xref: /freebsd/sys/amd64/include/pmap.h (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1991 Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department and William Jolitz of UUNET Technologies Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Derived from hp300 version by Mike Hibler, this version by William
37  * Jolitz uses a recursive map [a pde points to the page directory] to
38  * map the page tables using the pagetables themselves. This is done to
39  * reduce the impact on kernel virtual memory for lots of sparse address
40  * space, and to reduce the cost of memory to each process.
41  *
42  *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
43  *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
44  */
45 
46 #ifdef __i386__
47 #include <i386/pmap.h>
48 #else /* !__i386__ */
49 
50 #ifndef _MACHINE_PMAP_H_
51 #define	_MACHINE_PMAP_H_
52 
53 /*
54  * Page-directory and page-table entries follow this format, with a few
55  * of the fields not present here and there, depending on a lot of things.
56  */
57 				/* ---- Intel Nomenclature ---- */
58 #define	X86_PG_V	0x001	/* P	Valid			*/
59 #define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
60 #define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
61 #define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
62 #define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
63 #define	X86_PG_A	0x020	/* A	Accessed		*/
64 #define	X86_PG_M	0x040	/* D	Dirty			*/
65 #define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
66 #define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
67 #define	X86_PG_G	0x100	/* G	Global			*/
68 #define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
69 #define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
70 #define	X86_PG_AVAIL3	0x800	/*    \				*/
71 #define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
72 #define	X86_PG_PKU(idx)	((pt_entry_t)idx << 59)
73 #define	X86_PG_NX	(1ul<<63) /* No-execute */
74 #define	X86_PG_AVAIL(x)	(1ul << (x))
75 
76 /* Page level cache control fields used to determine the PAT type */
77 #define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
78 #define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
79 
80 /* Protection keys indexes */
81 #define	PMAP_MAX_PKRU_IDX	0xf
82 #define	X86_PG_PKU_MASK		X86_PG_PKU(PMAP_MAX_PKRU_IDX)
83 
84 /*
85  * Intel extended page table (EPT) bit definitions.
86  */
87 #define	EPT_PG_READ		0x001	/* R	Read		*/
88 #define	EPT_PG_WRITE		0x002	/* W	Write		*/
89 #define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
90 #define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
91 #define	EPT_PG_PS		0x080	/* PS	Page size	*/
92 #define	EPT_PG_A		0x100	/* A	Accessed	*/
93 #define	EPT_PG_M		0x200	/* D	Dirty		*/
94 #define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
95 
96 /*
97  * Define the PG_xx macros in terms of the bits on x86 PTEs.
98  */
99 #define	PG_V		X86_PG_V
100 #define	PG_RW		X86_PG_RW
101 #define	PG_U		X86_PG_U
102 #define	PG_NC_PWT	X86_PG_NC_PWT
103 #define	PG_NC_PCD	X86_PG_NC_PCD
104 #define	PG_A		X86_PG_A
105 #define	PG_M		X86_PG_M
106 #define	PG_PS		X86_PG_PS
107 #define	PG_PTE_PAT	X86_PG_PTE_PAT
108 #define	PG_G		X86_PG_G
109 #define	PG_AVAIL1	X86_PG_AVAIL1
110 #define	PG_AVAIL2	X86_PG_AVAIL2
111 #define	PG_AVAIL3	X86_PG_AVAIL3
112 #define	PG_PDE_PAT	X86_PG_PDE_PAT
113 #define	PG_NX		X86_PG_NX
114 #define	PG_PDE_CACHE	X86_PG_PDE_CACHE
115 #define	PG_PTE_CACHE	X86_PG_PTE_CACHE
116 
117 /* Our various interpretations of the above */
118 #define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
119 #define	PG_MANAGED	X86_PG_AVAIL2
120 #define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
121 #define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
122 #define	PG_PROMOTED	X86_PG_AVAIL(54)	/* PDE only */
123 #define	PG_FRAME	(0x000ffffffffff000ul)
124 #define	PG_PS_FRAME	(0x000fffffffe00000ul)
125 #define	PG_PS_PDP_FRAME	(0x000fffffc0000000ul)
126 
127 /*
128  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
129  * (PTE) page mappings have identical settings for the following fields:
130  */
131 #define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
132 	    PG_M | PG_U | PG_RW | PG_V | PG_PKU_MASK)
133 
134 /*
135  * Page Protection Exception bits
136  */
137 
138 #define PGEX_P		0x01	/* Protection violation vs. not present */
139 #define PGEX_W		0x02	/* during a Write cycle */
140 #define PGEX_U		0x04	/* access from User mode (UPL) */
141 #define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
142 #define PGEX_I		0x10	/* during an instruction fetch */
143 #define	PGEX_PK		0x20	/* protection key violation */
144 #define	PGEX_SGX	0x8000	/* SGX-related */
145 
146 /*
147  * undef the PG_xx macros that define bits in the regular x86 PTEs that
148  * have a different position in nested PTEs. This is done when compiling
149  * code that needs to be aware of the differences between regular x86 and
150  * nested PTEs.
