xref: /freebsd/sys/amd64/include/cpufunc.h (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1993 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Functions to provide access to special i386 instructions.
37  * This in included in sys/systm.h, and that file should be
38  * used in preference to this.
39  */
40 
41 #ifndef _MACHINE_CPUFUNC_H_
42 #define	_MACHINE_CPUFUNC_H_
43 
44 #ifndef _SYS_CDEFS_H_
45 #error this file needs sys/cdefs.h as a prerequisite
46 #endif
47 
48 struct region_descriptor;
49 
50 #define readb(va)	(*(volatile uint8_t *) (va))
51 #define readw(va)	(*(volatile uint16_t *) (va))
52 #define readl(va)	(*(volatile uint32_t *) (va))
53 #define readq(va)	(*(volatile uint64_t *) (va))
54 
55 #define writeb(va, d)	(*(volatile uint8_t *) (va) = (d))
56 #define writew(va, d)	(*(volatile uint16_t *) (va) = (d))
57 #define writel(va, d)	(*(volatile uint32_t *) (va) = (d))
58 #define writeq(va, d)	(*(volatile uint64_t *) (va) = (d))
59 
60 #if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE)
61 
62 static __inline void
63 breakpoint(void)
64 {
65 	__asm __volatile("int $3");
66 }
67 
68 static __inline __pure2 u_int
69 bsfl(u_int mask)
70 {
71 	u_int	result;
72 
73 	__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
74 	return (result);
75 }
76 
77 static __inline __pure2 u_long
78 bsfq(u_long mask)
79 {
80 	u_long	result;
81 
82 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
83 	return (result);
84 }
85 
86 static __inline __pure2 u_int
87 bsrl(u_int mask)
88 {
89 	u_int	result;
90 
91 	__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
92 	return (result);
93 }
94 
95 static __inline __pure2 u_long
96 bsrq(u_long mask)
97 {
98 	u_long	result;
99 
100 	__asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask));
101 	return (result);
102 }
103 
104 static __inline void
105 clflush(u_long addr)
106 {
107 
108 	__asm __volatile("clflush %0" : : "m" (*(char *)addr));
109 }
110 
111 static __inline void
112 clflushopt(u_long addr)
113 {
114 
115 	__asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr));
116 }
117 
118 static __inline void
119 clwb(u_long addr)
120 {
121 
122 	__asm __volatile("clwb %0" : : "m" (*(char *)addr));
123 }
124 
125 static __inline void
126 clts(void)
127 {
128 
129 	__asm __volatile("clts");
130 }
131 
132 static __inline void
133 disable_intr(void)
134 {
135 	__asm __volatile("cli" : : : "memory");
136 }
137 
138 static __inline void
139 do_cpuid(u_int ax, u_int *p)
140 {
141 	__asm __volatile("cpuid"
142 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
143 			 :  "0" (ax));
144 }
145 
146 static __inline void
147 cpuid_count(u_int ax, u_int cx, u_int *p)
148 {
149 	__asm __volatile("cpuid"
150 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
151 			 :  "0" (ax), "c" (cx));
152 }
153 
154 static __inline void
155 enable_intr(void)
156 {
157 	__asm __volatile("sti");
158 }
159 
160 #ifdef _KERNEL
161 
162 #define	HAVE_INLINE_FFS
163 #define        ffs(x)  __builtin_ffs(x)
164 
165 #define	HAVE_INLINE_FFSL
166 
167 static __inline __pure2 int
168 ffsl(long mask)
169 {
170 	return (mask == 0 ? mask : (int)bsfq((u_long)mask) + 1);
171 }
172 
173 #define	HAVE_INLINE_FFSLL
174 
175 static __inline __pure2 int
176 ffsll(long long mask)
177 {
178 	return (ffsl((long)mask));
179 }
180 
181 #define	HAVE_INLINE_FLS
182 
183 static __inline __pure2 int
184 fls(int mask)
185 {
186 	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
187 }
188 
189 #define	HAVE_INLINE_FLSL
190 
191 static __inline __pure2 int
192 flsl(long mask)
193 {
194 	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
195 }
196 
197 #define	HAVE_INLINE_FLSLL
198 
199 static __inline __pure2 int
