xref: /freebsd/sys/amd64/include/cpufunc.h (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*-
2  * Copyright (c) 1993 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Functions to provide access to special i386 instructions.
38  */
39 
40 #ifndef _MACHINE_CPUFUNC_H_
41 #define	_MACHINE_CPUFUNC_H_
42 
43 #include <sys/cdefs.h>
44 
45 __BEGIN_DECLS
46 #define readb(va)	(*(volatile u_int8_t *) (va))
47 #define readw(va)	(*(volatile u_int16_t *) (va))
48 #define readl(va)	(*(volatile u_int32_t *) (va))
49 
50 #define writeb(va, d)	(*(volatile u_int8_t *) (va) = (d))
51 #define writew(va, d)	(*(volatile u_int16_t *) (va) = (d))
52 #define writel(va, d)	(*(volatile u_int32_t *) (va) = (d))
53 
54 #ifdef	__GNUC__
55 
56 #ifdef SWTCH_OPTIM_STATS
57 extern	int	tlb_flush_count;	/* XXX */
58 #endif
59 
60 static __inline void
61 breakpoint(void)
62 {
63 	__asm __volatile("int $3");
64 }
65 
66 static __inline u_int
67 bsfl(u_int mask)
68 {
69 	u_int	result;
70 
71 	__asm __volatile("bsfl %0,%0" : "=r" (result) : "0" (mask));
72 	return (result);
73 }
74 
75 static __inline u_int
76 bsrl(u_int mask)
77 {
78 	u_int	result;
79 
80 	__asm __volatile("bsrl %0,%0" : "=r" (result) : "0" (mask));
81 	return (result);
82 }
83 
84 static __inline void
85 disable_intr(void)
86 {
87 	__asm __volatile("cli" : : : "memory");
88 }
89 
90 static __inline void
91 enable_intr(void)
92 {
93 	__asm __volatile("sti");
94 }
95 
96 #define	HAVE_INLINE_FFS
97 
98 static __inline int
99 ffs(int mask)
100 {
101 	/*
102 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
103 	 * this inline or turn off the builtin.  The builtin is faster but
104 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
105 	 * versions.
106 	 */
107 	 return (mask == 0 ? mask : bsfl((u_int)mask) + 1);
108 }
109 
110 #define	HAVE_INLINE_FLS
111 
112 static __inline int
113 fls(int mask)
114 {
115 	return (mask == 0 ? mask : bsrl((u_int)mask) + 1);
116 }
117 
118 #if __GNUC__ < 2
119 
120 #define	inb(port)		inbv(port)
121 #define	outb(port, data)	outbv(port, data)
122 
123 #else /* __GNUC >= 2 */
124 
125 /*
126  * The following complications are to get around gcc not having a
127  * constraint letter for the range 0..255.  We still put "d" in the
128  * constraint because "i" isn't a valid constraint when the port
129  * isn't constant.  This only matters for -O0 because otherwise
130  * the non-working version gets optimized away.
131  *
132  * Use an expression-statement instead of a conditional expression
133  * because gcc-2.6.0 would promote the operands of the conditional
134  * and produce poor code for "if ((inb(var) & const1) == const2)".
135  *
136  * The unnecessary test `(port) < 0x10000' is to generate a warning if
137  * the `port' has type u_short or smaller.  Such types are pessimal.
138  * This actually only works for signed types.  The range check is
139  * careful to avoid generating warnings.
140  */
141 #define	inb(port) __extension__ ({					\
142 	u_char	_data;							\
143 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
144 	    && (port) < 0x10000)					\
145 		_data = inbc(port);					\
146 	else								\
147 		_data = inbv(port);					\
148 	_data; })
149 
150 #define	outb(port, data) (						\
151 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
152 	&& (port) < 0x10000						\
153 	? outbc(port, data) : outbv(port, data))
154 
155 static __inline u_char
156 inbc(u_int port)
157 {
158 	u_char	data;
159 
160 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
161 	return (data);
162 }
163 
164 static __inline void
165 outbc(u_int port, u_char data)
166 {
167 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
168 }
169 
170 #endif /* __GNUC <= 2 */
171 
172 static __inline u_char
173 inbv(u_int port)
174 {
175 	u_char	data;
176 	/*
177 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
178 	 * %edx, while gcc generates inferior code (movw instead of movl)
179 	 * if we tell it to load (u_short) port.