151  *
152  * The appropriate bitmask will be calculated at runtime based on the pmap
153  * type.
154  */
155 #ifdef AMD64_NPT_AWARE
156 #undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
157 #undef PG_G
158 #undef PG_A
159 #undef PG_M
160 #undef PG_PDE_PAT
161 #undef PG_PDE_CACHE
162 #undef PG_PTE_PAT
163 #undef PG_PTE_CACHE
164 #undef PG_RW
165 #undef PG_V
166 #endif
167 
168 /*
169  * Pte related macros.  This is complicated by having to deal with
170  * the sign extension of the 48th bit.
171  */
172 #define KV4ADDR(l4, l3, l2, l1) ( \
173 	((unsigned long)-1 << 47) | \
174 	((unsigned long)(l4) << PML4SHIFT) | \
175 	((unsigned long)(l3) << PDPSHIFT) | \
176 	((unsigned long)(l2) << PDRSHIFT) | \
177 	((unsigned long)(l1) << PAGE_SHIFT))
178 #define KV5ADDR(l5, l4, l3, l2, l1) (		\
179 	((unsigned long)-1 << 56) | \
180 	((unsigned long)(l5) << PML5SHIFT) | \
181 	((unsigned long)(l4) << PML4SHIFT) | \
182 	((unsigned long)(l3) << PDPSHIFT) | \
183 	((unsigned long)(l2) << PDRSHIFT) | \
184 	((unsigned long)(l1) << PAGE_SHIFT))
185 
186 #define UVADDR(l5, l4, l3, l2, l1) (	     \
187 	((unsigned long)(l5) << PML5SHIFT) | \
188 	((unsigned long)(l4) << PML4SHIFT) | \
189 	((unsigned long)(l3) << PDPSHIFT) | \
190 	((unsigned long)(l2) << PDRSHIFT) | \
191 	((unsigned long)(l1) << PAGE_SHIFT))
192 
193 /*
194  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
195  * but setting it larger than NDMPML4E makes no sense.
196  *
197  * Each slot provides .5 TB of kernel virtual space.
198  */
199 #define NKPML4E		4
200 
201 /*
202  * Number of PML4 slots for the KASAN shadow map.  It requires 1 byte of memory
203  * for every 8 bytes of the kernel address space.
204  */
205 #define	NKASANPML4E	((NKPML4E + 7) / 8)
206 
207 /*
208  * Number of PML4 slots for the KMSAN shadow and origin maps.  These are
209  * one-to-one with the kernel map.
210  */
211 #define	NKMSANSHADPML4E	NKPML4E
212 #define	NKMSANORIGPML4E	NKPML4E
213 
214 /*
215  * We use the same numbering of the page table pages for 5-level and
216  * 4-level paging structures.
217  */
218 #define	NUPML5E		(NPML5EPG / 2)		/* number of userland PML5
219 						   pages */
220 #define	NUPML4E		(NUPML5E * NPML4EPG)	/* number of userland PML4
221 						   pages */
222 #define	NUPDPE		(NUPML4E * NPDPEPG)	/* number of userland PDP
223 						   pages */
224 #define	NUPDE		(NUPDPE * NPDEPG)	/* number of userland PD
225 						   entries */
226 #define	NUP4ML4E	(NPML4EPG / 2)
227 
228 /*
229  * NDMPML4E is the maximum number of PML4 entries that will be
230  * used to implement the direct map.  It must be a power of two,
231  * and should generally exceed NKPML4E.  The maximum possible
232  * value is 64; using 128 will make the direct map intrude into
233  * the recursive page table map.