200 flsll(long long mask)
201 {
202 	return (flsl((long)mask));
203 }
204 
205 #endif /* _KERNEL */
206 
207 static __inline void
208 halt(void)
209 {
210 	__asm __volatile("hlt");
211 }
212 
213 static __inline u_char
214 inb(u_int port)
215 {
216 	u_char	data;
217 
218 	__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
219 	return (data);
220 }
221 
222 static __inline u_int
223 inl(u_int port)
224 {
225 	u_int	data;
226 
227 	__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
228 	return (data);
229 }
230 
231 static __inline void
232 insb(u_int port, void *addr, size_t count)
233 {
234 	__asm __volatile("rep; insb"
235 			 : "+D" (addr), "+c" (count)
236 			 : "d" (port)
237 			 : "memory");
238 }
239 
240 static __inline void
241 insw(u_int port, void *addr, size_t count)
242 {
243 	__asm __volatile("rep; insw"
244 			 : "+D" (addr), "+c" (count)
245 			 : "d" (port)
246 			 : "memory");
247 }
248 
249 static __inline void
250 insl(u_int port, void *addr, size_t count)
251 {
252 	__asm __volatile("rep; insl"
253 			 : "+D" (addr), "+c" (count)
254 			 : "d" (port)
255 			 : "memory");
256 }
257 
258 static __inline void
259 invd(void)
260 {
261 	__asm __volatile("invd");
262 }
263 
264 static __inline u_short
265 inw(u_int port)
266 {
267 	u_short	data;
268 
269 	__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
270 	return (data);
271 }
272 
273 static __inline void
274 outb(u_int port, u_char data)
275 {
276 	__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
277 }
278 
279 static __inline void
280 outl(u_int port, u_int data)
281 {
282 	__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
283 }
284 
285 static __inline void
286 outsb(u_int port, const void *addr, size_t count)
287 {
288 	__asm __volatile("rep; outsb"
289 			 : "+S" (addr), "+c" (count)
290 			 : "d" (port));
291 }
292 
293 static __inline void
294 outsw(u_int port, const void *addr, size_t count)
295 {
296 	__asm __volatile("rep; outsw"
297 			 : "+S" (addr), "+c" (count)
298 			 : "d" (port));
299 }
300 
301 static __inline void
302 outsl(u_int port, const void *addr, size_t count)
303 {
304 	__asm __volatile("rep; outsl"
305 			 : "+S" (addr), "+c" (count)
306 			 : "d" (port));
307 }
308 
309 static __inline void
310 outw(u_int port, u_short data)
311 {
312 	__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
313 }
314 
315 static __inline u_long
316 popcntq(u_long mask)
317 {
318 	u_long result;
319 
320 	__asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask));
321 	return (result);
322 }
323 
324 static __inline void
325 lfence(void)
326 {
327 
328 	__asm __volatile("lfence" : : : "memory");
329 }
330 
331 static __inline void
332 mfence(void)
333 {
334 
335 	__asm __volatile("mfence" : : : "memory");
336 }
337 
338 static __inline void
339 sfence(void)
340 {
341 
342 	__asm __volatile("sfence" : : : "memory");
343 }
344 
345 static __inline void
346 ia32_pause(void)
347 {
348 	__asm __volatile("pause");
349 }
350 
351 static __inline u_long
352 read_rflags(void)
353 {
354 	u_long	rf;
355 
356 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
357 	return (rf);
358 }
359 
360 static __inline uint64_t
361 rdmsr(u_int msr)
362 {
363 	uint32_t low, high;
364 
365 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
366 	return (low | ((uint64_t)high << 32));
367 }
368 
369 static __inline uint32_t
370 rdmsr32(u_int msr)
371 {
372 	uint32_t low;
373 
374 	__asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx");
375 	return (low);
376 }
377 
378 static __inline uint64_t
379 rdpmc(u_int pmc)
380 {
381 	uint32_t low, high;
382 
383 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
384 	return (low | ((uint64_t)high << 32));
