xref: /freebsd/sys/amd64/include/cpufunc.h (revision c5fda9bac0325eb8c5b447717862d279006f318f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1993 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Functions to provide access to special i386 instructions.
37  * This in included in sys/systm.h, and that file should be
38  * used in preference to this.
39  */
40 
41 #ifndef _MACHINE_CPUFUNC_H_
42 #define	_MACHINE_CPUFUNC_H_
43 
44 #ifndef _SYS_CDEFS_H_
45 #error this file needs sys/cdefs.h as a prerequisite
46 #endif
47 
48 struct region_descriptor;
49 
50 #define readb(va)	(*(volatile uint8_t *) (va))
51 #define readw(va)	(*(volatile uint16_t *) (va))
52 #define readl(va)	(*(volatile uint32_t *) (va))
53 #define readq(va)	(*(volatile uint64_t *) (va))
54 
55 #define writeb(va, d)	(*(volatile uint8_t *) (va) = (d))
56 #define writew(va, d)	(*(volatile uint16_t *) (va) = (d))
57 #define writel(va, d)	(*(volatile uint32_t *) (va) = (d))
58 #define writeq(va, d)	(*(volatile uint64_t *) (va) = (d))
59 
60 #if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE)
61 
62 static __inline void
63 breakpoint(void)
64 {
65 	__asm __volatile("int $3");
66 }
67 
68 static __inline __pure2 u_int
69 bsfl(u_int mask)
70 {
71 	u_int	result;
72 
73 	__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
74 	return (result);
75 }
76 
77 static __inline __pure2 u_long
78 bsfq(u_long mask)
79 {
80 	u_long	result;
81 
82 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
83 	return (result);
84 }
85 
86 static __inline __pure2 u_int
87 bsrl(u_int mask)
88 {
89 	u_int	result;
90 
91 	__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
92 	return (result);
93 }
94 
95 static __inline __pure2 u_long
96 bsrq(u_long mask)
97 {
98 	u_long	result;
99 
100 	__asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask));
101 	return (result);
102 }
103 
104 static __inline void
105 clflush(u_long addr)
106 {
107 
108 	__asm __volatile("clflush %0" : : "m" (*(char *)addr));
109 }
110 
111 static __inline void
112 clflushopt(u_long addr)
113 {
114 
115 	__asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr));
116 }
117 
118 static __inline void
119 clts(void)
120 {
121 
122 	__asm __volatile("clts");
123 }
124 
125 static __inline void
126 disable_intr(void)
127 {
128 	__asm __volatile("cli" : : : "memory");
129 }
130 
131 static __inline void
132 do_cpuid(u_int ax, u_int *p)
133 {
134 	__asm __volatile("cpuid"
135 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
136 			 :  "0" (ax));
137 }
138 
139 static __inline void
140 cpuid_count(u_int ax, u_int cx, u_int *p)
141 {
142 	__asm __volatile("cpuid"
143 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
144 			 :  "0" (ax), "c" (cx));
145 }
146 
147 static __inline void
148 enable_intr(void)
149 {
150 	__asm __volatile("sti");
151 }
152 
153 #ifdef _KERNEL
154 
155 #define	HAVE_INLINE_FFS
156 #define        ffs(x)  __builtin_ffs(x)
157 
158 #define	HAVE_INLINE_FFSL
159 
160 static __inline __pure2 int
161 ffsl(long mask)
162 {
163 	return (mask == 0 ? mask : (int)bsfq((u_long)mask) + 1);
164 }
165 
166 #define	HAVE_INLINE_FFSLL
167 
168 static __inline __pure2 int
169 ffsll(long long mask)
170 {
171 	return (ffsl((long)mask));
172 }
173 
174 #define	HAVE_INLINE_FLS
175 
176 static __inline __pure2 int
177 fls(int mask)
178 {
179 	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
180 }
181 
182 #define	HAVE_INLINE_FLSL
183 
184 static __inline __pure2 int
185 flsl(long mask)
186 {
187 	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
188 }
189 
190 #define	HAVE_INLINE_FLSLL
191 
192 static __inline __pure2 int
193 flsll(long long mask)
194 {
195 	return (flsl((long)mask));
