PG_M 0x200 /* D Dirty */ 84 #define EPT_PG_MEMORY_TYPE(x) ((x) << 3) /* MT Memory Type */ 85 86 /* 87 * Define the PG_xx macros in terms of the bits on x86 PTEs. 88 */ 89 #define PG_V X86_PG_V 90 #define PG_RW X86_PG_RW 91 #define PG_U X86_PG_U 92 #define PG_NC_PWT X86_PG_NC_PWT 93 #define PG_NC_PCD X86_PG_NC_PCD 94 #define PG_A X86_PG_A 95 #define PG_M X86_PG_M 96 #define PG_PS X86_PG_PS 97 #define PG_PTE_PAT X86_PG_PTE_PAT 98 #define PG_G X86_PG_G 99 #define PG_AVAIL1 X86_PG_AVAIL1 100 #define PG_AVAIL2 X86_PG_AVAIL2 101 #define PG_AVAIL3 X86_PG_AVAIL3 102 #define PG_PDE_PAT X86_PG_PDE_PAT 103 #define PG_NX X86_PG_NX 104 #define PG_PDE_CACHE X86_PG_PDE_CACHE 105 #define PG_PTE_CACHE X86_PG_PTE_CACHE 106 107 /* Our various interpretations of the above */ 108 #define PG_W X86_PG_AVAIL3 /* "Wired" pseudoflag */ 109 #define PG_MANAGED X86_PG_AVAIL2 110 #define EPT_PG_EMUL_V X86_PG_AVAIL(52) 111 #define EPT_PG_EMUL_RW X86_PG_AVAIL(53) 112 #define PG_FRAME (0x000ffffffffff000ul) 113 #define PG_PS_FRAME (0x000fffffffe00000ul) 114 115 /* 116 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB 117 * (PTE) page mappings have identical settings for the following fields: 118 */ 119 #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \ 120 PG_M | PG_A | PG_U | PG_RW | PG_V) 121 122 /* 123 * Page Protection Exception bits 124 */ 125 126 #define PGEX_P 0x01 /* Protection violation vs. not present */ 127 #define PGEX_W 0x02 /* during a Write cycle */ 128 #define PGEX_U 0x04 /* access from User mode (UPL) */ 129 #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ 130 #define PGEX_I 0x10 /* during an instruction fetch */ 131 132 /* 133 * undef the PG_xx macros that define bits in the regular x86 PTEs that 134 * have a different position in nested PTEs. This is done when compiling 135 * code that needs to be aware of the differences between regular x86 and 136 * nested PTEs. 137 * 138 * The appropriate bitmask will be calculated at runtime based on the pmap 139 * type. 140 */ 141 #ifdef AMD64_NPT_AWARE 142 #undef PG_AVAIL1 /* X86_PG_AVAIL1 aliases with EPT_PG_M */ 143 #undef PG_G 144 #undef PG_A 145 #undef PG_M 146 #undef PG_PDE_PAT 147 #undef PG_PDE_CACHE 148 #undef PG_PTE_PAT 149 #undef PG_PTE_CACHE 150 #undef PG_RW 151 #undef PG_V 152 #endif 153 154 /* 155 * Pte related macros. This is complicated by having to deal with 156 * the sign extension of the 48th bit. 157 */ 158 #define KVADDR(l4, l3, l2, l1) ( \ 159 ((unsigned long)-1 << 47) | \ 160 ((unsigned long)(l4) << PML4SHIFT) | \ 161 ((unsigned long)(l3) << PDPSHIFT) | \ 162 ((unsigned long)(l2) << PDRSHIFT) | \ 163 ((unsigned long)(l1) << PAGE_SHIFT)) 164 165 #define UVADDR(l4, l3, l2, l1) ( \ 166 ((unsigned long)(l4) << PML4SHIFT) | \ 167 ((unsigned long)(l3) << PDPSHIFT) | \ 168 ((unsigned long)(l2) << PDRSHIFT) | \ 169 ((unsigned long)(l1) << PAGE_SHIFT)) 170 171 /* 172 * Number of kernel PML4 slots. Can be anywhere from 1 to 64 or so, 173 * but setting it larger than NDMPML4E makes no sense. 174 * 175 * Each slot provides .5 TB of kernel virtual space. 176 */ 177 #define NKPML4E 4 178 179 #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ 180 #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ 181 #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ 182 183 /* 184 * NDMPML4E is the maximum number of PML4 entries that will be 185 * used to implement the direct map. It must be a power of two, 186 * and should generally exceed NKPML4E. The maximum possible 187 * value is 64; using 128 will make the direct map intrude into 188 * the recursive page table map. 189 */ 190 #define NDMPML4E 8 191 192 /* 193 * These values control the layout of virtual memory. The starting address 194 * of the direct map, which is controlled by DMPML4I, must be a multiple of 195 * its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.) 