1 /*- 2 * Copyright (c) 2003 Peter Wemm. 3 * Copyright (c) 1991 Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * the Systems Programming Group of the University of Utah Computer 8 * Science Department and William Jolitz of UUNET Technologies Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Derived from hp300 version by Mike Hibler, this version by William 35 * Jolitz uses a recursive map [a pde points to the page directory] to 36 * map the page tables using the pagetables themselves. This is done to 37 * reduce the impact on kernel virtual memory for lots of sparse address 38 * space, and to reduce the cost of memory to each process. 39 * 40 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 41 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 42 * $FreeBSD$ 43 */ 44 45 #ifndef _MACHINE_PMAP_H_ 46 #define _MACHINE_PMAP_H_ 47 48 /* 49 * Page-directory and page-table entries follow this format, with a few 50 * of the fields not present here and there, depending on a lot of things. 51 */ 52 /* ---- Intel Nomenclature ---- */ 53 #define PG_V 0x001 /* P Valid */ 54 #define PG_RW 0x002 /* R/W Read/Write */ 55 #define PG_U 0x004 /* U/S User/Supervisor */ 56 #define PG_NC_PWT 0x008 /* PWT Write through */ 57 #define PG_NC_PCD 0x010 /* PCD Cache disable */ 58 #define PG_A 0x020 /* A Accessed */ 59 #define PG_M 0x040 /* D Dirty */ 60 #define PG_PS 0x080 /* PS Page size (0=4k,1=2M) */ 61 #define PG_PTE_PAT 0x080 /* PAT PAT index */ 62 #define PG_G 0x100 /* G Global */ 63 #define PG_AVAIL1 0x200 /* / Available for system */ 64 #define PG_AVAIL2 0x400 /* < programmers use */ 65 #define PG_AVAIL3 0x800 /* \ */ 66 #define PG_PDE_PAT 0x1000 /* PAT PAT index */ 67 #define PG_NX (1ul<<63) /* No-execute */ 68 69 70 /* Our various interpretations of the above */ 71 #define PG_W PG_AVAIL1 /* "Wired" pseudoflag */ 72 #define PG_MANAGED PG_AVAIL2 73 #define PG_FRAME (0x000ffffffffff000ul) 74 #define PG_PS_FRAME (0x000fffffffe00000ul) 75 #define PG_PROT (PG_RW|PG_U) /* all protection bits . */ 76 #define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */ 77 78 /* 79 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB 80 * (PTE) page mappings have identical settings for the following fields: 81 */ 82 #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_PAT | \ 83 PG_M | PG_A | PG_NC_PCD | PG_NC_PWT | PG_U | PG_RW | PG_V) 84 85 /* 86 * Page Protection Exception bits 87 */ 88 89 #define PGEX_P 0x01 /* Protection violation vs. not present */ 90 #define PGEX_W 0x02 /* during a Write cycle */ 91 #define PGEX_U 0x04 /* access from User mode (UPL) */ 92 #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ 93 #define PGEX_I 0x10 /* during an instruction fetch */ 94 95 /* 96 * Pte related macros. This is complicated by having to deal with 97 * the sign extension of the 48th bit. 98 */ 99 #define KVADDR(l4, l3, l2, l1) ( \ 100 ((unsigned long)-1 << 47) | \ 101 ((unsigned long)(l4) << PML4SHIFT) | \ 102 ((unsigned long)(l3) << PDPSHIFT) | \ 103 ((unsigned long)(l2) << PDRSHIFT) | \ 104 ((unsigned long)(l1) << PAGE_SHIFT)) 105 106 #define UVADDR(l4, l3, l2, l1) ( \ 107 ((unsigned long)(l4) << PML4SHIFT) | \ 108 ((unsigned long)(l3) << PDPSHIFT) | \ 109 ((unsigned long)(l2) << PDRSHIFT) | \ 110 ((unsigned long)(l1) << PAGE_SHIFT)) 111 112 /* Initial number of kernel page tables. */ 113 #ifndef NKPT 114 #define NKPT 32 115 #endif 116 117 #define NKPML4E 1 /* number of kernel PML4 slots */ 118 #define NKPDPE howmany(NKPT, NPDEPG)/* number of kernel PDP slots */ 119 120 #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ 121 #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ 122 #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ 123 124 #define NDMPML4E 1 /* number of dmap PML4 slots */ 125 126 /* 127 * The *PDI values control the layout of virtual memory 128 */ 129 #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ 130 131 #define KPML4I (NPML4EPG-1) /* Top 512GB for KVM */ 132 #define DMPML4I (KPML4I-1) /* Next 512GB down for direct map */ 133 134 #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ 135 136 /* 137 * XXX doesn't really belong here I guess... 138 */ 139 #define ISA_HOLE_START 0xa0000 140 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) 141 142 #ifndef LOCORE 143 144 #include <sys/queue.h> 145 #include <sys/_lock.h> 146 #include <sys/_mutex.h> 147 148 typedef u_int64_t pd_entry_t; 149 typedef u_int64_t pt_entry_t; 150 typedef u_int64_t pdp_entry_t; 151 typedef u_int64_t pml4_entry_t; 152 153 #define PML4ESHIFT (3) 154 #define PDPESHIFT (3) 155 #define PTESHIFT (3) 156 #define PDESHIFT (3) 157 158 /* 159 * Address of current and alternate address space page table maps 160 * and directories. 161 * XXX it might be saner to just direct map all of physical memory 162 * into the kernel using 2MB pages. We have enough space to do 163 * it (2^47 bits of KVM, while current max physical addressability 164 * is 2^40 physical bits). Then we can get rid of the evil hole 165 * in the page tables and the evil overlapping. 