196 }
197 
198 #endif /* _KERNEL */
199 
200 static __inline void
201 halt(void)
202 {
203 	__asm __volatile("hlt");
204 }
205 
206 static __inline u_char
207 inb(u_int port)
208 {
209 	u_char	data;
210 
211 	__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
212 	return (data);
213 }
214 
215 static __inline u_int
216 inl(u_int port)
217 {
218 	u_int	data;
219 
220 	__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
221 	return (data);
222 }
223 
224 static __inline void
225 insb(u_int port, void *addr, size_t count)
226 {
227 	__asm __volatile("cld; rep; insb"
228 			 : "+D" (addr), "+c" (count)
229 			 : "d" (port)
230 			 : "memory");
231 }
232 
233 static __inline void
234 insw(u_int port, void *addr, size_t count)
235 {
236 	__asm __volatile("cld; rep; insw"
237 			 : "+D" (addr), "+c" (count)
238 			 : "d" (port)
239 			 : "memory");
240 }
241 
242 static __inline void
243 insl(u_int port, void *addr, size_t count)
244 {
245 	__asm __volatile("cld; rep; insl"
246 			 : "+D" (addr), "+c" (count)
247 			 : "d" (port)
248 			 : "memory");
249 }
250 
251 static __inline void
252 invd(void)
253 {
254 	__asm __volatile("invd");
255 }
256 
257 static __inline u_short
258 inw(u_int port)
259 {
260 	u_short	data;
261 
262 	__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
263 	return (data);
264 }
265 
266 static __inline void
267 outb(u_int port, u_char data)
268 {
269 	__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
270 }
271 
272 static __inline void
273 outl(u_int port, u_int data)
274 {
275 	__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
276 }
277 
278 static __inline void
279 outsb(u_int port, const void *addr, size_t count)
280 {
281 	__asm __volatile("cld; rep; outsb"
282 			 : "+S" (addr), "+c" (count)
283 			 : "d" (port));
284 }
285 
286 static __inline void
287 outsw(u_int port, const void *addr, size_t count)
288 {
289 	__asm __volatile("cld; rep; outsw"
290 			 : "+S" (addr), "+c" (count)
291 			 : "d" (port));
292 }
293 
294 static __inline void
295 outsl(u_int port, const void *addr, size_t count)
296 {
297 	__asm __volatile("cld; rep; outsl"
298 			 : "+S" (addr), "+c" (count)
299 			 : "d" (port));
300 }
301 
302 static __inline void
303 outw(u_int port, u_short data)
304 {
305 	__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
306 }
307 
308 static __inline u_long
309 popcntq(u_long mask)
310 {
311 	u_long result;
312 
313 	__asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask));
314 	return (result);
315 }
316 
317 static __inline void
318 lfence(void)
319 {
320 
321 	__asm __volatile("lfence" : : : "memory");
322 }
323 
324 static __inline void
325 mfence(void)
326 {
327 
328 	__asm __volatile("mfence" : : : "memory");
329 }
330 
331 static __inline void
332 sfence(void)
333 {
334 
335 	__asm __volatile("sfence" : : : "memory");
336 }
337 
338 static __inline void
339 ia32_pause(void)
340 {
341 	__asm __volatile("pause");
342 }
343 
344 static __inline u_long
345 read_rflags(void)
346 {
347 	u_long	rf;
348 
349 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
350 	return (rf);
351 }
352 
353 static __inline uint64_t
354 rdmsr(u_int msr)
355 {
356 	uint32_t low, high;
357 
358 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
359 	return (low | ((uint64_t)high << 32));
360 }
361 
362 static __inline uint32_t
363 rdmsr32(u_int msr)
364 {
365 	uint32_t low;
366 
367 	__asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx");
368 	return (low);
369 }
370 
371 static __inline uint64_t
372 rdpmc(u_int pmc)
373 {
374 	uint32_t low, high;
375 
376 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
377 	return (low | ((uint64_t)high << 32));
378 }
379 