385 }
386 
387 static __inline uint64_t
388 rdtsc(void)
389 {
390 	uint32_t low, high;
391 
392 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
393 	return (low | ((uint64_t)high << 32));
394 }
395 
396 static __inline uint64_t
397 rdtscp(void)
398 {
399 	uint32_t low, high;
400 
401 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high) : : "ecx");
402 	return (low | ((uint64_t)high << 32));
403 }
404 
405 static __inline uint32_t
406 rdtsc32(void)
407 {
408 	uint32_t rv;
409 
410 	__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
411 	return (rv);
412 }
413 
414 static __inline void
415 wbinvd(void)
416 {
417 	__asm __volatile("wbinvd");
418 }
419 
420 static __inline void
421 write_rflags(u_long rf)
422 {
423 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
424 }
425 
426 static __inline void
427 wrmsr(u_int msr, uint64_t newval)
428 {
429 	uint32_t low, high;
430 
431 	low = newval;
432 	high = newval >> 32;
433 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
434 }
435 
436 static __inline void
437 load_cr0(u_long data)
438 {
439 
440 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
441 }
442 
443 static __inline u_long
444 rcr0(void)
445 {
446 	u_long	data;
447 
448 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
449 	return (data);
450 }
451 
452 static __inline u_long
453 rcr2(void)
454 {
455 	u_long	data;
456 
457 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
458 	return (data);
459 }
460 
461 static __inline void
462 load_cr3(u_long data)
463 {
464 
465 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
466 }
467 
468 static __inline u_long
469 rcr3(void)
470 {
471 	u_long	data;
472 
473 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
474 	return (data);
475 }
476 
477 static __inline void
478 load_cr4(u_long data)
479 {
480 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
481 }
482 
483 static __inline u_long
484 rcr4(void)
485 {
486 	u_long	data;
487 
488 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
489 	return (data);
490 }
491 
492 static __inline u_long
493 rxcr(u_int reg)
494 {
495 	u_int low, high;
496 
497 	__asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg));
498 	return (low | ((uint64_t)high << 32));
499 }
500 
501 static __inline void
502 load_xcr(u_int reg, u_long val)
503 {
504 	u_int low, high;
505 
506 	low = val;
507 	high = val >> 32;
508 	__asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high));
509 }
510 
511 /*
512  * Global TLB flush (except for thise for pages marked PG_G)
513  */
514 static __inline void
515 invltlb(void)
516 {
517 
518 	load_cr3(rcr3());
519 }
520 
521 #ifndef CR4_PGE
522 #define	CR4_PGE	0x00000080	/* Page global enable */
523 #endif
524 
525 /*
526  * Perform the guaranteed invalidation of all TLB entries.  This
527  * includes the global entries, and entries in all PCIDs, not only the
528  * current context.  The function works both on non-PCID CPUs and CPUs
529  * with the PCID turned off or on.  See IA-32 SDM Vol. 3a 4.10.4.1
530  * Operations that Invalidate TLBs and Paging-Structure Caches.
531  */
532 static __inline void
533 invltlb_glob(void)
534 {
535 	uint64_t cr4;
536 
537 	cr4 = rcr4();
538 	load_cr4(cr4 & ~CR4_PGE);
539 	/*
540 	 * Although preemption at this point could be detrimental to
541 	 * performance, it would not lead to an error.  PG_G is simply
542 	 * ignored if CR4.PGE is clear.  Moreover, in case this block
543 	 * is re-entered, the load_cr4() either above or below will
544 	 * modify CR4.PGE flushing the TLB.
545 	 */
546 	load_cr4(cr4 | CR4_PGE);
547 }
548 
549 /*
550  * TLB flush for an individual page (even if it has PG_G).
551  * Only works on 486+ CPUs (i386 does not have PG_G).