234  */
235 #define	NDMPML4E	8
236 
237 /*
238  * These values control the layout of virtual memory.  The starting address
239  * of the direct map, which is controlled by DMPML4I, must be a multiple of
240  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
241  *
242  * Note: KPML4I is the index of the (single) level 4 page that maps
243  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
244  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
245  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
246  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
247  * KERNBASE.
248  *
249  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
250  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
251  * and KPDPI provides bits 30..38.)
252  */
253 #define	PML4PML4I	(NPML4EPG / 2)	/* Index of recursive pml4 mapping */
254 #define	PML5PML5I	(NPML5EPG / 2)	/* Index of recursive pml5 mapping */
255 
256 #define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
257 #define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
258 
259 #define	KPML4I		(NPML4EPG-1)
260 #define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
261 
262 #define	KASANPML4I	(DMPML4I - NKASANPML4E) /* Below the direct map */
263 
264 #define	KMSANSHADPML4I	(KPML4BASE - NKMSANSHADPML4E)
265 #define	KMSANORIGPML4I	(DMPML4I - NKMSANORIGPML4E)
266 
267 /* Large map: index of the first and max last pml4 entry */
268 #define	LMSPML4I	(PML4PML4I + 1)
269 #define	LMEPML4I	(KASANPML4I - 1)
270 
271 /*
272  * XXX doesn't really belong here I guess...
273  */
274 #define ISA_HOLE_START    0xa0000
275 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
276 
277 #define	PMAP_PCID_NONE		0xffffffff
278 #define	PMAP_PCID_KERN		0
279 #define	PMAP_PCID_OVERMAX	0x1000
280 #define	PMAP_PCID_OVERMAX_KERN	0x800
281 #define	PMAP_PCID_USER_PT	0x800
282 
283 #define	PMAP_NO_CR3		0xffffffffffffffff
284 #define	PMAP_UCR3_NOMASK	0xffffffffffffffff
285 
286 #ifndef LOCORE
287 
288 #include <sys/kassert.h>
289 #include <sys/queue.h>
290 #include <sys/_cpuset.h>
291 #include <sys/_lock.h>
292 #include <sys/_mutex.h>
293 #include <sys/_pctrie.h>
294 #include <machine/_pmap.h>
295 #include <sys/_pv_entry.h>
296 #include <sys/_rangeset.h>
297 #include <sys/_smr.h>
298 
299 #include <vm/_vm_radix.h>
300 
301 typedef u_int64_t pd_entry_t;
302 typedef u_int64_t pt_entry_t;
303 typedef u_int64_t pdp_entry_t;
304 typedef u_int64_t pml4_entry_t;
305 typedef u_int64_t pml5_entry_t;
306 
307 /*
308  * Address of current address space page table maps and directories.
309  */
310 #ifdef _KERNEL
311 #define	addr_P4Tmap	(KV4ADDR(PML4PML4I, 0, 0, 0))
312 #define	addr_P4Dmap	(KV4ADDR(PML4PML4I, PML4PML4I, 0, 0))
313 #define	addr_P4DPmap	(KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
314 #define	addr_P4ML4map	(KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
315 #define	addr_P4ML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
316 #define	P4Tmap		((pt_entry_t *)(addr_P4Tmap))
317 #define	P4Dmap		((pd_entry_t *)(addr_P4Dmap))
318 
319 #define	addr_P5Tmap	(KV5ADDR(PML5PML5I, 0, 0, 0, 0))
320 #define	addr_P5Dmap	(KV5ADDR(PML5PML5I, PML5PML5I, 0, 0, 0))
321 #define	addr_P5DPmap	(KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, 0, 0))
322 #define	addr_P5ML4map	(KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, 0))
323 #define	addr_P5ML5map	\
324     (KVADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I))
325 #define	addr_P5ML5pml5e	(addr_P5ML5map + (PML5PML5I * sizeof(pml5_entry_t)))
326 #define	P5Tmap		((pt_entry_t *)(addr_P5Tmap))
327 #define	P5Dmap		((pd_entry_t *)(addr_P5Dmap))
328 
329 extern int nkpt;		/* Initial number of kernel page tables */
330 extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
331 extern u_int64_t KPML5phys;	/* physical address of kernel level 5 */
332 
333 /*
334  * virtual address to page table entry and
335  * to physical address.
336  * Note: these work recursively, thus vtopte of a pte will give
337  * the corresponding pde that in turn maps it.