380 static __inline uint64_t
381 rdtsc(void)
382 {
383 	uint32_t low, high;
384 
385 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
386 	return (low | ((uint64_t)high << 32));
387 }
388 
389 static __inline uint64_t
390 rdtscp(void)
391 {
392 	uint32_t low, high;
393 
394 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high));
395 	return (low | ((uint64_t)high << 32));
396 }
397 
398 static __inline uint32_t
399 rdtsc32(void)
400 {
401 	uint32_t rv;
402 
403 	__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
404 	return (rv);
405 }
406 
407 static __inline void
408 wbinvd(void)
409 {
410 	__asm __volatile("wbinvd");
411 }
412 
413 static __inline void
414 write_rflags(u_long rf)
415 {
416 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
417 }
418 
419 static __inline void
420 wrmsr(u_int msr, uint64_t newval)
421 {
422 	uint32_t low, high;
423 
424 	low = newval;
425 	high = newval >> 32;
426 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
427 }
428 
429 static __inline void
430 load_cr0(u_long data)
431 {
432 
433 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
434 }
435 
436 static __inline u_long
437 rcr0(void)
438 {
439 	u_long	data;
440 
441 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
442 	return (data);
443 }
444 
445 static __inline u_long
446 rcr2(void)
447 {
448 	u_long	data;
449 
450 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
451 	return (data);
452 }
453 
454 static __inline void
455 load_cr3(u_long data)
456 {
457 
458 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
459 }
460 
461 static __inline u_long
462 rcr3(void)
463 {
464 	u_long	data;
465 
466 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
467 	return (data);
468 }
469 
470 static __inline void
471 load_cr4(u_long data)
472 {
473 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
474 }
475 
476 static __inline u_long
477 rcr4(void)
478 {
479 	u_long	data;
480 
481 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
482 	return (data);
483 }
484 
485 static __inline u_long
486 rxcr(u_int reg)
487 {
488 	u_int low, high;
489 
490 	__asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg));
491 	return (low | ((uint64_t)high << 32));
492 }
493 
494 static __inline void
495 load_xcr(u_int reg, u_long val)
496 {
497 	u_int low, high;
498 
499 	low = val;
500 	high = val >> 32;
501 	__asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high));
502 }
503 
504 /*
505  * Global TLB flush (except for thise for pages marked PG_G)
506  */
507 static __inline void
508 invltlb(void)
509 {
510 
511 	load_cr3(rcr3());
512 }
513 
514 #ifndef CR4_PGE
515 #define	CR4_PGE	0x00000080	/* Page global enable */
516 #endif
517 
518 /*
519  * Perform the guaranteed invalidation of all TLB entries.  This
520  * includes the global entries, and entries in all PCIDs, not only the
521  * current context.  The function works both on non-PCID CPUs and CPUs
522  * with the PCID turned off or on.  See IA-32 SDM Vol. 3a 4.10.4.1
523  * Operations that Invalidate TLBs and Paging-Structure Caches.
524  */
525 static __inline void
526 invltlb_glob(void)
527 {
528 	uint64_t cr4;
529 
530 	cr4 = rcr4();
531 	load_cr4(cr4 & ~CR4_PGE);
532 	/*
533 	 * Although preemption at this point could be detrimental to
534 	 * performance, it would not lead to an error.  PG_G is simply
535 	 * ignored if CR4.PGE is clear.  Moreover, in case this block
536 	 * is re-entered, the load_cr4() either above or below will
537 	 * modify CR4.PGE flushing the TLB.
538 	 */
539 	load_cr4(cr4 | CR4_PGE);
540 }
541 
542 /*
543  * TLB flush for an individual page (even if it has PG_G).
544  * Only works on 486+ CPUs (i386 does not have PG_G).