552  */
553 static __inline void
554 invlpg(u_long addr)
555 {
556 
557 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
558 }
559 
560 #define	INVPCID_ADDR	0
561 #define	INVPCID_CTX	1
562 #define	INVPCID_CTXGLOB	2
563 #define	INVPCID_ALLCTX	3
564 
565 struct invpcid_descr {
566 	uint64_t	pcid:12 __packed;
567 	uint64_t	pad:52 __packed;
568 	uint64_t	addr;
569 } __packed;
570 
571 static __inline void
572 invpcid(struct invpcid_descr *d, int type)
573 {
574 
575 	__asm __volatile("invpcid (%0),%1"
576 	    : : "r" (d), "r" ((u_long)type) : "memory");
577 }
578 
579 static __inline u_short
580 rfs(void)
581 {
582 	u_short sel;
583 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
584 	return (sel);
585 }
586 
587 static __inline u_short
588 rgs(void)
589 {
590 	u_short sel;
591 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
592 	return (sel);
593 }
594 
595 static __inline u_short
596 rss(void)
597 {
598 	u_short sel;
599 	__asm __volatile("movw %%ss,%0" : "=rm" (sel));
600 	return (sel);
601 }
602 
603 static __inline void
604 load_ds(u_short sel)
605 {
606 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
607 }
608 
609 static __inline void
610 load_es(u_short sel)
611 {
612 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
613 }
614 
615 static __inline void
616 cpu_monitor(const void *addr, u_long extensions, u_int hints)
617 {
618 
619 	__asm __volatile("monitor"
620 	    : : "a" (addr), "c" (extensions), "d" (hints));
621 }
622 
623 static __inline void
624 cpu_mwait(u_long extensions, u_int hints)
625 {
626 
627 	__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
628 }
629 
630 static __inline uint32_t
631 rdpkru(void)
632 {
633 	uint32_t res;
634 
635 	__asm __volatile("rdpkru" :  "=a" (res) : "c" (0) : "edx");
636 	return (res);
637 }
638 
639 static __inline void
640 wrpkru(uint32_t mask)
641 {
642 
643 	__asm __volatile("wrpkru" :  : "a" (mask),  "c" (0), "d" (0));
644 }
645 
646 #ifdef _KERNEL
647 /* This is defined in <machine/specialreg.h> but is too painful to get to */
648 #ifndef	MSR_FSBASE
649 #define	MSR_FSBASE	0xc0000100
650 #endif
651 static __inline void
652 load_fs(u_short sel)
653 {
654 	/* Preserve the fsbase value across the selector load */
655 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
656 	    : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
657 }
658 
659 #ifndef	MSR_GSBASE
660 #define	MSR_GSBASE	0xc0000101
661 #endif
662 static __inline void
663 load_gs(u_short sel)
664 {
665 	/*
666 	 * Preserve the gsbase value across the selector load.
667 	 * Note that we have to disable interrupts because the gsbase
668 	 * being trashed happens to be the kernel gsbase at the time.
669 	 */
670 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
671 	    : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
672 }
673 #else
674 /* Usable by userland */
675 static __inline void
676 load_fs(u_short sel)
677 {
678 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
679 }
680 
681 static __inline void
682 load_gs(u_short sel)
683 {
684 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
685 }
686 #endif
687 
688 static __inline uint64_t
689 rdfsbase(void)
690 {
691 	uint64_t x;
692 
693 	__asm __volatile("rdfsbase %0" : "=r" (x));
694 	return (x);
695 }
696 
697 static __inline void
698 wrfsbase(uint64_t x)
699 {
700 
701 	__asm __volatile("wrfsbase %0" : : "r" (x));
702 }
703 
704 static __inline uint64_t
705 rdgsbase(void)
706 {
707 	uint64_t x;
708 
709 	__asm __volatile("rdgsbase %0" : "=r" (x));
710 	return (x);
711 }
712 
713 static __inline void
714 wrgsbase(uint64_t x)
715 {
716 
717 	__asm __volatile("wrgsbase %0" : : "r" (x));
718 }
719 
720 static __inline void
