xref: /freebsd/sys/amd64/include/pmap.h (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1991 Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department and William Jolitz of UUNET Technologies Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Derived from hp300 version by Mike Hibler, this version by William
37  * Jolitz uses a recursive map [a pde points to the page directory] to
38  * map the page tables using the pagetables themselves. This is done to
39  * reduce the impact on kernel virtual memory for lots of sparse address
40  * space, and to reduce the cost of memory to each process.
41  *
42  *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
43  *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
44  * $FreeBSD$
45  */
46 
47 #ifndef _MACHINE_PMAP_H_
48 #define	_MACHINE_PMAP_H_
49 
50 /*
51  * Page-directory and page-table entries follow this format, with a few
52  * of the fields not present here and there, depending on a lot of things.
53  */
54 				/* ---- Intel Nomenclature ---- */
55 #define	X86_PG_V	0x001	/* P	Valid			*/
56 #define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
57 #define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
58 #define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
59 #define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
60 #define	X86_PG_A	0x020	/* A	Accessed		*/
61 #define	X86_PG_M	0x040	/* D	Dirty			*/
62 #define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
63 #define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
64 #define	X86_PG_G	0x100	/* G	Global			*/
65 #define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
66 #define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
67 #define	X86_PG_AVAIL3	0x800	/*    \				*/
68 #define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
69 #define	X86_PG_PKU(idx)	((pt_entry_t)idx << 59)
70 #define	X86_PG_NX	(1ul<<63) /* No-execute */
71 #define	X86_PG_AVAIL(x)	(1ul << (x))
72 
73 /* Page level cache control fields used to determine the PAT type */
74 #define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
75 #define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
76 
77 /* Protection keys indexes */
78 #define	PMAP_MAX_PKRU_IDX	0xf
79 #define	X86_PG_PKU_MASK		X86_PG_PKU(PMAP_MAX_PKRU_IDX)
80 
81 /*
82  * Intel extended page table (EPT) bit definitions.
83  */
84 #define	EPT_PG_READ		0x001	/* R	Read		*/
85 #define	EPT_PG_WRITE		0x002	/* W	Write		*/
86 #define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
87 #define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
88 #define	EPT_PG_PS		0x080	/* PS	Page size	*/
89 #define	EPT_PG_A		0x100	/* A	Accessed	*/
90 #define	EPT_PG_M		0x200	/* D	Dirty		*/
91 #define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
92 
93 /*
94  * Define the PG_xx macros in terms of the bits on x86 PTEs.
95  */
96 #define	PG_V		X86_PG_V
97 #define	PG_RW		X86_PG_RW
98 #define	PG_U		X86_PG_U
99 #define	PG_NC_PWT	X86_PG_NC_PWT
100 #define	PG_NC_PCD	X86_PG_NC_PCD
101 #define	PG_A		X86_PG_A
102 #define	PG_M		X86_PG_M
103 #define	PG_PS		X86_PG_PS
104 #define	PG_PTE_PAT	X86_PG_PTE_PAT
105 #define	PG_G		X86_PG_G
106 #define	PG_AVAIL1	X86_PG_AVAIL1
107 #define	PG_AVAIL2	X86_PG_AVAIL2
108 #define	PG_AVAIL3	X86_PG_AVAIL3
109 #define	PG_PDE_PAT	X86_PG_PDE_PAT
110 #define	PG_NX		X86_PG_NX
111 #define	PG_PDE_CACHE	X86_PG_PDE_CACHE
112 #define	PG_PTE_CACHE	X86_PG_PTE_CACHE
113 
114 /* Our various interpretations of the above */
115 #define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
116 #define	PG_MANAGED	X86_PG_AVAIL2
117 #define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
118 #define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
119 #define	PG_PROMOTED	X86_PG_AVAIL(54)	/* PDE only */
120 #define	PG_FRAME	(0x000ffffffffff000ul)
121 #define	PG_PS_FRAME	(0x000fffffffe00000ul)
122 #define	PG_PS_PDP_FRAME	(0x000fffffc0000000ul)
123 
124 /*
125  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
126  * (PTE) page mappings have identical settings for the following fields:
127  */
128 #define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
129 	    PG_M | PG_A | PG_U | PG_RW | PG_V | PG_PKU_MASK)
130 
131 /*
132  * Page Protection Exception bits
133  */
134 
135 #define PGEX_P		0x01	/* Protection violation vs. not present */
136 #define PGEX_W		0x02	/* during a Write cycle */
137 #define PGEX_U		0x04	/* access from User mode (UPL) */
138 #define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
139 #define PGEX_I		0x10	/* during an instruction fetch */
140 #define	PGEX_PK		0x20	/* protection key violation */
141 #define	PGEX_SGX	0x8000	/* SGX-related */
142 
143 /*
144  * undef the PG_xx macros that define bits in the regular x86 PTEs that
145  * have a different position in nested PTEs. This is done when compiling
146  * code that needs to be aware of the differences between regular x86 and
147  * nested PTEs.