180 	 */
181 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
182 	return (data);
183 }
184 
185 static __inline u_int
186 inl(u_int port)
187 {
188 	u_int	data;
189 
190 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
191 	return (data);
192 }
193 
194 static __inline void
195 insb(u_int port, void *addr, size_t cnt)
196 {
197 	__asm __volatile("cld; rep; insb"
198 			 : "=D" (addr), "=c" (cnt)
199 			 :  "0" (addr),  "1" (cnt), "d" (port)
200 			 : "memory");
201 }
202 
203 static __inline void
204 insw(u_int port, void *addr, size_t cnt)
205 {
206 	__asm __volatile("cld; rep; insw"
207 			 : "=D" (addr), "=c" (cnt)
208 			 :  "0" (addr),  "1" (cnt), "d" (port)
209 			 : "memory");
210 }
211 
212 static __inline void
213 insl(u_int port, void *addr, size_t cnt)
214 {
215 	__asm __volatile("cld; rep; insl"
216 			 : "=D" (addr), "=c" (cnt)
217 			 :  "0" (addr),  "1" (cnt), "d" (port)
218 			 : "memory");
219 }
220 
221 static __inline void
222 invd(void)
223 {
224 	__asm __volatile("invd");
225 }
226 
227 #if defined(SMP) && defined(_KERNEL)
228 
229 /*
230  * When using APIC IPI's, invlpg() is not simply the invlpg instruction
231  * (this is a bug) and the inlining cost is prohibitive since the call
232  * executes into the IPI transmission system.
233  */
234 void	invlpg		__P((u_int addr));
235 void	invltlb		__P((void));
236 
237 static __inline void
238 cpu_invlpg(void *addr)
239 {
240 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
241 }
242 
243 static __inline void
244 cpu_invltlb(void)
245 {
246 	u_int	temp;
247 	/*
248 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
249 	 * is inlined.
250 	 */
251 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
252 			 : : "memory");
253 #if defined(SWTCH_OPTIM_STATS)
254 	++tlb_flush_count;
255 #endif
256 }
257 
258 #else /* !(SMP && _KERNEL) */
259 
260 static __inline void
261 invlpg(u_int addr)
262 {
263 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
264 }
265 
266 static __inline void
267 invltlb(void)
268 {
269 	u_int	temp;
270 	/*
271 	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
272 	 * is inlined.
273 	 */
274 	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
275 			 : : "memory");
276 #ifdef SWTCH_OPTIM_STATS
277 	++tlb_flush_count;
278 #endif
279 }
280 
281 #endif /* SMP && _KERNEL */
282 
283 static __inline u_short
284 inw(u_int port)
285 {
286 	u_short	data;
287 
288 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
289 	return (data);
290 }
291 
292 static __inline void
293 outbv(u_int port, u_char data)
294 {
295 	u_char	al;
296 	/*
297 	 * Use an unnecessary assignment to help gcc's register allocator.
298 	 * This make a large difference for gcc-1.40 and a tiny difference
299 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
300 	 * best results.  gcc-2.6.0 can't handle this.
301 	 */
302 	al = data;
303 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
304 }
305 
306 static __inline void
307 outl(u_int port, u_int data)
308 {
309 	/*
310 	 * outl() and outw() aren't used much so we haven't looked at
311 	 * possible micro-optimizations such as the unnecessary
312 	 * assignment for them.