721 bare_lgdt(struct region_descriptor *addr)
722 {
723 	__asm __volatile("lgdt (%0)" : : "r" (addr));
724 }
725 
726 static __inline void
727 sgdt(struct region_descriptor *addr)
728 {
729 	char *loc;
730 
731 	loc = (char *)addr;
732 	__asm __volatile("sgdt %0" : "=m" (*loc) : : "memory");
733 }
734 
735 static __inline void
736 lidt(struct region_descriptor *addr)
737 {
738 	__asm __volatile("lidt (%0)" : : "r" (addr));
739 }
740 
741 static __inline void
742 sidt(struct region_descriptor *addr)
743 {
744 	char *loc;
745 
746 	loc = (char *)addr;
747 	__asm __volatile("sidt %0" : "=m" (*loc) : : "memory");
748 }
749 
750 static __inline void
751 lldt(u_short sel)
752 {
753 	__asm __volatile("lldt %0" : : "r" (sel));
754 }
755 
756 static __inline u_short
757 sldt(void)
758 {
759 	u_short sel;
760 
761 	__asm __volatile("sldt %0" : "=r" (sel));
762 	return (sel);
763 }
764 
765 static __inline void
766 ltr(u_short sel)
767 {
768 	__asm __volatile("ltr %0" : : "r" (sel));
769 }
770 
771 static __inline uint32_t
772 read_tr(void)
773 {
774 	u_short sel;
775 
776 	__asm __volatile("str %0" : "=r" (sel));
777 	return (sel);
778 }
779 
780 static __inline uint64_t
781 rdr0(void)
782 {
783 	uint64_t data;
784 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
785 	return (data);
786 }
787 
788 static __inline void
789 load_dr0(uint64_t dr0)
790 {
791 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
792 }
793 
794 static __inline uint64_t
795 rdr1(void)
796 {
797 	uint64_t data;
798 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
799 	return (data);
800 }
801 
802 static __inline void
803 load_dr1(uint64_t dr1)
804 {
805 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
806 }
807 
808 static __inline uint64_t
809 rdr2(void)
810 {
811 	uint64_t data;
812 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
813 	return (data);
814 }
815 
816 static __inline void
817 load_dr2(uint64_t dr2)
818 {
819 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
820 }
821 
822 static __inline uint64_t
823 rdr3(void)
824 {
825 	uint64_t data;
826 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
827 	return (data);
828 }
829 
830 static __inline void
831 load_dr3(uint64_t dr3)
832 {
833 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
834 }
835 
836 static __inline uint64_t
837 rdr6(void)
838 {
839 	uint64_t data;
840 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
841 	return (data);
842 }
843 
844 static __inline void
845 load_dr6(uint64_t dr6)
846 {
847 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
848 }
849 
850 static __inline uint64_t
851 rdr7(void)
852 {
853 	uint64_t data;
854 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
855 	return (data);
856 }
857 
858 static __inline void
859 load_dr7(uint64_t dr7)
860 {
861 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
862 }
863 
864 static __inline register_t
865 intr_disable(void)
866 {
867 	register_t rflags;
868 
869 	rflags = read_rflags();
870 	disable_intr();
871 	return (rflags);
872 }
873 
874 static __inline void
875 intr_restore(register_t rflags)
876 {
877 	write_rflags(rflags);
878 }
879 
880 static __inline void
881 stac(void)
882 {
883 
884 	__asm __volatile("stac" : : : "cc");
885 }
886 
887 static __inline void
888 clac(void)
889 {
890 
891 	__asm __volatile("clac" : : : "cc");
892 }
893 
894 enum {
895 	SGX_ECREATE	= 0x0,
896 	SGX_EADD	= 0x1,
897 	SGX_EINIT	= 0x2,
898 	SGX_EREMOVE	= 0x3,
899 	SGX_EDGBRD	= 0x4,
900 	SGX_EDGBWR	= 0x5,
901 	SGX_EEXTEND	= 0x6,
902 	SGX_ELDU	= 0x8,
903 	SGX_EBLOCK	= 0x9,
904 	SGX_EPA		= 0xA,
905 	SGX_EWB		= 0xB,
906 	SGX_ETRACK	= 0xC,
907 };
908 
909 enum {
910 	SGX_PT_SECS = 0x00,
911 	SGX_PT_TCS  = 0x01,
912 	SGX_PT_REG  = 0x02,