148  *
149  * The appropriate bitmask will be calculated at runtime based on the pmap
150  * type.
151  */
152 #ifdef AMD64_NPT_AWARE
153 #undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
154 #undef PG_G
155 #undef PG_A
156 #undef PG_M
157 #undef PG_PDE_PAT
158 #undef PG_PDE_CACHE
159 #undef PG_PTE_PAT
160 #undef PG_PTE_CACHE
161 #undef PG_RW
162 #undef PG_V
163 #endif
164 
165 /*
166  * Pte related macros.  This is complicated by having to deal with
167  * the sign extension of the 48th bit.
168  */
169 #define KV4ADDR(l4, l3, l2, l1) ( \
170 	((unsigned long)-1 << 47) | \
171 	((unsigned long)(l4) << PML4SHIFT) | \
172 	((unsigned long)(l3) << PDPSHIFT) | \
173 	((unsigned long)(l2) << PDRSHIFT) | \
174 	((unsigned long)(l1) << PAGE_SHIFT))
175 #define KV5ADDR(l5, l4, l3, l2, l1) (		\
176 	((unsigned long)-1 << 56) | \
177 	((unsigned long)(l5) << PML5SHIFT) | \
178 	((unsigned long)(l4) << PML4SHIFT) | \
179 	((unsigned long)(l3) << PDPSHIFT) | \
180 	((unsigned long)(l2) << PDRSHIFT) | \
181 	((unsigned long)(l1) << PAGE_SHIFT))
182 
183 #define UVADDR(l5, l4, l3, l2, l1) (	     \
184 	((unsigned long)(l5) << PML5SHIFT) | \
185 	((unsigned long)(l4) << PML4SHIFT) | \
186 	((unsigned long)(l3) << PDPSHIFT) | \
187 	((unsigned long)(l2) << PDRSHIFT) | \
188 	((unsigned long)(l1) << PAGE_SHIFT))
189 
190 /*
191  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
192  * but setting it larger than NDMPML4E makes no sense.
193  *
194  * Each slot provides .5 TB of kernel virtual space.
195  */
196 #define NKPML4E		4
197 
198 /*
199  * Number of PML4 slots for the KASAN shadow map.  It requires 1 byte of memory
200  * for every 8 bytes of the kernel address space.
201  */
202 #define	NKASANPML4E	((NKPML4E + 7) / 8)
203 
204 /*
205  * We use the same numbering of the page table pages for 5-level and
206  * 4-level paging structures.
207  */
208 #define	NUPML5E		(NPML5EPG / 2)		/* number of userland PML5
209 						   pages */
210 #define	NUPML4E		(NUPML5E * NPML4EPG)	/* number of userland PML4
211 						   pages */
212 #define	NUPDPE		(NUPML4E * NPDPEPG)	/* number of userland PDP
213 						   pages */
214 #define	NUPDE		(NUPDPE * NPDEPG)	/* number of userland PD
215 						   entries */
216 #define	NUP4ML4E	(NPML4EPG / 2)
217 
218 /*
219  * NDMPML4E is the maximum number of PML4 entries that will be
220  * used to implement the direct map.  It must be a power of two,
221  * and should generally exceed NKPML4E.  The maximum possible
222  * value is 64; using 128 will make the direct map intrude into
223  * the recursive page table map.
