xref: /freebsd/sys/amd64/include/cpufunc.h (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 1993 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Functions to provide access to special i386 instructions.
37  * This in included in sys/systm.h, and that file should be
38  * used in preference to this.
39  */
40 
41 #ifdef __i386__
42 #include <i386/cpufunc.h>
43 #else /* !__i386__ */
44 
45 #ifndef _MACHINE_CPUFUNC_H_
46 #define	_MACHINE_CPUFUNC_H_
47 
48 struct region_descriptor;
49 
50 #define readb(va)	(*(volatile uint8_t *) (va))
51 #define readw(va)	(*(volatile uint16_t *) (va))
52 #define readl(va)	(*(volatile uint32_t *) (va))
53 #define readq(va)	(*(volatile uint64_t *) (va))
54 
55 #define writeb(va, d)	(*(volatile uint8_t *) (va) = (d))
56 #define writew(va, d)	(*(volatile uint16_t *) (va) = (d))
57 #define writel(va, d)	(*(volatile uint32_t *) (va) = (d))
58 #define writeq(va, d)	(*(volatile uint64_t *) (va) = (d))
59 
60 static __inline void
61 breakpoint(void)
62 {
63 	__asm __volatile("int $3");
64 }
65 
66 #define	bsfl(mask)	__builtin_ctz(mask)
67 
68 #define	bsfq(mask)	__builtin_ctzl(mask)
69 
70 #define	bsrl(mask)	(__builtin_clz(mask) ^ 0x1f)
71 
72 #define	bsrq(mask)	(__builtin_clzl(mask) ^ 0x3f)
73 
74 static __inline void
75 clflush(u_long addr)
76 {
77 
78 	__asm __volatile("clflush %0" : : "m" (*(char *)addr));
79 }
80 
81 static __inline void
82 clflushopt(u_long addr)
83 {
84 
85 	__asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr));
86 }
87 
88 static __inline void
89 clwb(u_long addr)
90 {
91 
92 	__asm __volatile("clwb %0" : : "m" (*(char *)addr));
93 }
94 
95 static __inline void
96 clts(void)
97 {
98 
99 	__asm __volatile("clts");
100 }
101 
102 static __inline void
103 disable_intr(void)
104 {
105 	__asm __volatile("cli" : : : "memory");
106 }
107 
108 static __inline void
109 do_cpuid(u_int ax, u_int *p)
110 {
111 	__asm __volatile("cpuid"
112 	    : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
113 	    :  "0" (ax));
114 }
115 
116 static __inline void
117 cpuid_count(u_int ax, u_int cx, u_int *p)
118 {
119 	__asm __volatile("cpuid"
120 	    : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
121 	    :  "0" (ax), "c" (cx));
122 }
123 
124 static __inline void
125 enable_intr(void)
126 {
127 	__asm __volatile("sti");
128 }
129 
130 #ifdef _KERNEL
131 
132 #define	HAVE_INLINE_FFS
133 #define	ffs(x)		__builtin_ffs(x)
134 
135 #define	HAVE_INLINE_FFSL
136 #define	ffsl(x)		__builtin_ffsl(x)
137 
138 #define	HAVE_INLINE_FFSLL
139 #define	ffsll(x)	__builtin_ffsll(x)
140 
141 #define	HAVE_INLINE_FLS
142 
143 static __inline __pure2 int
144 fls(int mask)
145 {
146 	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
147 }
148 
149 #define	HAVE_INLINE_FLSL
150 
151 static __inline __pure2 int
152 flsl(long mask)
153 {
154 	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
155 }
156 
157 #define	HAVE_INLINE_FLSLL
158 
159 static __inline __pure2 int
160 flsll(long long mask)
161 {
162 	return (flsl((long)mask));
163 }
164 
165 #endif /* _KERNEL */
166 
167 static __inline void
168 halt(void)
169 {
170 	__asm __volatile("hlt");
171 }
172 
173 static __inline u_char
174 inb(u_int port)
175 {
176 	u_char	data;
177 
178 	__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
179 	return (data);
180 }
181 
182 static __inline u_int
183 inl(u_int port)
184 {
185 	u_int	data;
186 
187 	__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
188 	return (data);
189 }
190 
191 static __inline void
192 insb(u_int port, void *addr, size_t count)
193 {
194 	__asm __volatile("rep; insb"
195 			 : "+D" (addr), "+c" (count)
196 			 : "d" (port)
197 			 : "memory");