166 */ 167 #ifdef _KERNEL 168 #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) 169 #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) 170 #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) 171 #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) 172 #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) 173 #define PTmap ((pt_entry_t *)(addr_PTmap)) 174 #define PDmap ((pd_entry_t *)(addr_PDmap)) 175 #define PDPmap ((pd_entry_t *)(addr_PDPmap)) 176 #define PML4map ((pd_entry_t *)(addr_PML4map)) 177 #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) 178 179 extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ 180 #endif 181 182 #ifdef _KERNEL 183 /* 184 * virtual address to page table entry and 185 * to physical address. 186 * Note: these work recursively, thus vtopte of a pte will give 187 * the corresponding pde that in turn maps it. 188 */ 189 pt_entry_t *vtopte(vm_offset_t); 190 #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) 191 192 static __inline pt_entry_t 193 pte_load(pt_entry_t *ptep) 194 { 195 pt_entry_t r; 196 197 r = *ptep; 198 return (r); 199 } 200 201 static __inline pt_entry_t 202 pte_load_store(pt_entry_t *ptep, pt_entry_t pte) 203 { 204 pt_entry_t r; 205 206 __asm __volatile( 207 "xchgq %0,%1" 208 : "=m" (*ptep), 209 "=r" (r) 210 : "1" (pte), 211 "m" (*ptep)); 212 return (r); 213 } 214 215 #define pte_load_clear(pte) atomic_readandclear_long(pte) 216 217 static __inline void 218 pte_store(pt_entry_t *ptep, pt_entry_t pte) 219 { 220 221 *ptep = pte; 222 } 223 224 #define pte_clear(ptep) pte_store((ptep), (pt_entry_t)0ULL) 225 226 #define pde_store(pdep, pde) pte_store((pdep), (pde)) 227 228 extern pt_entry_t pg_nx; 229 230 #endif /* _KERNEL */ 231 232 /* 233 * Pmap stuff 234 */ 235 struct pv_entry; 236 struct pv_chunk; 237 238 struct md_page { 239 TAILQ_HEAD(,pv_entry) pv_list; 240 }; 241 242 struct pmap { 243 struct mtx pm_mtx; 244 pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ 245 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 246 u_int pm_active; /* active on cpus */ 247 /* spare u_int here due to padding */ 248 struct pmap_statistics pm_stats; /* pmap statistics */ 249 vm_page_t pm_root; /* spare page table pages */ 250 }; 251 252 typedef struct pmap *pmap_t; 253 254 #ifdef _KERNEL 255 extern struct pmap kernel_pmap_store; 256 #define kernel_pmap (&kernel_pmap_store) 257 258 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 259 #define PMAP_LOCK_ASSERT(pmap, type) \ 260 mtx_assert(&(pmap)->pm_mtx, (type)) 261 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 262 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 263 NULL, MTX_DEF | MTX_DUPOK) 264 #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) 265 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 266 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 267 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 268 #endif 269 270 /* 271 * For each vm_page_t, there is a list of all currently valid virtual 272 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 273 */ 274 typedef struct pv_entry { 275 vm_offset_t pv_va; /* virtual address for mapping */ 276 TAILQ_ENTRY(pv_entry) pv_list; 277 } *pv_entry_t; 278 279 /* 280 * pv_entries are allocated in chunks per-process. This avoids the 281 * need to track per-pmap assignments. 282 */ 283 #define _NPCM 3 284 #define _NPCPV 168 285 struct pv_chunk { 286 pmap_t pc_pmap; 287 TAILQ_ENTRY(pv_chunk) pc_list; 288 uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ 289 uint64_t pc_spare[2]; 290 struct pv_entry pc_pventry[_NPCPV]; 291 }; 292 293 #ifdef _KERNEL 294 295 #define NPPROVMTRR 8 296 #define PPRO_VMTRRphysBase0 0x200 297 #define PPRO_VMTRRphysMask0 0x201 298 struct ppro_vmtrr { 299 u_int64_t base, mask; 300 }; 301 extern struct ppro_vmtrr PPro_vmtrr[NPPROVMTRR]; 302 303 extern caddr_t CADDR1; 304 extern pt_entry_t *CMAP1; 305 extern vm_paddr_t phys_avail[]; 306 extern vm_paddr_t dump_avail[]; 307 extern vm_offset_t virtual_avail; 308 extern vm_offset_t virtual_end; 309 310 #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) 311 312 void pmap_bootstrap(vm_paddr_t *); 313 int pmap_change_attr(vm_offset_t, vm_size_t, int); 314 void pmap_init_pat(void); 315 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 316 void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode); 317 void *pmap_kenter_temporary(vm_paddr_t pa, int i); 318 vm_paddr_t pmap_kextract(vm_offset_t); 319 void pmap_kremove(vm_offset_t); 320 void *pmap_mapbios(vm_paddr_t, vm_size_t); 321 void *pmap_mapdev(vm_paddr_t, vm_size_t); 322 void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); 323 boolean_t pmap_page_is_mapped(vm_page_t m); 324 void pmap_unmapdev(vm_offset_t, vm_size_t); 325 void pmap_invalidate_page(pmap_t, vm_offset_t); 326 void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); 327 void pmap_invalidate_all(pmap_t); 328 void pmap_invalidate_cache(void); 329 330 #endif /* _KERNEL */ 331 332 #endif /* !LOCORE */ 333 334 #endif /* !_MACHINE_PMAP_H_ */ 335