545  */
546 static __inline void
547 invlpg(u_long addr)
548 {
549 
550 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
551 }
552 
553 #define	INVPCID_ADDR	0
554 #define	INVPCID_CTX	1
555 #define	INVPCID_CTXGLOB	2
556 #define	INVPCID_ALLCTX	3
557 
558 struct invpcid_descr {
559 	uint64_t	pcid:12 __packed;
560 	uint64_t	pad:52 __packed;
561 	uint64_t	addr;
562 } __packed;
563 
564 static __inline void
565 invpcid(struct invpcid_descr *d, int type)
566 {
567 
568 	__asm __volatile("invpcid (%0),%1"
569 	    : : "r" (d), "r" ((u_long)type) : "memory");
570 }
571 
572 static __inline u_short
573 rfs(void)
574 {
575 	u_short sel;
576 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
577 	return (sel);
578 }
579 
580 static __inline u_short
581 rgs(void)
582 {
583 	u_short sel;
584 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
585 	return (sel);
586 }
587 
588 static __inline u_short
589 rss(void)
590 {
591 	u_short sel;
592 	__asm __volatile("movw %%ss,%0" : "=rm" (sel));
593 	return (sel);
594 }
595 
596 static __inline void
597 load_ds(u_short sel)
598 {
599 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
600 }
601 
602 static __inline void
603 load_es(u_short sel)
604 {
605 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
606 }
607 
608 static __inline void
609 cpu_monitor(const void *addr, u_long extensions, u_int hints)
610 {
611 
612 	__asm __volatile("monitor"
613 	    : : "a" (addr), "c" (extensions), "d" (hints));
614 }
615 
616 static __inline void
617 cpu_mwait(u_long extensions, u_int hints)
618 {
619 
620 	__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
621 }
622 
623 #ifdef _KERNEL
624 /* This is defined in <machine/specialreg.h> but is too painful to get to */
625 #ifndef	MSR_FSBASE
626 #define	MSR_FSBASE	0xc0000100
627 #endif
628 static __inline void
629 load_fs(u_short sel)
630 {
631 	/* Preserve the fsbase value across the selector load */
632 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
633 	    : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
634 }
635 
636 #ifndef	MSR_GSBASE
637 #define	MSR_GSBASE	0xc0000101
638 #endif
639 static __inline void
640 load_gs(u_short sel)
641 {
642 	/*
643 	 * Preserve the gsbase value across the selector load.
644 	 * Note that we have to disable interrupts because the gsbase
645 	 * being trashed happens to be the kernel gsbase at the time.
646 	 */
647 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
648 	    : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
649 }
650 #else
651 /* Usable by userland */
652 static __inline void
653 load_fs(u_short sel)
654 {
655 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
656 }
657 
658 static __inline void
659 load_gs(u_short sel)
660 {
661 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
662 }
663 #endif
664 
665 static __inline uint64_t
666 rdfsbase(void)
667 {
668 	uint64_t x;
669 
670 	__asm __volatile("rdfsbase %0" : "=r" (x));
671 	return (x);
672 }
673 
674 static __inline void
675 wrfsbase(uint64_t x)
676 {
677 
678 	__asm __volatile("wrfsbase %0" : : "r" (x));
679 }
680 
681 static __inline uint64_t
682 rdgsbase(void)
683 {
684 	uint64_t x;
685 
686 	__asm __volatile("rdgsbase %0" : "=r" (x));
687 	return (x);
688 }
689 
690 static __inline void
691 wrgsbase(uint64_t x)
692 {
693 
694 	__asm __volatile("wrgsbase %0" : : "r" (x));
695 }
696 
697 static __inline void
698 bare_lgdt(struct region_descriptor *addr)
699 {
700 	__asm __volatile("lgdt (%0)" : : "r" (addr));
701 }
702 
703 static __inline void
704 sgdt(struct region_descriptor *addr)