198 }
199 
200 static __inline void
201 insw(u_int port, void *addr, size_t count)
202 {
203 	__asm __volatile("rep; insw"
204 			 : "+D" (addr), "+c" (count)
205 			 : "d" (port)
206 			 : "memory");
207 }
208 
209 static __inline void
210 insl(u_int port, void *addr, size_t count)
211 {
212 	__asm __volatile("rep; insl"
213 			 : "+D" (addr), "+c" (count)
214 			 : "d" (port)
215 			 : "memory");
216 }
217 
218 static __inline void
219 invd(void)
220 {
221 	__asm __volatile("invd");
222 }
223 
224 static __inline u_short
225 inw(u_int port)
226 {
227 	u_short	data;
228 
229 	__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
230 	return (data);
231 }
232 
233 static __inline void
234 outb(u_int port, u_char data)
235 {
236 	__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
237 }
238 
239 static __inline void
240 outl(u_int port, u_int data)
241 {
242 	__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
243 }
244 
245 static __inline void
246 outsb(u_int port, const void *addr, size_t count)
247 {
248 	__asm __volatile("rep; outsb"
249 			 : "+S" (addr), "+c" (count)
250 			 : "d" (port));
251 }
252 
253 static __inline void
254 outsw(u_int port, const void *addr, size_t count)
255 {
256 	__asm __volatile("rep; outsw"
257 			 : "+S" (addr), "+c" (count)
258 			 : "d" (port));
259 }
260 
261 static __inline void
262 outsl(u_int port, const void *addr, size_t count)
263 {
264 	__asm __volatile("rep; outsl"
265 			 : "+S" (addr), "+c" (count)
266 			 : "d" (port));
267 }
268 
269 static __inline void
270 outw(u_int port, u_short data)
271 {
272 	__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
273 }
274 
275 static __inline u_long
276 popcntq(u_long mask)
277 {
278 	u_long result;
279 
280 	__asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask));
281 	return (result);
282 }
283 
284 static __inline void
285 lfence(void)
286 {
287 
288 	__asm __volatile("lfence" : : : "memory");
289 }
290 
291 static __inline void
292 mfence(void)
293 {
294 
295 	__asm __volatile("mfence" : : : "memory");
296 }
297 
298 static __inline void
299 sfence(void)
300 {
301 
302 	__asm __volatile("sfence" : : : "memory");
303 }
304 
305 static __inline void
306 ia32_pause(void)
307 {
308 	__asm __volatile("pause");
309 }
310 
311 static __inline u_long
312 read_rflags(void)
313 {
314 	u_long	rf;
315 
316 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
317 	return (rf);
318 }
319 
320 static __inline uint64_t
321 rdmsr(u_int msr)
322 {
323 	uint32_t low, high;
324 
325 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
326 	return (low | ((uint64_t)high << 32));
327 }
328 
329 static __inline uint32_t
330 rdmsr32(u_int msr)
331 {
332 	uint32_t low;
333 
334 	__asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx");
335 	return (low);
336 }
337 
338 static __inline uint64_t
339 rdpmc(u_int pmc)
340 {
341 	uint32_t low, high;
342 
343 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
344 	return (low | ((uint64_t)high << 32));
345 }
346 
347 static __inline uint64_t
348 rdtsc(void)
349 {
350 	uint32_t low, high;
351 
352 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
353 	return (low | ((uint64_t)high << 32));
354 }
355 
356 static __inline uint64_t
357 rdtsc_ordered_lfence(void)
358 {
359 	lfence();
360 	return (rdtsc());
361 }
362 
363 static __inline uint64_t
364 rdtsc_ordered_mfence(void)
365 {
366 	mfence();
367 	return (rdtsc());
368 }
369 
370 static __inline uint64_t
371 rdtscp(void)
372 {
373 	uint32_t low, high;
374 
375 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high) : : "ecx");
376 	return (low | ((uint64_t)high << 32));
377 }
378 
379 static __inline uint64_t