196 * 197 * Note: KPML4I is the index of the (single) level 4 page that maps 198 * the KVA that holds KERNBASE, while KPML4BASE is the index of the 199 * first level 4 page that maps VM_MIN_KERNEL_ADDRESS. If NKPML4E 200 * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra 201 * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to 202 * KERNBASE. 203 * 204 * (KPML4I combines with KPDPI to choose where KERNBASE starts. 205 * Or, in other words, KPML4I provides bits 39..47 of KERNBASE, 206 * and KPDPI provides bits 30..38.) 207 */ 208 #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ 209 210 #define KPML4BASE (NPML4EPG-NKPML4E) /* KVM at highest addresses */ 211 #define DMPML4I rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */ 212 213 #define KPML4I (NPML4EPG-1) 214 #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ 215 216 /* 217 * XXX doesn't really belong here I guess... 218 */ 219 #define ISA_HOLE_START 0xa0000 220 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) 221 222 #ifndef LOCORE 223 224 #include <sys/queue.h> 225 #include <sys/_cpuset.h> 226 #include <sys/_lock.h> 227 #include <sys/_mutex.h> 228 229 #include <vm/_vm_radix.h> 230 231 typedef u_int64_t pd_entry_t; 232 typedef u_int64_t pt_entry_t; 233 typedef u_int64_t pdp_entry_t; 234 typedef u_int64_t pml4_entry_t; 235 236 /* 237 * Address of current address space page table maps and directories. 238 */ 239 #ifdef _KERNEL 240 #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) 241 #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) 242 #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) 243 #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) 244 #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) 245 #define PTmap ((pt_entry_t *)(addr_PTmap)) 246 #define PDmap ((pd_entry_t *)(addr_PDmap)) 247 #define PDPmap ((pd_entry_t *)(addr_PDPmap)) 248 #define PML4map ((pd_entry_t *)(addr_PML4map)) 249 #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) 250 251 extern int nkpt; /* Initial number of kernel page tables */ 252 extern u_int64_t KPDPphys; /* physical address of kernel level 3 */ 253 extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ 254 255 /* 256 * virtual address to page table entry and 257 * to physical address. 258 * Note: these work recursively, thus vtopte of a pte will give 259 * the corresponding pde that in turn maps it. 260 */ 261 pt_entry_t *vtopte(vm_offset_t); 262 #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) 263 264 #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte) 265 #define pte_load_clear(ptep) atomic_swap_long(ptep, 0) 266 #define pte_store(ptep, pte) do { \ 267 *(u_long *)(ptep) = (u_long)(pte); \ 268 } while (0) 269 #define pte_clear(ptep) pte_store(ptep, 0) 270 271 #define pde_store(pdep, pde) pte_store(pdep, pde) 272 273 extern pt_entry_t pg_nx; 274 275 #endif /* _KERNEL */ 276 277 /* 278 * Pmap stuff 279 */ 280 struct pv_entry; 281 struct pv_chunk; 282 283 struct md_page { 284 TAILQ_HEAD(,pv_entry) pv_list; 285 int pv_gen; 286 int pat_mode; 287 }; 288 289 enum pmap_type { 290 PT_X86, /* regular x86 page tables */ 291 PT_EPT, /* Intel's nested page tables */ 292 PT_RVI, /* AMD's nested page tables */ 293 }; 294 295 /* 296 * The kernel virtual address (KVA) of the level 4 page table page is always 297 * within the direct map (DMAP) region. 