224  */
225 #define	NDMPML4E	8
226 
227 /*
228  * These values control the layout of virtual memory.  The starting address
229  * of the direct map, which is controlled by DMPML4I, must be a multiple of
230  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
231  *
232  * Note: KPML4I is the index of the (single) level 4 page that maps
233  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
234  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
235  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
236  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
237  * KERNBASE.
238  *
239  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
240  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
241  * and KPDPI provides bits 30..38.)
242  */
243 #define	PML4PML4I	(NPML4EPG / 2)	/* Index of recursive pml4 mapping */
244 #define	PML5PML5I	(NPML5EPG / 2)	/* Index of recursive pml5 mapping */
245 
246 #define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
247 #define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
248 
249 #define	KPML4I		(NPML4EPG-1)
250 #define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
251 
252 #define	KASANPML4I	(DMPML4I - NKASANPML4E) /* Below the direct map */
253 
254 /* Large map: index of the first and max last pml4 entry */
255 #define	LMSPML4I	(PML4PML4I + 1)
256 #define	LMEPML4I	(KASANPML4I - 1)
257 
258 /*
259  * XXX doesn't really belong here I guess...
260  */
261 #define ISA_HOLE_START    0xa0000
262 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
263 
264 #define	PMAP_PCID_NONE		0xffffffff
265 #define	PMAP_PCID_KERN		0
266 #define	PMAP_PCID_OVERMAX	0x1000
267 #define	PMAP_PCID_OVERMAX_KERN	0x800
268 #define	PMAP_PCID_USER_PT	0x800
269 
270 #define	PMAP_NO_CR3		0xffffffffffffffff
271 #define	PMAP_UCR3_NOMASK	0xffffffffffffffff
272 
273 #ifndef LOCORE
274 
275 #include <sys/queue.h>
276 #include <sys/_cpuset.h>
277 #include <sys/_lock.h>
278 #include <sys/_mutex.h>
279 #include <sys/_pctrie.h>
280 #include <sys/_rangeset.h>
281 #include <sys/_smr.h>
282 
283 #include <vm/_vm_radix.h>
284 
285 typedef u_int64_t pd_entry_t;
286 typedef u_int64_t pt_entry_t;
287 typedef u_int64_t pdp_entry_t;
288 typedef u_int64_t pml4_entry_t;
289 typedef u_int64_t pml5_entry_t;
290 
291 /*
292  * Address of current address space page table maps and directories.
293  */
294 #ifdef _KERNEL
295 #define	addr_P4Tmap	(KV4ADDR(PML4PML4I, 0, 0, 0))
296 #define	addr_P4Dmap	(KV4ADDR(PML4PML4I, PML4PML4I, 0, 0))
297 #define	addr_P4DPmap	(KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
298 #define	addr_P4ML4map	(KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
299 #define	addr_P4ML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
300 #define	P4Tmap		((pt_entry_t *)(addr_P4Tmap))
301 #define	P4Dmap		((pd_entry_t *)(addr_P4Dmap))
302 
303 #define	addr_P5Tmap	(KV5ADDR(PML5PML5I, 0, 0, 0, 0))
304 #define	addr_P5Dmap	(KV5ADDR(PML5PML5I, PML5PML5I, 0, 0, 0))
305 #define	addr_P5DPmap	(KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, 0, 0))
306 #define	addr_P5ML4map	(KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, 0))
307 #define	addr_P5ML5map	\
308     (KVADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I))
309 #define	addr_P5ML5pml5e	(addr_P5ML5map + (PML5PML5I * sizeof(pml5_entry_t)))
310 #define	P5Tmap		((pt_entry_t *)(addr_P5Tmap))
311 #define	P5Dmap		((pd_entry_t *)(addr_P5Dmap))
312 
313 extern int nkpt;		/* Initial number of kernel page tables */
314 extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
315 extern u_int64_t KPML5phys;	/* physical address of kernel level 5 */
316 
317 /*
318  * virtual address to page table entry and
319  * to physical address.
320  * Note: these work recursively, thus vtopte of a pte will give
321  * the corresponding pde that in turn maps it.