313 	 */
314 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
315 }
316 
317 static __inline void
318 outsb(u_int port, const void *addr, size_t cnt)
319 {
320 	__asm __volatile("cld; rep; outsb"
321 			 : "=S" (addr), "=c" (cnt)
322 			 :  "0" (addr),  "1" (cnt), "d" (port));
323 }
324 
325 static __inline void
326 outsw(u_int port, const void *addr, size_t cnt)
327 {
328 	__asm __volatile("cld; rep; outsw"
329 			 : "=S" (addr), "=c" (cnt)
330 			 :  "0" (addr),  "1" (cnt), "d" (port));
331 }
332 
333 static __inline void
334 outsl(u_int port, const void *addr, size_t cnt)
335 {
336 	__asm __volatile("cld; rep; outsl"
337 			 : "=S" (addr), "=c" (cnt)
338 			 :  "0" (addr),  "1" (cnt), "d" (port));
339 }
340 
341 static __inline void
342 outw(u_int port, u_short data)
343 {
344 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
345 }
346 
347 static __inline u_int
348 rcr2(void)
349 {
350 	u_int	data;
351 
352 	__asm __volatile("movl %%cr2,%0" : "=r" (data));
353 	return (data);
354 }
355 
356 static __inline u_int
357 read_eflags(void)
358 {
359 	u_int	ef;
360 
361 	__asm __volatile("pushfl; popl %0" : "=r" (ef));
362 	return (ef);
363 }
364 
365 static __inline u_int64_t
366 rdmsr(u_int msr)
367 {
368 	u_int64_t rv;
369 
370 	__asm __volatile("rdmsr" : "=A" (rv) : "c" (msr));
371 	return (rv);
372 }
373 
374 static __inline u_int64_t
375 rdpmc(u_int pmc)
376 {
377 	u_int64_t rv;
378 
379 	__asm __volatile("rdpmc" : "=A" (rv) : "c" (pmc));
380 	return (rv);
381 }
382 
383 static __inline u_int64_t
384 rdtsc(void)
385 {
386 	u_int64_t rv;
387 
388 	__asm __volatile("rdtsc" : "=A" (rv));
389 	return (rv);
390 }
391 
392 static __inline void
393 wbinvd(void)
394 {
395 	__asm __volatile("wbinvd");
396 }
397 
398 static __inline void
399 write_eflags(u_int ef)
400 {
401 	__asm __volatile("pushl %0; popfl" : : "r" (ef));
402 }
403 
404 static __inline void
405 wrmsr(u_int msr, u_int64_t newval)
406 {
407 	__asm __volatile("wrmsr" : : "A" (newval), "c" (msr));
408 }
409 
410 static __inline u_int
411 rfs(void)
412 {
413 	u_int sel;
414 	__asm __volatile("movl %%fs,%0" : "=rm" (sel));
415 	return (sel);
416 }
417 
418 static __inline u_int
419 rgs(void)
420 {
421 	u_int sel;
422 	__asm __volatile("movl %%gs,%0" : "=rm" (sel));
423 	return (sel);
424 }
425 
426 static __inline void
427 load_fs(u_int sel)
428 {
429 	__asm __volatile("movl %0,%%fs" : : "rm" (sel));
430 }
431 
432 static __inline void
433 load_gs(u_int sel)
434 {
435 	__asm __volatile("movl %0,%%gs" : : "rm" (sel));
436 }
437 
438 static __inline u_int
439 rdr0(void)
440 {
441 	u_int	data;
442 	__asm __volatile("movl %%dr0,%0" : "=r" (data));
443 	return (data);
444 }
445 
446 static __inline void
447 load_dr0(u_int sel)
448 {
449 	__asm __volatile("movl %0,%%dr0" : : "r" (sel));
450 }
451 
452 static __inline u_int
453 rdr1(void)
454 {
455 	u_int	data;
456 	__asm __volatile("movl %%dr1,%0" : "=r" (data));
457 	return (data);
458 }
459 
460 static __inline void
461 load_dr1(u_int sel)
462 {
463 	__asm __volatile("movl %0,%%dr1" : : "r" (sel));
464 }
465 
466 static __inline u_int
467 rdr2(void)
468 {
469 	u_int	data;
470 	__asm __volatile("movl %%dr2,%0" : "=r" (data));
471 	return (data);
472 }
473 
474 static __inline void
475 load_dr2(u_int sel)
476 {
477 	__asm __volatile("movl %0,%%dr2" : : "r" (sel));
478 }
479 
480 static __inline u_int