298 */ 299 struct pmap { 300 struct mtx pm_mtx; 301 pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ 302 uint64_t pm_cr3; 303 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 304 cpuset_t pm_active; /* active on cpus */ 305 cpuset_t pm_save; /* Context valid on cpus mask */ 306 int pm_pcid; /* context id */ 307 enum pmap_type pm_type; /* regular or nested tables */ 308 struct pmap_statistics pm_stats; /* pmap statistics */ 309 struct vm_radix pm_root; /* spare page table pages */ 310 long pm_eptgen; /* EPT pmap generation id */ 311 int pm_flags; 312 }; 313 314 /* flags */ 315 #define PMAP_PDE_SUPERPAGE (1 << 0) /* supports 2MB superpages */ 316 #define PMAP_EMULATE_AD_BITS (1 << 1) /* needs A/D bits emulation */ 317 #define PMAP_SUPPORTS_EXEC_ONLY (1 << 2) /* execute only mappings ok */ 318 319 typedef struct pmap *pmap_t; 320 321 #ifdef _KERNEL 322 extern struct pmap kernel_pmap_store; 323 #define kernel_pmap (&kernel_pmap_store) 324 325 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 326 #define PMAP_LOCK_ASSERT(pmap, type) \ 327 mtx_assert(&(pmap)->pm_mtx, (type)) 328 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 329 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 330 NULL, MTX_DEF | MTX_DUPOK) 331 #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) 332 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 333 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 334 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 335 336 int pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags); 337 int pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype); 338 #endif 339 340 /* 341 * For each vm_page_t, there is a list of all currently valid virtual 342 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 343 */ 344 typedef struct pv_entry { 345 vm_offset_t pv_va; /* virtual address for mapping */ 346 TAILQ_ENTRY(pv_entry) pv_next; 347 } *pv_entry_t; 348 349 /* 350 * pv_entries are allocated in chunks per-process. This avoids the 351 * need to track per-pmap assignments. 352 */ 353 #define _NPCM 3 354 #define _NPCPV 168 355 struct pv_chunk { 356 pmap_t pc_pmap; 357 TAILQ_ENTRY(pv_chunk) pc_list; 358 uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ 359 TAILQ_ENTRY(pv_chunk) pc_lru; 360 struct pv_entry pc_pventry[_NPCPV]; 361 }; 362 363 #ifdef _KERNEL 364 365 extern caddr_t CADDR1; 366 extern pt_entry_t *CMAP1; 367 extern vm_paddr_t phys_avail[]; 368 extern vm_paddr_t dump_avail[]; 369 extern vm_offset_t virtual_avail; 370 extern vm_offset_t virtual_end; 371 372 #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) 373 #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) 374 #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) 375 376 void pmap_bootstrap(vm_paddr_t *); 377 int pmap_change_attr(vm_offset_t, vm_size_t, int); 378 void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate); 379 void pmap_init_pat(void); 380 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 381 void *pmap_kenter_temporary(vm_paddr_t pa, int i); 382 vm_paddr_t pmap_kextract(vm_offset_t); 383 void pmap_kremove(vm_offset_t); 384 void *pmap_mapbios(vm_paddr_t, vm_size_t); 385 void *pmap_mapdev(vm_paddr_t, vm_size_t); 386 void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); 387 boolean_t pmap_page_is_mapped(vm_page_t m); 388 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); 389 void pmap_unmapdev(vm_offset_t, vm_size_t); 390 void pmap_invalidate_page(pmap_t, vm_offset_t); 391 void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); 392 void pmap_invalidate_all(pmap_t); 393 void pmap_invalidate_cache(void); 394 void pmap_invalidate_cache_pages(vm_page_t *pages, int count); 395 void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva); 396 void pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num); 397 #endif /* _KERNEL */ 398 399 #endif /* !LOCORE */ 400 401 #endif /* !_MACHINE_PMAP_H_ */ 402