322  */
323 pt_entry_t *vtopte(vm_offset_t);
324 #define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
325 
326 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
327 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
328 #define	pte_store(ptep, pte) do { \
329 	*(u_long *)(ptep) = (u_long)(pte); \
330 } while (0)
331 #define	pte_clear(ptep)			pte_store(ptep, 0)
332 
333 #define	pde_store(pdep, pde)		pte_store(pdep, pde)
334 
335 extern pt_entry_t pg_nx;
336 
337 #endif /* _KERNEL */
338 
339 /*
340  * Pmap stuff
341  */
342 struct	pv_entry;
343 struct	pv_chunk;
344 
345 /*
346  * Locks
347  * (p) PV list lock
348  */
349 struct md_page {
350 	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
351 	int			pv_gen;   /* (p) */
352 	int			pat_mode;
353 };
354 
355 enum pmap_type {
356 	PT_X86,			/* regular x86 page tables */
357 	PT_EPT,			/* Intel's nested page tables */
358 	PT_RVI,			/* AMD's nested page tables */
359 };
360 
361 struct pmap_pcids {
362 	uint32_t	pm_pcid;
363 	uint32_t	pm_gen;
364 };
365 
366 /*
367  * The kernel virtual address (KVA) of the level 4 page table page is always
368  * within the direct map (DMAP) region.
369  */
370 struct pmap {
371 	struct mtx		pm_mtx;
372 	pml4_entry_t		*pm_pmltop;	/* KVA of top level page table */
373 	pml4_entry_t		*pm_pmltopu;	/* KVA of user top page table */
374 	uint64_t		pm_cr3;
375 	uint64_t		pm_ucr3;
376 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
377 	cpuset_t		pm_active;	/* active on cpus */
378 	enum pmap_type		pm_type;	/* regular or nested tables */
379 	struct pmap_statistics	pm_stats;	/* pmap statistics */
380 	struct vm_radix		pm_root;	/* spare page table pages */
381 	long			pm_eptgen;	/* EPT pmap generation id */
382 	smr_t			pm_eptsmr;
383 	int			pm_flags;
384 	struct pmap_pcids	pm_pcids[MAXCPU];
385 	struct rangeset		pm_pkru;
386 };
387 
388 /* flags */
389 #define	PMAP_NESTED_IPIMASK	0xff
390 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
391 #define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
392 #define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
393 
394 typedef struct pmap	*pmap_t;
395 
396 #ifdef _KERNEL
397 extern struct pmap	kernel_pmap_store;
398 #define kernel_pmap	(&kernel_pmap_store)
399 
400 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
401 #define	PMAP_LOCK_ASSERT(pmap, type) \
402 				mtx_assert(&(pmap)->pm_mtx, (type))
403 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
404 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
405 				    NULL, MTX_DEF | MTX_DUPOK)
406 #define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
407 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
408 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
409 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
410 
411 int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
412 int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
413 #endif
414 
415 /*
416  * For each vm_page_t, there is a list of all currently valid virtual
417  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
418  */
419 typedef struct pv_entry {
420 	vm_offset_t	pv_va;		/* virtual address for mapping */
421 	TAILQ_ENTRY(pv_entry)	pv_next;
422 } *pv_entry_t;
423 
424 /*
425  * pv_entries are allocated in chunks per-process.  This avoids the
426  * need to track per-pmap assignments.