338  */
339 pt_entry_t *vtopte(vm_offset_t);
340 #define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
341 
342 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
343 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
344 #define	pte_store(ptep, pte) do { \
345 	*(u_long *)(ptep) = (u_long)(pte); \
346 } while (0)
347 #define	pte_clear(ptep)			pte_store(ptep, 0)
348 
349 #define	pde_store(pdep, pde)		pte_store(pdep, pde)
350 
351 extern pt_entry_t pg_nx;
352 
353 #endif /* _KERNEL */
354 
355 /*
356  * Pmap stuff
357  */
358 
359 /*
360  * Locks
361  * (p) PV list lock
362  */
363 struct md_page {
364 	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
365 	int			pv_gen;   /* (p) */
366 	int			pat_mode;
367 };
368 
369 enum pmap_type {
370 	PT_X86,			/* regular x86 page tables */
371 	PT_EPT,			/* Intel's nested page tables */
372 	PT_RVI,			/* AMD's nested page tables */
373 };
374 
375 /*
376  * The kernel virtual address (KVA) of the level 4 page table page is always
377  * within the direct map (DMAP) region.
378  */
379 struct pmap {
380 	struct mtx		pm_mtx;
381 	pml4_entry_t		*pm_pmltop;	/* KVA of top level page table */
382 	pml4_entry_t		*pm_pmltopu;	/* KVA of user top page table */
383 	uint64_t		pm_cr3;
384 	uint64_t		pm_ucr3;
385 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
386 	cpuset_t		pm_active;	/* active on cpus */
387 	enum pmap_type		pm_type;	/* regular or nested tables */
388 	struct pmap_statistics	pm_stats;	/* pmap statistics */
389 	struct vm_radix		pm_root;	/* spare page table pages */
390 	long			pm_eptgen;	/* EPT pmap generation id */
391 	smr_t			pm_eptsmr;
392 	int			pm_flags;
393 	struct pmap_pcid	*pm_pcidp;
394 	struct rangeset		pm_pkru;
395 };
396 
397 /* flags */
398 #define	PMAP_NESTED_IPIMASK	0xff
399 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
400 #define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
401 #define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
402 
403 typedef struct pmap	*pmap_t;
404 
405 #ifdef _KERNEL
406 extern struct pmap	kernel_pmap_store;
407 #define kernel_pmap	(&kernel_pmap_store)
408 
409 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
410 #define	PMAP_LOCK_ASSERT(pmap, type) \
411 				mtx_assert(&(pmap)->pm_mtx, (type))
412 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
413 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
414 				    NULL, MTX_DEF | MTX_DUPOK)
415 #define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
416 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
417 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
418 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
419 
420 int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
421 int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
422 
423 extern caddr_t	CADDR1;
424 extern pt_entry_t *CMAP1;
425 extern vm_offset_t virtual_avail;
426 extern vm_offset_t virtual_end;
427 extern vm_paddr_t dmaplimit;
428 extern int pmap_pcid_enabled;
429 extern int invpcid_works;
430 extern int pmap_pcid_invlpg_workaround;
431 extern int pmap_pcid_invlpg_workaround_uena;
432 
433 #define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
434 #define	pmap_page_is_write_mapped(m)	(((m)->a.flags & PGA_WRITEABLE) != 0)
435 #define	pmap_unmapbios(va, sz)		pmap_unmapdev((va), (sz))
436 
437 #define	pmap_vm_page_alloc_check(m)					\
438 	KASSERT(m->phys_addr < kernphys ||				\
439 	    m->phys_addr >= kernphys + (vm_offset_t)&_end - KERNSTART,	\
440 	    ("allocating kernel page %p pa %#lx kernphys %#lx end %p", \
441 	    m, m->phys_addr, kernphys, &_end));
442 
443 struct thread;
444 
445 void	pmap_activate_boot(pmap_t pmap);
446 void	pmap_activate_sw(struct thread *);
447 void	pmap_allow_2m_x_ept_recalculate(void);
448 void	pmap_bootstrap(vm_paddr_t *);
449 int	pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
450 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
451 int	pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t);
452 void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
453 void	pmap_flush_cache_range(vm_offset_t, vm_offset_t);
454 void	pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
455 void	pmap_init_pat(void);
456 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
457 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
458 vm_paddr_t pmap_kextract(vm_offset_t);
459 void	pmap_kremove(vm_offset_t);
460 int	pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
