1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2003 Peter Wemm. 5 * Copyright (c) 1991 Regents of the University of California. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department and William Jolitz of UUNET Technologies Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * Derived from hp300 version by Mike Hibler, this version by William 37 * Jolitz uses a recursive map [a pde points to the page directory] to 38 * map the page tables using the pagetables themselves. This is done to 39 * reduce the impact on kernel virtual memory for lots of sparse address 40 * space, and to reduce the cost of memory to each process. 41 * 42 * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 43 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 44 * $FreeBSD$ 45 */ 46 47 #ifndef _MACHINE_PMAP_H_ 48 #define _MACHINE_PMAP_H_ 49 50 /* 51 * Page-directory and page-table entries follow this format, with a few 52 * of the fields not present here and there, depending on a lot of things. 53 */ 54 /* ---- Intel Nomenclature ---- */ 55 #define X86_PG_V 0x001 /* P Valid */ 56 #define X86_PG_RW 0x002 /* R/W Read/Write */ 57 #define X86_PG_U 0x004 /* U/S User/Supervisor */ 58 #define X86_PG_NC_PWT 0x008 /* PWT Write through */ 59 #define X86_PG_NC_PCD 0x010 /* PCD Cache disable */ 60 #define X86_PG_A 0x020 /* A Accessed */ 61 #define X86_PG_M 0x040 /* D Dirty */ 62 #define X86_PG_PS 0x080 /* PS Page size (0=4k,1=2M) */ 63 #define X86_PG_PTE_PAT 0x080 /* PAT PAT index */ 64 #define X86_PG_G 0x100 /* G Global */ 65 #define X86_PG_AVAIL1 0x200 /* / Available for system */ 66 #define X86_PG_AVAIL2 0x400 /* < programmers use */ 67 #define X86_PG_AVAIL3 0x800 /* \ */ 68 #define X86_PG_PDE_PAT 0x1000 /* PAT PAT index */ 69 #define X86_PG_NX (1ul<<63) /* No-execute */ 70 #define X86_PG_AVAIL(x) (1ul << (x)) 71 72 /* Page level cache control fields used to determine the PAT type */ 73 #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) 74 #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) 75 76 /* 77 * Intel extended page table (EPT) bit definitions. 78 */ 79 #define EPT_PG_READ 0x001 /* R Read */ 80 #define EPT_PG_WRITE 0x002 /* W Write */ 81 #define EPT_PG_EXECUTE 0x004 /* X Execute */ 82 #define EPT_PG_IGNORE_PAT 0x040 /* IPAT Ignore PAT */ 83 #define EPT_PG_PS 0x080 /* PS Page size */ 84 #define EPT_PG_A 0x100 /* A Accessed */ 85 #define EPT_PG_M 0x200 /* D Dirty */ 86 #define EPT_PG_MEMORY_TYPE(x) ((x) << 3) /* MT Memory Type */ 87 88 /* 89 * Define the PG_xx macros in terms of the bits on x86 PTEs. 90 */ 91 #define PG_V X86_PG_V 92 #define PG_RW X86_PG_RW 93 #define PG_U X86_PG_U 94 #define PG_NC_PWT X86_PG_NC_PWT 95 #define PG_NC_PCD X86_PG_NC_PCD 96 #define PG_A X86_PG_A 97 #define PG_M X86_PG_M 98 #define PG_PS X86_PG_PS 99 #define PG_PTE_PAT X86_PG_PTE_PAT 100 #define PG_G X86_PG_G 101 #define PG_AVAIL1 X86_PG_AVAIL1 102 #define PG_AVAIL2 X86_PG_AVAIL2 103 #define PG_AVAIL3 X86_PG_AVAIL3 104 #define PG_PDE_PAT X86_PG_PDE_PAT 105 #define PG_NX X86_PG_NX 106 #define PG_PDE_CACHE X86_PG_PDE_CACHE 107 #define PG_PTE_CACHE X86_PG_PTE_CACHE 108 109 /* Our various interpretations of the above */ 110 #define PG_W X86_PG_AVAIL3 /* "Wired" pseudoflag */ 111 #define PG_MANAGED X86_PG_AVAIL2 112 #define EPT_PG_EMUL_V X86_PG_AVAIL(52) 113 #define EPT_PG_EMUL_RW X86_PG_AVAIL(53) 114 #define PG_PROMOTED X86_PG_AVAIL(54) /* PDE only */ 115 #define PG_FRAME (0x000ffffffffff000ul) 116 #define PG_PS_FRAME (0x000fffffffe00000ul) 117 118 /* 119 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB 120 * (PTE) page mappings have identical settings for the following fields: 121 */ 122 #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \ 123 PG_M | PG_A | PG_U | PG_RW | PG_V) 124 125 /* 126 * Page Protection Exception bits 127 */ 128 129 #define PGEX_P 0x01 /* Protection violation vs. not present */ 130 #define PGEX_W 0x02 /* during a Write cycle */ 131 #define