427  */
428 #define	_NPCM	3
429 #define	_NPCPV	168
430 #define	PV_CHUNK_HEADER							\
431 	pmap_t			pc_pmap;				\
432 	TAILQ_ENTRY(pv_chunk)	pc_list;				\
433 	uint64_t		pc_map[_NPCM];	/* bitmap; 1 = free */	\
434 	TAILQ_ENTRY(pv_chunk)	pc_lru;
435 
436 struct pv_chunk_header {
437 	PV_CHUNK_HEADER
438 };
439 
440 struct pv_chunk {
441 	PV_CHUNK_HEADER
442 	struct pv_entry		pc_pventry[_NPCPV];
443 };
444 
445 #ifdef	_KERNEL
446 
447 extern caddr_t	CADDR1;
448 extern pt_entry_t *CMAP1;
449 extern vm_offset_t virtual_avail;
450 extern vm_offset_t virtual_end;
451 extern vm_paddr_t dmaplimit;
452 extern int pmap_pcid_enabled;
453 extern int invpcid_works;
454 
455 #define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
456 #define	pmap_page_is_write_mapped(m)	(((m)->a.flags & PGA_WRITEABLE) != 0)
457 #define	pmap_unmapbios(va, sz)		pmap_unmapdev((va), (sz))
458 
459 #define	pmap_vm_page_alloc_check(m)					\
460 	KASSERT(m->phys_addr < kernphys ||				\
461 	    m->phys_addr >= kernphys + (vm_offset_t)&_end - KERNSTART,	\
462 	    ("allocating kernel page %p pa %#lx kernphys %#lx end %p", \
463 	    m, m->phys_addr, kernphys, &_end));
464 
465 struct thread;
466 
467 void	pmap_activate_boot(pmap_t pmap);
468 void	pmap_activate_sw(struct thread *);
469 void	pmap_allow_2m_x_ept_recalculate(void);
470 void	pmap_bootstrap(vm_paddr_t *);
471 int	pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
472 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
473 int	pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t);
474 void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
475 void	pmap_flush_cache_range(vm_offset_t, vm_offset_t);
476 void	pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
477 void	pmap_init_pat(void);
478 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
479 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
480 vm_paddr_t pmap_kextract(vm_offset_t);
481 void	pmap_kremove(vm_offset_t);
482 int	pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
483 void	pmap_large_map_wb(void *sva, vm_size_t len);
484 void	pmap_large_unmap(void *sva, vm_size_t len);
485 void	*pmap_mapbios(vm_paddr_t, vm_size_t);
486 void	*pmap_mapdev(vm_paddr_t, vm_size_t);
487 void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
488 void	*pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
489 bool	pmap_not_in_di(void);
490 boolean_t pmap_page_is_mapped(vm_page_t m);
491 void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
492 void	pmap_pinit_pml4(vm_page_t);
493 void	pmap_pinit_pml5(vm_page_t);
494 bool	pmap_ps_enabled(pmap_t pmap);
495 void	pmap_unmapdev(vm_offset_t, vm_size_t);
496 void	pmap_invalidate_page(pmap_t, vm_offset_t);
497 void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
498 void	pmap_invalidate_all(pmap_t);
499 void	pmap_invalidate_cache(void);
500 void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
501 void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
502 void	pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
503 void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
504 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
505 void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
506 void	pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
507 void	pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
508 void	pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
509 void	pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
510 void	pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
511 	    vm_offset_t eva);
512 int	pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
513 int	pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
514 	    u_int keyidx, int flags);
515 void	pmap_thread_init_invl_gen(struct thread *td);
516 int	pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap);
517 void	pmap_page_array_startup(long count);
518 vm_page_t pmap_page_alloc_below_4g(bool zeroed);
519 
520 #ifdef KASAN
521 void	pmap_kasan_enter(vm_offset_t);
522 #endif
523 
524 #endif /* _KERNEL */
525 
526 /* Return various clipped indexes for a given VA */
527 static __inline vm_pindex_t
528 pmap_pte_index(vm_offset_t va)
529 {
530 
531 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
532 }
533 
534 static __inline vm_pindex_t
535 pmap_pde_index(vm_offset_t va)
536 {
537 
538 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
539 }
540 
541 static __inline vm_pindex_t
542 pmap_pdpe_index(vm_offset_t va)
543 {
544 
545 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
546 }
547 
548 static __inline vm_pindex_t
549 pmap_pml4e_index(vm_offset_t va)
550 {
551 
552 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
553 }
554 
555 static __inline vm_pindex_t
556 pmap_pml5e_index(vm_offset_t va)
557 {
558 
559 	return ((va >> PML5SHIFT) & ((1ul << NPML5EPGSHIFT) - 1));
560 }
561 
562 #endif /* !LOCORE */
563 
564 #endif /* !_MACHINE_PMAP_H_ */
565