461 void	pmap_large_map_wb(void *sva, vm_size_t len);
462 void	pmap_large_unmap(void *sva, vm_size_t len);
463 void	*pmap_mapbios(vm_paddr_t, vm_size_t);
464 void	*pmap_mapdev(vm_paddr_t, vm_size_t);
465 void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
466 void	*pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
467 bool	pmap_not_in_di(void);
468 boolean_t pmap_page_is_mapped(vm_page_t m);
469 void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
470 void	pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma);
471 void	pmap_pinit_pml4(vm_page_t);
472 void	pmap_pinit_pml5(vm_page_t);
473 bool	pmap_ps_enabled(pmap_t pmap);
474 void	pmap_unmapdev(void *, vm_size_t);
475 void	pmap_invalidate_page(pmap_t, vm_offset_t);
476 void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
477 void	pmap_invalidate_all(pmap_t);
478 void	pmap_invalidate_cache(void);
479 void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
480 void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
481 void	pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
482 void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
483 bool	pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, bool);
484 void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, bool);
485 void	pmap_map_delete(pmap_t, vm_offset_t, vm_offset_t);
486 void	pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
487 void	pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
488 void	pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
489 void	pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
490 void	pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
491 	    vm_offset_t eva);
492 int	pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
493 int	pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
494 	    u_int keyidx, int flags);
495 void	pmap_thread_init_invl_gen(struct thread *td);
496 int	pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap);
497 void	pmap_page_array_startup(long count);
498 vm_page_t pmap_page_alloc_below_4g(bool zeroed);
499 
500 #if defined(KASAN) || defined(KMSAN)
501 void	pmap_san_bootstrap(void);
502 void	pmap_san_enter(vm_offset_t);
503 #endif
504 
505 /*
506  * Returns a pointer to a set of CPUs on which the pmap is currently active.
507  * Note that the set can be modified without any mutual exclusion, so a copy
508  * must be made if a stable value is required.
509  */
510 static __inline volatile cpuset_t *
511 pmap_invalidate_cpu_mask(pmap_t pmap)
512 {
513 	return (&pmap->pm_active);
514 }
515 
516 #if defined(_SYS_PCPU_H_) && defined(_MACHINE_CPUFUNC_H_)
517 /*
518  * It seems that AlderLake+ small cores have some microarchitectural
519  * bug, which results in the INVLPG instruction failing to flush all
520  * global TLB entries when PCID is enabled.  Work around it for now,
521  * by doing global invalidation on small cores instead of INVLPG.
522  */
523 static __inline void
524 pmap_invlpg(pmap_t pmap, vm_offset_t va)
525 {
526 	if (pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
527 		struct invpcid_descr d = { 0 };
528 
529 		invpcid(&d, INVPCID_CTXGLOB);
530 	} else {
531 		invlpg(va);
532 	}
533 }
534 #endif /* sys/pcpu.h && machine/cpufunc.h */
535 
536 #if defined(_SYS_PCPU_H_)
537 /* Return pcid for the pmap pmap on current cpu */
538 static __inline uint32_t
539 pmap_get_pcid(pmap_t pmap)
540 {
541 	struct pmap_pcid *pcidp;
542 
543 	MPASS(pmap_pcid_enabled);
544 	pcidp = zpcpu_get(pmap->pm_pcidp);
545 	return (pcidp->pm_pcid);
546 }
547 #endif /* sys/pcpu.h */
548 
549 #endif /* _KERNEL */
550 
551 /* Return various clipped indexes for a given VA */
552 static __inline vm_pindex_t
553 pmap_pte_index(vm_offset_t va)
554 {
555 
556 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
557 }
558 
559 static __inline vm_pindex_t
560 pmap_pde_index(vm_offset_t va)
561 {
562 
563 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
564 }
565 
566 static __inline vm_pindex_t
567 pmap_pdpe_index(vm_offset_t va)
568 {
569 
570 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
571 }
572 
573 static __inline vm_pindex_t
574 pmap_pml4e_index(vm_offset_t va)
575 {
576 
577 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
578 }
579 
580 static __inline vm_pindex_t
581 pmap_pml5e_index(vm_offset_t va)
582 {
583 
584 	return ((va >> PML5SHIFT) & ((1ul << NPML5EPGSHIFT) - 1));
585 }
586 
587 #endif /* !LOCORE */
588 
589 #endif /* !_MACHINE_PMAP_H_ */
590 
591 #endif /* __i386__ */
592