PGEX_U 0x04 /* access from User mode (UPL) */ 132 #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ 133 #define PGEX_I 0x10 /* during an instruction fetch */ 134 135 /* 136 * undef the PG_xx macros that define bits in the regular x86 PTEs that 137 * have a different position in nested PTEs. This is done when compiling 138 * code that needs to be aware of the differences between regular x86 and 139 * nested PTEs. 140 * 141 * The appropriate bitmask will be calculated at runtime based on the pmap 142 * type. 143 */ 144 #ifdef AMD64_NPT_AWARE 145 #undef PG_AVAIL1 /* X86_PG_AVAIL1 aliases with EPT_PG_M */ 146 #undef PG_G 147 #undef PG_A 148 #undef PG_M 149 #undef PG_PDE_PAT 150 #undef PG_PDE_CACHE 151 #undef PG_PTE_PAT 152 #undef PG_PTE_CACHE 153 #undef PG_RW 154 #undef PG_V 155 #endif 156 157 /* 158 * Pte related macros. This is complicated by having to deal with 159 * the sign extension of the 48th bit. 160 */ 161 #define KVADDR(l4, l3, l2, l1) ( \ 162 ((unsigned long)-1 << 47) | \ 163 ((unsigned long)(l4) << PML4SHIFT) | \ 164 ((unsigned long)(l3) << PDPSHIFT) | \ 165 ((unsigned long)(l2) << PDRSHIFT) | \ 166 ((unsigned long)(l1) << PAGE_SHIFT)) 167 168 #define UVADDR(l4, l3, l2, l1) ( \ 169 ((unsigned long)(l4) << PML4SHIFT) | \ 170 ((unsigned long)(l3) << PDPSHIFT) | \ 171 ((unsigned long)(l2) << PDRSHIFT) | \ 172 ((unsigned long)(l1) << PAGE_SHIFT)) 173 174 /* 175 * Number of kernel PML4 slots. Can be anywhere from 1 to 64 or so, 176 * but setting it larger than NDMPML4E makes no sense. 177 * 178 * Each slot provides .5 TB of kernel virtual space. 179 */ 180 #define NKPML4E 4 181 182 #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ 183 #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ 184 #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ 185 186 /* 187 * NDMPML4E is the maximum number of PML4 entries that will be 188 * used to implement the direct map. It must be a power of two, 189 * and should generally exceed NKPML4E. The maximum possible 190 * value is 64; using 128 will make the direct map intrude into 191 * the recursive page table map. 192 */ 193 #define NDMPML4E 8 194 195 /* 196 * These values control the layout of virtual memory. The starting address 197 * of the direct map, which is controlled by DMPML4I, must be a multiple of 198 * its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.) 199 * 200 * Note: KPML4I is the index of the (single) level 4 page that maps 201 * the KVA that holds KERNBASE, while KPML4BASE is the index of the 202 * first level 4 page that maps VM_MIN_KERNEL_ADDRESS. If NKPML4E 203 * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra 204 * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to 205 * KERNBASE. 206 * 207 * (KPML4I combines with KPDPI to choose where KERNBASE starts. 208 * Or, in other words, KPML4I provides bits 39..47 of KERNBASE, 209 * and KPDPI provides bits 30..38.) 210 */ 211 #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ 212 213 #define KPML4BASE (NPML4EPG-NKPML4E) /* KVM at highest addresses */ 214 #define DMPML4I rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */ 215 216 #define KPML4I (NPML4EPG-1) 217 #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ 218 219 /* 220 * XXX doesn't really belong here I guess... 221 */ 222 #define ISA_HOLE_START 0xa0000 223 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) 224 225 #define PMAP_PCID_NONE 0xffffffff 226 #define PMAP_PCID_KERN 0 227 #define PMAP_PCID_OVERMAX 0x1000 228 #define PMAP_PCID_OVERMAX_KERN 0x800 229 #define PMAP_PCID_USER_PT 0x800 230 231 #define PMAP_NO_CR3 (~0UL) 232 233 #ifndef LOCORE 234 235 #include <sys/queue.h> 236 #include <sys/_cpuset.h> 237 #include <sys/_lock.h> 238 #include <sys/_mutex.h> 239 240 #include <vm/_vm_radix.h> 241 242 typedef u_int64_t pd_entry_t; 243 typedef u_int64_t pt_entry_t; 244 typedef u_int64_t pdp_entry_t; 245 typedef u_int64_t pml4_entry_t; 246 247 /* 248 * Address of current address space page table maps and directories. 