xref: /freebsd/sys/amd64/amd64/fpu.c (revision ef5d438ed4bc17ad7ece3e40fe4d1f9baf3aadf7)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
35  *	$Id: npx.c,v 1.28 1996/01/04 19:51:14 wollman Exp $
36  */
37 
38 #include "npx.h"
39 #if NNPX > 0
40 
41 #include "opt_math_emulate.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/conf.h>
48 #include <sys/file.h>
49 #include <sys/proc.h>
50 #include <sys/devconf.h>
51 #include <sys/ioctl.h>
52 #include <sys/syslog.h>
53 #include <sys/signalvar.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/pcb.h>
57 #include <machine/trap.h>
58 #include <machine/clock.h>
59 #include <machine/specialreg.h>
60 
61 #include <i386/isa/icu.h>
62 #include <i386/isa/isa_device.h>
63 #include <i386/isa/isa.h>
64 
65 /*
66  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
67  */
68 
69 #ifdef	__GNUC__
70 
71 #define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
72 #define	fnclex()		__asm("fnclex")
73 #define	fninit()		__asm("fninit")
74 #define	fnop()			__asm("fnop")
75 #define	fnsave(addr)		__asm("fnsave %0" : "=m" (*(addr)))
76 #define	fnstcw(addr)		__asm("fnstcw %0" : "=m" (*(addr)))
77 #define	fnstsw(addr)		__asm("fnstsw %0" : "=m" (*(addr)))
78 #define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
79 #define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
80 #define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
81 				      : : "n" (CR0_TS) : "ax")
82 #define	stop_emulating()	__asm("clts")
83 
84 #else	/* not __GNUC__ */
85 
86 void	fldcw		__P((caddr_t addr));
87 void	fnclex		__P((void));
88 void	fninit		__P((void));
89 void	fnop		__P((void));
90 void	fnsave		__P((caddr_t addr));
91 void	fnstcw		__P((caddr_t addr));
92 void	fnstsw		__P((caddr_t addr));
93 void	fp_divide_by_0	__P((void));
94 void	frstor		__P((caddr_t addr));
95 void	start_emulating	__P((void));
96 void	stop_emulating	__P((void));
97 
98 #endif	/* __GNUC__ */
99 
100 typedef u_char bool_t;
101 
102 static	int	npxattach	__P((struct isa_device *dvp));
103 static	int	npxprobe	__P((struct isa_device *dvp));
104 static	int	npxprobe1	__P((struct isa_device *dvp));
105 
106 struct	isa_driver npxdriver = {
107 	npxprobe, npxattach, "npx",
108 };
109 
110 int	hw_float;		/* XXX currently just alias for npx_exists */
111 
112 SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
113 	CTLFLAG_RD, &hw_float, 0,
114 	"Floatingpoint instructions executed in hardware");
115 
116 static u_int	npx0_imask = SWI_CLOCK_MASK;
117 struct proc	*npxproc;
118 
119 static	bool_t			npx_ex16;
120 static	bool_t			npx_exists;
121 static	struct gate_descriptor	npx_idt_probeintr;
122 static	int			npx_intrno;
123 static	volatile u_int		npx_intrs_while_probing;
124 static	bool_t			npx_irq13;
125 static	volatile u_int		npx_traps_while_probing;
126 
127 /*
128  * Special interrupt handlers.  Someday intr0-intr15 will be used to count
129  * interrupts.  We'll still need a special exception 16 handler.  The busy
130  * latch stuff in probeintr() can be moved to npxprobe().