380 rdtscp_aux(uint32_t *aux)
381 {
382 	uint32_t low, high;
383 
384 	__asm __volatile("rdtscp" : "=a" (low), "=d" (high), "=c" (*aux));
385 	return (low | ((uint64_t)high << 32));
386 }
387 
388 static __inline uint32_t
389 rdtsc32(void)
390 {
391 	uint32_t rv;
392 
393 	__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
394 	return (rv);
395 }
396 
397 static __inline uint32_t
398 rdtscp32(void)
399 {
400 	uint32_t rv;
401 
402 	__asm __volatile("rdtscp" : "=a" (rv) : : "ecx", "edx");
403 	return (rv);
404 }
405 
406 static __inline void
407 wbinvd(void)
408 {
409 	__asm __volatile("wbinvd");
410 }
411 
412 static __inline void
413 write_rflags(u_long rf)
414 {
415 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
416 }
417 
418 static __inline void
419 wrmsr(u_int msr, uint64_t newval)
420 {
421 	uint32_t low, high;
422 
423 	low = newval;
424 	high = newval >> 32;
425 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
426 }
427 
428 static __inline void
429 load_cr0(u_long data)
430 {
431 
432 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
433 }
434 
435 static __inline u_long
436 rcr0(void)
437 {
438 	u_long	data;
439 
440 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
441 	return (data);
442 }
443 
444 static __inline u_long
445 rcr2(void)
446 {
447 	u_long	data;
448 
449 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
450 	return (data);
451 }
452 
453 static __inline void
454 load_cr3(u_long data)
455 {
456 
457 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
458 }
459 
460 static __inline u_long
461 rcr3(void)
462 {
463 	u_long	data;
464 
465 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
466 	return (data);
467 }
468 
469 static __inline void
470 load_cr4(u_long data)
471 {
472 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
473 }
474 
475 static __inline u_long
476 rcr4(void)
477 {
478 	u_long	data;
479 
480 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
481 	return (data);
482 }
483 
484 static __inline u_long
485 rxcr(u_int reg)
486 {
487 	u_int low, high;
488 
489 	__asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg));
490 	return (low | ((uint64_t)high << 32));
491 }
492 
493 static __inline void
494 load_xcr(u_int reg, u_long val)
495 {
496 	u_int low, high;
497 
498 	low = val;
499 	high = val >> 32;
500 	__asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high));
501 }
502 
503 /*
504  * Global TLB flush (except for thise for pages marked PG_G)
505  */
506 static __inline void
507 invltlb(void)
508 {
509 
510 	load_cr3(rcr3());
511 }
512 
513 #ifndef CR4_PGE
514 #define	CR4_PGE	0x00000080	/* Page global enable */
515 #endif
516 
517 /*
518  * Perform the guaranteed invalidation of all TLB entries.  This
519  * includes the global entries, and entries in all PCIDs, not only the
520  * current context.  The function works both on non-PCID CPUs and CPUs
521  * with the PCID turned off or on.  See IA-32 SDM Vol. 3a 4.10.4.1
522  * Operations that Invalidate TLBs and Paging-Structure Caches.
523  */
524 static __inline void
525 invltlb_glob(void)
526 {
527 	uint64_t cr4;
528 
529 	cr4 = rcr4();
530 	load_cr4(cr4 & ~CR4_PGE);
531 	/*
532 	 * Although preemption at this point could be detrimental to
533 	 * performance, it would not lead to an error.  PG_G is simply
534 	 * ignored if CR4.PGE is clear.  Moreover, in case this block
535 	 * is re-entered, the load_cr4() either above or below will
536 	 * modify CR4.PGE flushing the TLB.
537 	 */
538 	load_cr4(cr4 | CR4_PGE);
539 }
540 
541 /*
542  * TLB flush for an individual page (even if it has PG_G).
543  * Only works on 486+ CPUs (i386 does not have PG_G).