249 */ 250 #ifdef _KERNEL 251 #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) 252 #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) 253 #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) 254 #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) 255 #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) 256 #define PTmap ((pt_entry_t *)(addr_PTmap)) 257 #define PDmap ((pd_entry_t *)(addr_PDmap)) 258 #define PDPmap ((pd_entry_t *)(addr_PDPmap)) 259 #define PML4map ((pd_entry_t *)(addr_PML4map)) 260 #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) 261 262 extern int nkpt; /* Initial number of kernel page tables */ 263 extern u_int64_t KPDPphys; /* physical address of kernel level 3 */ 264 extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ 265 266 /* 267 * virtual address to page table entry and 268 * to physical address. 269 * Note: these work recursively, thus vtopte of a pte will give 270 * the corresponding pde that in turn maps it. 271 */ 272 pt_entry_t *vtopte(vm_offset_t); 273 #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) 274 275 #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte) 276 #define pte_load_clear(ptep) atomic_swap_long(ptep, 0) 277 #define pte_store(ptep, pte) do { \ 278 *(u_long *)(ptep) = (u_long)(pte); \ 279 } while (0) 280 #define pte_clear(ptep) pte_store(ptep, 0) 281 282 #define pde_store(pdep, pde) pte_store(pdep, pde) 283 284 extern pt_entry_t pg_nx; 285 286 #endif /* _KERNEL */ 287 288 /* 289 * Pmap stuff 290 */ 291 struct pv_entry; 292 struct pv_chunk; 293 294 /* 295 * Locks 296 * (p) PV list lock 297 */ 298 struct md_page { 299 TAILQ_HEAD(, pv_entry) pv_list; /* (p) */ 300 int pv_gen; /* (p) */ 301 int pat_mode; 302 }; 303 304 enum pmap_type { 305 PT_X86, /* regular x86 page tables */ 306 PT_EPT, /* Intel's nested page tables */ 307 PT_RVI, /* AMD's nested page tables */ 308 }; 309 310 struct pmap_pcids { 311 uint32_t pm_pcid; 312 uint32_t pm_gen; 313 }; 314 315 /* 316 * The kernel virtual address (KVA) of the level 4 page table page is always 317 * within the direct map (DMAP) region. 318 */ 319 struct pmap { 320 struct mtx pm_mtx; 321 pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ 322 pml4_entry_t *pm_pml4u; /* KVA of user l4 page table */ 323 uint64_t pm_cr3; 324 uint64_t pm_ucr3; 325 TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ 326 cpuset_t pm_active; /* active on cpus */ 327 enum pmap_type pm_type; /* regular or nested tables */ 328 struct pmap_statistics pm_stats; /* pmap statistics */ 329 struct vm_radix pm_root; /* spare page table pages */ 330 long pm_eptgen; /* EPT pmap generation id */ 331 int pm_flags; 332 struct pmap_pcids pm_pcids[MAXCPU]; 333 }; 334 335 /* flags */ 336 #define PMAP_NESTED_IPIMASK 0xff 337 #define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */ 338 #define PMAP_EMULATE_AD_BITS (1 << 9) /* needs A/D bits emulation */ 339 #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10) /* execute only mappings ok */ 340 341 typedef struct pmap *pmap_t; 342 343 #ifdef _KERNEL 344 extern struct pmap kernel_pmap_store; 345 #define kernel_pmap (&kernel_pmap_store) 346 347 #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) 348 #define PMAP_LOCK_ASSERT(pmap, type) \ 349 mtx_assert(&(pmap)->pm_mtx, (type)) 350 #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) 351 #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ 352 NULL, MTX_DEF | MTX_DUPOK) 353 #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) 354 #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) 355 #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) 356 #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) 357 358 int pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags); 359 int pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype); 360 #endif 361 362 /* 363 * For each vm_page_t, there is a list of all currently valid virtual 364 * mappings of that page. An entry is a pv_entry_t, the list is pv_list. 365 */ 366 typedef struct pv_entry { 367 vm_offset_t pv_va; /* virtual address for mapping */ 368 TAILQ_ENTRY(pv_entry) pv_next; 369 } *pv_entry_t; 370 371 /* 372 * pv_entries are allocated in chunks per-process. This avoids the 373 * need to track per-pmap assignments. 