131  */
132 inthand_t probeintr;
133 asm
134 ("
135 	.text
136 _probeintr:
137 	ss
138 	incl	_npx_intrs_while_probing
139 	pushl	%eax
140 	movb	$0x20,%al	# EOI (asm in strings loses cpp features)
141 	outb	%al,$0xa0	# IO_ICU2
142 	outb	%al,$0x20	# IO_ICU1
143 	movb	$0,%al
144 	outb	%al,$0xf0	# clear BUSY# latch
145 	popl	%eax
146 	iret
147 ");
148 
149 inthand_t probetrap;
150 asm
151 ("
152 	.text
153 _probetrap:
154 	ss
155 	incl	_npx_traps_while_probing
156 	fnclex
157 	iret
158 ");
159 
160 static struct kern_devconf kdc_npx[NNPX] = { {
161 	0, 0, 0,		/* filled in by dev_attach */
162 	"npx", 0, { MDDT_ISA, 0 },
163 	isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
164 	&kdc_isa0,		/* parent */
165 	0,			/* parentdata */
166 	DC_UNCONFIGURED,	/* state */
167 	"Floating-point unit",
168 	DC_CLS_MISC		/* class */
169 } };
170 
171 static inline void
172 npx_registerdev(struct isa_device *id)
173 {
174 	int	unit;
175 
176 	unit = id->id_unit;
177 	if (unit != 0)
178 		kdc_npx[unit] = kdc_npx[0];
179 	kdc_npx[unit].kdc_unit = unit;
180 	kdc_npx[unit].kdc_isa = id;
181 	dev_attach(&kdc_npx[unit]);
182 }
183 
184 /*
185  * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
186  * whether the device exists or not (XXX should be elsewhere).  Set flags
187  * to tell npxattach() what to do.  Modify device struct if npx doesn't
188  * need to use interrupts.  Return 1 if device exists.
189  */
190 static int
191 npxprobe(dvp)
192 	struct isa_device *dvp;
193 {
194 	int	result;
195 	u_long	save_eflags;
196 	u_char	save_icu1_mask;
197 	u_char	save_icu2_mask;
198 	struct	gate_descriptor save_idt_npxintr;
199 	struct	gate_descriptor save_idt_npxtrap;
200 	/*
201 	 * This routine is now just a wrapper for npxprobe1(), to install
202 	 * special npx interrupt and trap handlers, to enable npx interrupts
203 	 * and to disable other interrupts.  Someday isa_configure() will
204 	 * install suitable handlers and run with interrupts enabled so we
205 	 * won't need to do so much here.
206 	 */
207 	npx_registerdev(dvp);
208 	npx_intrno = NRSVIDT + ffs(dvp->id_irq) - 1;
209 	save_eflags = read_eflags();
210 	disable_intr();
211 	save_icu1_mask = inb(IO_ICU1 + 1);
212 	save_icu2_mask = inb(IO_ICU2 + 1);
213 	save_idt_npxintr = idt[npx_intrno];
214 	save_idt_npxtrap = idt[16];
215 	outb(IO_ICU1 + 1, ~(IRQ_SLAVE | dvp->id_irq));
216 	outb(IO_ICU2 + 1, ~(dvp->id_irq >> 8));
217 	setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
218 	setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
219 	npx_idt_probeintr = idt[npx_intrno];
220 	enable_intr();
221 	result = npxprobe1(dvp);
222 	disable_intr();
223 	outb(IO_ICU1 + 1, save_icu1_mask);
224 	outb(IO_ICU2 + 1, save_icu2_mask);
225 	idt[npx_intrno] = save_idt_npxintr;
226 	idt[16] = save_idt_npxtrap;
227 	write_eflags(save_eflags);
228 	return (result);
229 }
230 
231 static int
232 npxprobe1(dvp)
233 	struct isa_device *dvp;
234 {
235 	u_short control;
236 	u_short status;
237 
238 	/*
239 	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
240 	 * it after a warm boot.
241 	 */
242 	outb(0xf1, 0);		/* full reset on some systems, NOP on others */
243 	outb(0xf0, 0);		/* clear BUSY# latch */
244 	/*
245 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
246 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
247 	 * bit to control the trap, because setting the CR0_EM bit does
248 	 * not cause WAIT instructions to trap.  It's important to trap
249 	 * WAIT instructions - otherwise the "wait" variants of no-wait
250 	 * control instructions would degenerate to the "no-wait" variants
251 	 * after FP context switches but work correctly otherwise.  It's
252 	 * particularly important to trap WAITs when there is no NPX -
253 	 * otherwise the "wait" variants would always degenerate.
254 	 *
255 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
256 	 * Setting it should fail or do nothing on lesser processors.
257 	 */
258 	load_cr0(rcr0() | CR0_MP | CR0_NE);
259 	/*
260 	 * But don't trap while we're probing.