705 {
706 	char *loc;
707 
708 	loc = (char *)addr;
709 	__asm __volatile("sgdt %0" : "=m" (*loc) : : "memory");
710 }
711 
712 static __inline void
713 lidt(struct region_descriptor *addr)
714 {
715 	__asm __volatile("lidt (%0)" : : "r" (addr));
716 }
717 
718 static __inline void
719 sidt(struct region_descriptor *addr)
720 {
721 	char *loc;
722 
723 	loc = (char *)addr;
724 	__asm __volatile("sidt %0" : "=m" (*loc) : : "memory");
725 }
726 
727 static __inline void
728 lldt(u_short sel)
729 {
730 	__asm __volatile("lldt %0" : : "r" (sel));
731 }
732 
733 static __inline void
734 ltr(u_short sel)
735 {
736 	__asm __volatile("ltr %0" : : "r" (sel));
737 }
738 
739 static __inline uint32_t
740 read_tr(void)
741 {
742 	u_short sel;
743 
744 	__asm __volatile("str %0" : "=r" (sel));
745 	return (sel);
746 }
747 
748 static __inline uint64_t
749 rdr0(void)
750 {
751 	uint64_t data;
752 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
753 	return (data);
754 }
755 
756 static __inline void
757 load_dr0(uint64_t dr0)
758 {
759 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
760 }
761 
762 static __inline uint64_t
763 rdr1(void)
764 {
765 	uint64_t data;
766 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
767 	return (data);
768 }
769 
770 static __inline void
771 load_dr1(uint64_t dr1)
772 {
773 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
774 }
775 
776 static __inline uint64_t
777 rdr2(void)
778 {
779 	uint64_t data;
780 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
781 	return (data);
782 }
783 
784 static __inline void
785 load_dr2(uint64_t dr2)
786 {
787 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
788 }
789 
790 static __inline uint64_t
791 rdr3(void)
792 {
793 	uint64_t data;
794 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
795 	return (data);
796 }
797 
798 static __inline void
799 load_dr3(uint64_t dr3)
800 {
801 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
802 }
803 
804 static __inline uint64_t
805 rdr6(void)
806 {
807 	uint64_t data;
808 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
809 	return (data);
810 }
811 
812 static __inline void
813 load_dr6(uint64_t dr6)
814 {
815 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
816 }
817 
818 static __inline uint64_t
819 rdr7(void)
820 {
821 	uint64_t data;
822 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
823 	return (data);
824 }
825 
826 static __inline void
827 load_dr7(uint64_t dr7)
828 {
829 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
830 }
831 
832 static __inline register_t
833 intr_disable(void)
834 {
835 	register_t rflags;
836 
837 	rflags = read_rflags();
838 	disable_intr();
839 	return (rflags);
840 }
841 
842 static __inline void
843 intr_restore(register_t rflags)
844 {
845 	write_rflags(rflags);
846 }
847 
848 static __inline void
849 stac(void)
850 {
851 
852 	__asm __volatile("stac" : : : "cc");
853 }
854 
855 static __inline void
856 clac(void)
857 {
858 
859 	__asm __volatile("clac" : : : "cc");
860 }
861 
862 enum {
863 	SGX_ECREATE	= 0x0,
864 	SGX_EADD	= 0x1,
865 	SGX_EINIT	= 0x2,
866 	SGX_EREMOVE	= 0x3,
867 	SGX_EDGBRD	= 0x4,
868 	SGX_EDGBWR	= 0x5,
869 	SGX_EEXTEND	= 0x6,
870 	SGX_ELDU	= 0x8,
871 	SGX_EBLOCK	= 0x9,
872 	SGX_EPA		= 0xA,
873 	SGX_EWB		= 0xB,
874 	SGX_ETRACK	= 0xC,
875 };
876 
877 enum {
878 	SGX_PT_SECS = 0x00,
879 	SGX_PT_TCS  = 0x01,
880 	SGX_PT_REG  = 0x02,
881 	SGX_PT_VA   = 0x03,
882 	SGX_PT_TRIM = 0x04,
883 };
884 
885 int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx);
886 