481 rdr3(void)
482 {
483 	u_int	data;
484 	__asm __volatile("movl %%dr3,%0" : "=r" (data));
485 	return (data);
486 }
487 
488 static __inline void
489 load_dr3(u_int sel)
490 {
491 	__asm __volatile("movl %0,%%dr3" : : "r" (sel));
492 }
493 
494 static __inline u_int
495 rdr4(void)
496 {
497 	u_int	data;
498 	__asm __volatile("movl %%dr4,%0" : "=r" (data));
499 	return (data);
500 }
501 
502 static __inline void
503 load_dr4(u_int sel)
504 {
505 	__asm __volatile("movl %0,%%dr4" : : "r" (sel));
506 }
507 
508 static __inline u_int
509 rdr5(void)
510 {
511 	u_int	data;
512 	__asm __volatile("movl %%dr5,%0" : "=r" (data));
513 	return (data);
514 }
515 
516 static __inline void
517 load_dr5(u_int sel)
518 {
519 	__asm __volatile("movl %0,%%dr5" : : "r" (sel));
520 }
521 
522 static __inline u_int
523 rdr6(void)
524 {
525 	u_int	data;
526 	__asm __volatile("movl %%dr6,%0" : "=r" (data));
527 	return (data);
528 }
529 
530 static __inline void
531 load_dr6(u_int sel)
532 {
533 	__asm __volatile("movl %0,%%dr6" : : "r" (sel));
534 }
535 
536 static __inline u_int
537 rdr7(void)
538 {
539 	u_int	data;
540 	__asm __volatile("movl %%dr7,%0" : "=r" (data));
541 	return (data);
542 }
543 
544 static __inline void
545 load_dr7(u_int sel)
546 {
547 	__asm __volatile("movl %0,%%dr7" : : "r" (sel));
548 }
549 
550 static __inline critical_t
551 critical_enter(void)
552 {
553 	critical_t eflags;
554 
555 	eflags = read_eflags();
556 	disable_intr();
557 	return (eflags);
558 }
559 
560 static __inline void
561 critical_exit(critical_t eflags)
562 {
563 	write_eflags(eflags);
564 }
565 
566 #else /* !__GNUC__ */
567 
568 int	breakpoint	__P((void));
569 u_int	bsfl		__P((u_int mask));
570 u_int	bsrl		__P((u_int mask));
571 void	disable_intr	__P((void));
572 void	enable_intr	__P((void));
573 u_char	inb		__P((u_int port));
574 u_int	inl		__P((u_int port));
575 void	insb		__P((u_int port, void *addr, size_t cnt));
576 void	insl		__P((u_int port, void *addr, size_t cnt));
577 void	insw		__P((u_int port, void *addr, size_t cnt));
578 void	invd		__P((void));
579 void	invlpg		__P((u_int addr));
580 void	invltlb		__P((void));
581 u_short	inw		__P((u_int port));
582 void	outb		__P((u_int port, u_char data));
583 void	outl		__P((u_int port, u_int data));
584 void	outsb		__P((u_int port, void *addr, size_t cnt));
585 void	outsl		__P((u_int port, void *addr, size_t cnt));
586 void	outsw		__P((u_int port, void *addr, size_t cnt));
587 void	outw		__P((u_int port, u_short data));
588 u_int	rcr2		__P((void));
589 u_int64_t rdmsr		__P((u_int msr));
590 u_int64_t rdpmc		__P((u_int pmc));
591 u_int64_t rdtsc		__P((void));
592 u_int	read_eflags	__P((void));
593 void	wbinvd		__P((void));
594 void	write_eflags	__P((u_int ef));
595 void	wrmsr		__P((u_int msr, u_int64_t newval));
596 u_int	rfs		__P((void));
597 u_int	rgs		__P((void));
598 void	load_fs		__P((u_int sel));
599 void	load_gs		__P((u_int sel));
600 critical_t critical_enter __P((void));
601 void	critical_exit	__P((critical_t eflags));
602 
603 #endif	/* __GNUC__ */
604 
605 void	load_cr0	__P((u_int cr0));
606 void	load_cr3	__P((u_int cr3));
607 void	load_cr4	__P((u_int cr4));
608 void	ltr		__P((u_short sel));
609 u_int	rcr0		__P((void));
610 u_int	rcr3		__P((void));
611 u_int	rcr4		__P((void));
612 void    reset_dbregs    __P((void));
613 __END_DECLS
614 
615 #endif /* !_MACHINE_CPUFUNC_H_ */
616