374 */ 375 #define _NPCM 3 376 #define _NPCPV 168 377 #define PV_CHUNK_HEADER \ 378 pmap_t pc_pmap; \ 379 TAILQ_ENTRY(pv_chunk) pc_list; \ 380 uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ \ 381 TAILQ_ENTRY(pv_chunk) pc_lru; 382 383 struct pv_chunk_header { 384 PV_CHUNK_HEADER 385 }; 386 387 struct pv_chunk { 388 PV_CHUNK_HEADER 389 struct pv_entry pc_pventry[_NPCPV]; 390 }; 391 392 #ifdef _KERNEL 393 394 extern caddr_t CADDR1; 395 extern pt_entry_t *CMAP1; 396 extern vm_paddr_t phys_avail[]; 397 extern vm_paddr_t dump_avail[]; 398 extern vm_offset_t virtual_avail; 399 extern vm_offset_t virtual_end; 400 extern vm_paddr_t dmaplimit; 401 extern int pmap_pcid_enabled; 402 extern int invpcid_works; 403 404 #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) 405 #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) 406 #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) 407 408 struct thread; 409 410 void pmap_activate_boot(pmap_t pmap); 411 void pmap_activate_sw(struct thread *); 412 void pmap_bootstrap(vm_paddr_t *); 413 int pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde); 414 int pmap_change_attr(vm_offset_t, vm_size_t, int); 415 void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate); 416 void pmap_init_pat(void); 417 void pmap_kenter(vm_offset_t va, vm_paddr_t pa); 418 void *pmap_kenter_temporary(vm_paddr_t pa, int i); 419 vm_paddr_t pmap_kextract(vm_offset_t); 420 void pmap_kremove(vm_offset_t); 421 void *pmap_mapbios(vm_paddr_t, vm_size_t); 422 void *pmap_mapdev(vm_paddr_t, vm_size_t); 423 void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); 424 boolean_t pmap_page_is_mapped(vm_page_t m); 425 void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); 426 void pmap_pinit_pml4(vm_page_t); 427 bool pmap_ps_enabled(pmap_t pmap); 428 void pmap_unmapdev(vm_offset_t, vm_size_t); 429 void pmap_invalidate_page(pmap_t, vm_offset_t); 430 void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); 431 void pmap_invalidate_all(pmap_t); 432 void pmap_invalidate_cache(void); 433 void pmap_invalidate_cache_pages(vm_page_t *pages, int count); 434 void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, 435 boolean_t force); 436 void pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num); 437 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t); 438 void pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t); 439 void pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec); 440 void pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva); 441 void pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3); 442 void pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va); 443 void pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva, 444 vm_offset_t eva); 445 #endif /* _KERNEL */ 446 447 /* Return various clipped indexes for a given VA */ 448 static __inline vm_pindex_t 449 pmap_pte_index(vm_offset_t va) 450 { 451 452 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1)); 453 } 454 455 static __inline vm_pindex_t 456 pmap_pde_index(vm_offset_t va) 457 { 458 459 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1)); 460 } 461 462 static __inline vm_pindex_t 463 pmap_pdpe_index(vm_offset_t va) 464 { 465 466 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1)); 467 } 468 469 static __inline vm_pindex_t 470 pmap_pml4e_index(vm_offset_t va) 471 { 472 473 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1)); 474 } 475 476 #endif /* !LOCORE */ 477 478 #endif /* !_MACHINE_PMAP_H_ */ 479