887 static __inline int
888 sgx_ecreate(void *pginfo, void *secs)
889 {
890 
891 	return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo,
892 	    (uint64_t)secs, 0));
893 }
894 
895 static __inline int
896 sgx_eadd(void *pginfo, void *epc)
897 {
898 
899 	return (sgx_encls(SGX_EADD, (uint64_t)pginfo,
900 	    (uint64_t)epc, 0));
901 }
902 
903 static __inline int
904 sgx_einit(void *sigstruct, void *secs, void *einittoken)
905 {
906 
907 	return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct,
908 	    (uint64_t)secs, (uint64_t)einittoken));
909 }
910 
911 static __inline int
912 sgx_eextend(void *secs, void *epc)
913 {
914 
915 	return (sgx_encls(SGX_EEXTEND, (uint64_t)secs,
916 	    (uint64_t)epc, 0));
917 }
918 
919 static __inline int
920 sgx_epa(void *epc)
921 {
922 
923 	return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0));
924 }
925 
926 static __inline int
927 sgx_eldu(uint64_t rbx, uint64_t rcx,
928     uint64_t rdx)
929 {
930 
931 	return (sgx_encls(SGX_ELDU, rbx, rcx, rdx));
932 }
933 
934 static __inline int
935 sgx_eremove(void *epc)
936 {
937 
938 	return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0));
939 }
940 
941 #else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */
942 
943 int	breakpoint(void);
944 u_int	bsfl(u_int mask);
945 u_int	bsrl(u_int mask);
946 void	clflush(u_long addr);
947 void	clts(void);
948 void	cpuid_count(u_int ax, u_int cx, u_int *p);
949 void	disable_intr(void);
950 void	do_cpuid(u_int ax, u_int *p);
951 void	enable_intr(void);
952 void	halt(void);
953 void	ia32_pause(void);
954 u_char	inb(u_int port);
955 u_int	inl(u_int port);
956 void	insb(u_int port, void *addr, size_t count);
957 void	insl(u_int port, void *addr, size_t count);
958 void	insw(u_int port, void *addr, size_t count);
959 register_t	intr_disable(void);
960 void	intr_restore(register_t rf);
961 void	invd(void);
962 void	invlpg(u_int addr);
963 void	invltlb(void);
964 u_short	inw(u_int port);
965 void	lidt(struct region_descriptor *addr);
966 void	lldt(u_short sel);
967 void	load_cr0(u_long cr0);
968 void	load_cr3(u_long cr3);
969 void	load_cr4(u_long cr4);
970 void	load_dr0(uint64_t dr0);
971 void	load_dr1(uint64_t dr1);
972 void	load_dr2(uint64_t dr2);
973 void	load_dr3(uint64_t dr3);
974 void	load_dr6(uint64_t dr6);
975 void	load_dr7(uint64_t dr7);
976 void	load_fs(u_short sel);
977 void	load_gs(u_short sel);
978 void	ltr(u_short sel);
979 void	outb(u_int port, u_char data);
980 void	outl(u_int port, u_int data);
981 void	outsb(u_int port, const void *addr, size_t count);
982 void	outsl(u_int port, const void *addr, size_t count);
983 void	outsw(u_int port, const void *addr, size_t count);
984 void	outw(u_int port, u_short data);
985 u_long	rcr0(void);
986 u_long	rcr2(void);
987 u_long	rcr3(void);
988 u_long	rcr4(void);
989 uint64_t rdmsr(u_int msr);
990 uint32_t rdmsr32(u_int msr);
991 uint64_t rdpmc(u_int pmc);
992 uint64_t rdr0(void);
993 uint64_t rdr1(void);
994 uint64_t rdr2(void);
995 uint64_t rdr3(void);
996 uint64_t rdr6(void);
997 uint64_t rdr7(void);
998 uint64_t rdtsc(void);
999 u_long	read_rflags(void);
1000 u_int	rfs(void);
1001 u_int	rgs(void);
1002 void	wbinvd(void);
1003 void	write_rflags(u_int rf);
1004 void	wrmsr(u_int msr, uint64_t newval);
1005 
1006 #endif	/* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */
1007 
1008 void	reset_dbregs(void);
1009 
1010 #ifdef _KERNEL
1011 int	rdmsr_safe(u_int msr, uint64_t *val);
1012 int	wrmsr_safe(u_int msr, uint64_t newval);
1013 #endif
1014 
1015 #endif /* !_MACHINE_CPUFUNC_H_ */
1016