913 	SGX_PT_VA   = 0x03,
914 	SGX_PT_TRIM = 0x04,
915 };
916 
917 int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx);
918 
919 static __inline int
920 sgx_ecreate(void *pginfo, void *secs)
921 {
922 
923 	return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo,
924 	    (uint64_t)secs, 0));
925 }
926 
927 static __inline int
928 sgx_eadd(void *pginfo, void *epc)
929 {
930 
931 	return (sgx_encls(SGX_EADD, (uint64_t)pginfo,
932 	    (uint64_t)epc, 0));
933 }
934 
935 static __inline int
936 sgx_einit(void *sigstruct, void *secs, void *einittoken)
937 {
938 
939 	return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct,
940 	    (uint64_t)secs, (uint64_t)einittoken));
941 }
942 
943 static __inline int
944 sgx_eextend(void *secs, void *epc)
945 {
946 
947 	return (sgx_encls(SGX_EEXTEND, (uint64_t)secs,
948 	    (uint64_t)epc, 0));
949 }
950 
951 static __inline int
952 sgx_epa(void *epc)
953 {
954 
955 	return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0));
956 }
957 
958 static __inline int
959 sgx_eldu(uint64_t rbx, uint64_t rcx,
960     uint64_t rdx)
961 {
962 
963 	return (sgx_encls(SGX_ELDU, rbx, rcx, rdx));
964 }
965 
966 static __inline int
967 sgx_eremove(void *epc)
968 {
969 
970 	return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0));
971 }
972 
973 #else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */
974 
975 int	breakpoint(void);
976 u_int	bsfl(u_int mask);
977 u_int	bsrl(u_int mask);
978 void	clflush(u_long addr);
979 void	clts(void);
980 void	cpuid_count(u_int ax, u_int cx, u_int *p);
981 void	disable_intr(void);
982 void	do_cpuid(u_int ax, u_int *p);
983 void	enable_intr(void);
984 void	halt(void);
985 void	ia32_pause(void);
986 u_char	inb(u_int port);
987 u_int	inl(u_int port);
988 void	insb(u_int port, void *addr, size_t count);
989 void	insl(u_int port, void *addr, size_t count);
990 void	insw(u_int port, void *addr, size_t count);
991 register_t	intr_disable(void);
992 void	intr_restore(register_t rf);
993 void	invd(void);
994 void	invlpg(u_int addr);
995 void	invltlb(void);
996 u_short	inw(u_int port);
997 void	lidt(struct region_descriptor *addr);
998 void	lldt(u_short sel);
999 void	load_cr0(u_long cr0);
1000 void	load_cr3(u_long cr3);
1001 void	load_cr4(u_long cr4);
1002 void	load_dr0(uint64_t dr0);
1003 void	load_dr1(uint64_t dr1);
1004 void	load_dr2(uint64_t dr2);
1005 void	load_dr3(uint64_t dr3);
1006 void	load_dr6(uint64_t dr6);
1007 void	load_dr7(uint64_t dr7);
1008 void	load_fs(u_short sel);
1009 void	load_gs(u_short sel);
1010 void	ltr(u_short sel);
1011 void	outb(u_int port, u_char data);
1012 void	outl(u_int port, u_int data);
1013 void	outsb(u_int port, const void *addr, size_t count);
1014 void	outsl(u_int port, const void *addr, size_t count);
1015 void	outsw(u_int port, const void *addr, size_t count);
1016 void	outw(u_int port, u_short data);
1017 u_long	rcr0(void);
1018 u_long	rcr2(void);
1019 u_long	rcr3(void);
1020 u_long	rcr4(void);
1021 uint64_t rdmsr(u_int msr);
1022 uint32_t rdmsr32(u_int msr);
1023 uint64_t rdpmc(u_int pmc);
1024 uint64_t rdr0(void);
1025 uint64_t rdr1(void);
1026 uint64_t rdr2(void);
1027 uint64_t rdr3(void);
1028 uint64_t rdr6(void);
1029 uint64_t rdr7(void);
1030 uint64_t rdtsc(void);
1031 u_long	read_rflags(void);
1032 u_int	rfs(void);
1033 u_int	rgs(void);
1034 void	wbinvd(void);
1035 void	write_rflags(u_int rf);
1036 void	wrmsr(u_int msr, uint64_t newval);
1037 
1038 #endif	/* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */
1039 
1040 void	reset_dbregs(void);
1041 
1042 #ifdef _KERNEL
1043 int	rdmsr_safe(u_int msr, uint64_t *val);
1044 int	wrmsr_safe(u_int msr, uint64_t newval);
1045 #endif
1046 
1047 #endif /* !_MACHINE_CPUFUNC_H_ */
1048