261 	 */
262 	stop_emulating();
263 	/*
264 	 * Finish resetting the coprocessor, if any.  If there is an error
265 	 * pending, then we may get a bogus IRQ13, but probeintr() will handle
266 	 * it OK.  Bogus halts have never been observed, but we enabled
267 	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
268 	 */
269 	fninit();
270 	/*
271 	 * Don't use fwait here because it might hang.
272 	 * Don't use fnop here because it usually hangs if there is no FPU.
273 	 */
274 	DELAY(1000);		/* wait for any IRQ13 */
275 #ifdef DIAGNOSTIC
276 	if (npx_intrs_while_probing != 0)
277 		printf("fninit caused %u bogus npx interrupt(s)\n",
278 		       npx_intrs_while_probing);
279 	if (npx_traps_while_probing != 0)
280 		printf("fninit caused %u bogus npx trap(s)\n",
281 		       npx_traps_while_probing);
282 #endif
283 	/*
284 	 * Check for a status of mostly zero.
285 	 */
286 	status = 0x5a5a;
287 	fnstsw(&status);
288 	if ((status & 0xb8ff) == 0) {
289 		/*
290 		 * Good, now check for a proper control word.
291 		 */
292 		control = 0x5a5a;
293 		fnstcw(&control);
294 		if ((control & 0x1f3f) == 0x033f) {
295 			hw_float = npx_exists = 1;
296 			/*
297 			 * We have an npx, now divide by 0 to see if exception
298 			 * 16 works.
299 			 */
300 			control &= ~(1 << 2);	/* enable divide by 0 trap */
301 			fldcw(&control);
302 			npx_traps_while_probing = npx_intrs_while_probing = 0;
303 			fp_divide_by_0();
304 			if (npx_traps_while_probing != 0) {
305 				/*
306 				 * Good, exception 16 works.
307 				 */
308 				npx_ex16 = 1;
309 				dvp->id_irq = 0;	/* zap the interrupt */
310 				/*
311 				 * special return value to flag that we do not
312 				 * actually use any I/O registers
313 				 */
314 				return (-1);
315 			}
316 			if (npx_intrs_while_probing != 0) {
317 				/*
318 				 * Bad, we are stuck with IRQ13.
319 				 */
320 				npx_irq13 = 1;
321 				/*
322 				 * npxattach would be too late to set npx0_imask.
323 				 */
324 				npx0_imask |= dvp->id_irq;
325 				return (IO_NPXSIZE);
326 			}
327 			/*
328 			 * Worse, even IRQ13 is broken.  Use emulator.
329 			 */
330 		}
331 	}
332 	/*
333 	 * Probe failed, but we want to get to npxattach to initialize the
334 	 * emulator and say that it has been installed.  XXX handle devices
335 	 * that aren't really devices better.
336 	 */
337 	dvp->id_irq = 0;
338 	/*
339 	 * special return value to flag that we do not
340 	 * actually use any I/O registers
341 	 */
342 	return (-1);
343 }
344 
345 /*
346  * Attach routine - announce which it is, and wire into system
347  */
348 int
349 npxattach(dvp)
350 	struct isa_device *dvp;
351 {
352 	if (npx_ex16)
353 		printf("npx%d: INT 16 interface\n", dvp->id_unit);
354 	else if (npx_irq13)
355 		;		/* higher level has printed "irq 13" */
356 #if defined(MATH_EMULATE) || defined(GPL_MATH_EMULATE)
357 	else if (npx_exists) {
358 		printf("npx%d: error reporting broken; using 387 emulator\n",
359 			dvp->id_unit);
360 		npx_exists = 0;
361 	} else
362 		printf("npx%d: 387 emulator\n",dvp->id_unit);
363 #else
364 	else
365 		printf("npx%d: no 387 emulator in kernel!\n", dvp->id_unit);
366 #endif
367 	npxinit(__INITIAL_NPXCW__);
368 	if (npx_exists) {
369 		kdc_npx[dvp->id_unit].kdc_state = DC_BUSY;
370 	}
371 	return (1);		/* XXX unused */
372 }
373 
374 /*
375  * Initialize floating point unit.