544  */
545 static __inline void
546 invlpg(u_long addr)
547 {
548 
549 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
550 }
551 
552 #define	INVPCID_ADDR	0
553 #define	INVPCID_CTX	1
554 #define	INVPCID_CTXGLOB	2
555 #define	INVPCID_ALLCTX	3
556 
557 struct invpcid_descr {
558 	uint64_t	pcid:12 __packed;
559 	uint64_t	pad:52 __packed;
560 	uint64_t	addr;
561 } __packed;
562 
563 static __inline void
564 invpcid(struct invpcid_descr *d, int type)
565 {
566 
567 	__asm __volatile("invpcid (%0),%1"
568 	    : : "r" (d), "r" ((u_long)type) : "memory");
569 }
570 
571 static __inline u_short
572 rfs(void)
573 {
574 	u_short sel;
575 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
576 	return (sel);
577 }
578 
579 static __inline u_short
580 rgs(void)
581 {
582 	u_short sel;
583 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
584 	return (sel);
585 }
586 
587 static __inline u_short
588 rss(void)
589 {
590 	u_short sel;
591 	__asm __volatile("movw %%ss,%0" : "=rm" (sel));
592 	return (sel);
593 }
594 
595 static __inline void
596 load_ds(u_short sel)
597 {
598 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
599 }
600 
601 static __inline void
602 load_es(u_short sel)
603 {
604 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
605 }
606 
607 static __inline void
608 cpu_monitor(const void *addr, u_long extensions, u_int hints)
609 {
610 
611 	__asm __volatile("monitor"
612 	    : : "a" (addr), "c" (extensions), "d" (hints));
613 }
614 
615 static __inline void
616 cpu_mwait(u_long extensions, u_int hints)
617 {
618 
619 	__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
620 }
621 
622 static __inline uint32_t
623 rdpkru(void)
624 {
625 	uint32_t res;
626 
627 	__asm __volatile("rdpkru" :  "=a" (res) : "c" (0) : "edx");
628 	return (res);
629 }
630 
631 static __inline void
632 wrpkru(uint32_t mask)
633 {
634 
635 	__asm __volatile("wrpkru" :  : "a" (mask),  "c" (0), "d" (0));
636 }
637 
638 #ifdef _KERNEL
639 /* This is defined in <machine/specialreg.h> but is too painful to get to */
640 #ifndef	MSR_FSBASE
641 #define	MSR_FSBASE	0xc0000100
642 #endif
643 static __inline void
644 load_fs(u_short sel)
645 {
646 	/* Preserve the fsbase value across the selector load */
647 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
648 	    : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
649 }
650 
651 #ifndef	MSR_GSBASE
652 #define	MSR_GSBASE	0xc0000101
653 #endif
654 static __inline void
655 load_gs(u_short sel)
656 {
657 	/*
658 	 * Preserve the gsbase value across the selector load.
659 	 * Note that we have to disable interrupts because the gsbase
660 	 * being trashed happens to be the kernel gsbase at the time.
661 	 */
662 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
663 	    : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
664 }
665 #else
666 /* Usable by userland */
667 static __inline void
668 load_fs(u_short sel)
669 {
670 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
671 }
672 
673 static __inline void
674 load_gs(u_short sel)
675 {
676 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
677 }
678 #endif
679 
680 static __inline uint64_t
681 rdfsbase(void)
682 {
683 	uint64_t x;
684 
685 	__asm __volatile("rdfsbase %0" : "=r" (x));
686 	return (x);
687 }
688 
689 static __inline void
690 wrfsbase(uint64_t x)
691 {
692 
693 	__asm __volatile("wrfsbase %0" : : "r" (x));
694 }
695 
696 static __inline uint64_t
697 rdgsbase(void)
698 {
699 	uint64_t x;
700 
701 	__asm __volatile("rdgsbase %0" : "=r" (x));
702 	return (x);
703 }
704 
705 static __inline void
706 wrgsbase(uint64_t x)
707 {
708 
709 	__asm __volatile("wrgsbase %0" : : "r" (x));
710 }
711 
712 static __inline void
713 bare_lgdt(struct region_descriptor *addr)
714 {
715 	__asm __volatile("lgdt (%0)" : : "r" (addr));
716 }
717 
718 static __inline void
719 sgdt(struct region_descriptor *addr)
720 {
721 	char *loc;
722 
723 	loc = (char *)addr;
724 	__asm __volatile("sgdt %0" : "=m" (*loc) : : "memory");
725 }
726 
727 static __inline void
728 lidt(struct region_descriptor *addr)
729 {
730 	__asm __volatile("lidt (%0)" : : "r" (addr));
731 }
732 
733 static __inline void
734 sidt(struct region_descriptor *addr)
735 {
736 	char *loc;
737 
738 	loc = (char *)addr;
739 	__asm __volatile("sidt %0" : "=m" (*loc) : : "memory");
740 }
741 
742 static __inline void
743 lldt(u_short sel)
744 {
745 	__asm __volatile("lldt %0" : : "r" (sel));
746 }
747 
748 static __inline u_short
749 sldt(void)
750 {
751 	u_short sel;
752 
753 	__asm __volatile("sldt %0" : "=r" (sel));
754 	return (sel);
755 }
756 
757 static __inline void
758 ltr(u_short sel)
759 {
760 	__asm __volatile("ltr %0" : : "r" (sel));
761 }
762 
763 static __inline uint32_t
764 read_tr(void)
765 {
766 	u_short sel;
767 
768 	__asm __volatile("str %0" : "=r" (sel));
769 	return (sel);
770 }
771 
772 static __inline uint64_t
773 rdr0(void)
774 {
775 	uint64_t data;
776 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
777 	return (data);
778 }
779 
780 static __inline void
781 load_dr0(uint64_t dr0)
782 {
783 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
784 }
785 
786 static __inline uint64_t
787 rdr1(void)
788 {
789 	uint64_t data;
790 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
791 	return (data);
792 }
793 
794 static __inline void
795 load_dr1(uint64_t dr1)
796 {
797 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
798 }
799 
800 static __inline uint64_t
801 rdr2(void)
802 {
803 	uint64_t data;
804 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
805 	return (data);
806 }
807 
808 static __inline void
809 load_dr2(uint64_t dr2)
810 {
811 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
812 }
813 
814 static __inline uint64_t
815 rdr3(void)
816 {
817 	uint64_t data;
818 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
819 	return (data);
820 }
821 
822 static __inline void
823 load_dr3(uint64_t dr3)
824 {
825 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
826 }
827 
828 static __inline uint64_t
829 rdr6(void)
830 {
831 	uint64_t data;
832 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
833 	return (data);
834 }
835 
836 static __inline void
837 load_dr6(uint64_t dr6)
838 {
839 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
840 }
841 
842 static __inline uint64_t
843 rdr7(void)
844 {
845 	uint64_t data;
846 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
847 	return (data);
848 }
849 
850 static __inline void
851 load_dr7(uint64_t dr7)
852 {
853 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
854 }
855 
856 static __inline register_t
857 intr_disable(void)
858 {
859 	register_t rflags;
860 
861 	rflags = read_rflags();
862 	disable_intr();
863 	return (rflags);
864 }
865 
866 static __inline void
867 intr_restore(register_t rflags)
868 {
869 	write_rflags(rflags);
870 }
871 
872 static __inline void
873 stac(void)
874 {
875 
876 	__asm __volatile("stac" : : : "cc");
877 }
878 
879 static __inline void
880 clac(void)
881 {
882 
883 	__asm __volatile("clac" : : : "cc");
884 }
885 
886 enum {
887 	SGX_ECREATE	= 0x0,
888 	SGX_EADD	= 0x1,
889 	SGX_EINIT	= 0x2,
890 	SGX_EREMOVE	= 0x3,
891 	SGX_EDGBRD	= 0x4,
892 	SGX_EDGBWR	= 0x5,
893 	SGX_EEXTEND	= 0x6,
894 	SGX_ELDU	= 0x8,
895 	SGX_EBLOCK	= 0x9,
896 	SGX_EPA		= 0xA,
897 	SGX_EWB		= 0xB,
898 	SGX_ETRACK	= 0xC,
899 };
900 
901 enum {
902 	SGX_PT_SECS = 0x00,
903 	SGX_PT_TCS  = 0x01,
904 	SGX_PT_REG  = 0x02,
905 	SGX_PT_VA   = 0x03,
906 	SGX_PT_TRIM = 0x04,
907 };
908 
909 int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx);
910 
911 static __inline int
912 sgx_ecreate(void *pginfo, void *secs)
913 {
914 
915 	return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo,
916 	    (uint64_t)secs, 0));
917 }
918 
919 static __inline int
920 sgx_eadd(void *pginfo, void *epc)
921 {
922 
923 	return (sgx_encls(SGX_EADD, (uint64_t)pginfo,
924 	    (uint64_t)epc, 0));
925 }
926 
927 static __inline int
928 sgx_einit(void *sigstruct, void *secs, void *einittoken)
929 {
930 
931 	return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct,
932 	    (uint64_t)secs, (uint64_t)einittoken));
933 }
934 
935 static __inline int
936 sgx_eextend(void *secs, void *epc)
937 {
938 
939 	return (sgx_encls(SGX_EEXTEND, (uint64_t)secs,
940 	    (uint64_t)epc, 0));
941 }
942 
943 static __inline int
944 sgx_epa(void *epc)
945 {
946 
947 	return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0));
948 }
949 
950 static __inline int
951 sgx_eldu(uint64_t rbx, uint64_t rcx,
952     uint64_t rdx)
953 {
954 
955 	return (sgx_encls(SGX_ELDU, rbx, rcx, rdx));
956 }
957 
958 static __inline int
959 sgx_eremove(void *epc)
960 {
961 
962 	return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0));
963 }
964 
965 void	reset_dbregs(void);
966 
967 #ifdef _KERNEL
968 int	rdmsr_safe(u_int msr, uint64_t *val);
969 int	wrmsr_safe(u_int msr, uint64_t newval);
970 #endif
971 
972 #endif /* !_MACHINE_CPUFUNC_H_ */
973 
974 #endif /* __i386__ */
975