376  */
377 void
378 npxinit(control)
379 	u_short control;
380 {
381 	struct save87 dummy;
382 
383 	if (!npx_exists)
384 		return;
385 	/*
386 	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
387 	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
388 	 * the fpu and sets npxproc = NULL as important side effects.
389 	 */
390 	npxsave(&dummy);
391 	stop_emulating();
392 	fldcw(&control);
393 	if (curpcb != NULL)
394 		fnsave(&curpcb->pcb_savefpu);
395 	start_emulating();
396 }
397 
398 /*
399  * Free coprocessor (if we have it).
400  */
401 void
402 npxexit(p)
403 	struct proc *p;
404 {
405 
406 	if (p == npxproc)
407 		npxsave(&curpcb->pcb_savefpu);
408 	if (npx_exists) {
409 		u_int	masked_exceptions;
410 
411 		masked_exceptions = curpcb->pcb_savefpu.sv_env.en_cw
412 				    & curpcb->pcb_savefpu.sv_env.en_sw & 0x7f;
413 		/*
414 		 * Overflow, divde by 0, and invalid operand would have
415 		 * caused a trap in 1.1.5.
416 		 */
417 		if (masked_exceptions & 0x0d)
418 			log(LOG_ERR,
419 	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
420 			    p->p_pid, p->p_comm, masked_exceptions);
421 	}
422 }
423 
424 /*
425  * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
426  *
427  * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
428  * depend on longjmp() restoring a usable state.  Restoring the state
429  * or examining it might fail if we didn't clear exceptions.
430  *
431  * XXX there is no standard way to tell SIGFPE handlers about the error
432  * state.  The old interface:
433  *
434  *	void handler(int sig, int code, struct sigcontext *scp);
435  *
436  * is broken because it is non-ANSI and because the FP state is not in
437  * struct sigcontext.
438  *
439  * XXX the FP state is not preserved across signal handlers.  So signal
440  * handlers cannot afford to do FP unless they preserve the state or
441  * longjmp() out.  Both preserving the state and longjmp()ing may be
442  * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
443  * solution for signals other than SIGFPE.
444  */
445 void
446 npxintr(unit)
447 	int unit;
448 {
449 	int code;
450 	struct intrframe *frame;
451 
452 	if (npxproc == NULL || !npx_exists) {
453 		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
454 		       npxproc, curproc, npx_exists);
455 		panic("npxintr from nowhere");
456 	}
457 	if (npxproc != curproc) {
458 		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
459 		       npxproc, curproc, npx_exists);
460 		panic("npxintr from non-current process");
461 	}
462 
463 	outb(0xf0, 0);
464 	fnstsw(&curpcb->pcb_savefpu.sv_ex_sw);
465 	fnclex();
466 	fnop();
467 
468 	/*
469 	 * Pass exception to process.
470 	 */
471 	frame = (struct intrframe *)&unit;	/* XXX */
472 	if (ISPL(frame->if_cs) == SEL_UPL) {
473 		/*
474 		 * Interrupt is essentially a trap, so we can afford to call
475 		 * the SIGFPE handler (if any) as soon as the interrupt
476 		 * returns.
477 		 *
478 		 * XXX little or nothing is gained from this, and plenty is
479 		 * lost - the interrupt frame has to contain the trap frame
480 		 * (this is otherwise only necessary for the rescheduling trap
481 		 * in doreti, and the frame for that could easily be set up
482 		 * just before it is used).
483 		 */
484 		curproc->p_md.md_regs = &frame->if_es;
485 #ifdef notyet
486 		/*
487 		 * Encode the appropriate code for detailed information on
488 		 * this exception.
489 		 */
490 		code = XXX_ENCODE(curpcb->pcb_savefpu.sv_ex_sw);
491 #else
492 		code = 0;	/* XXX */
493 #endif
494 		trapsignal(curproc, SIGFPE, code);
495 	} else {
496 		/*
497 		 * Nested interrupt.  These losers occur when:
498 		 *	o an IRQ13 is bogusly generated at a bogus time, e.g.:
499 		 *		o immediately after an fnsave or frstor of an
500 		 *		  error state.
501 		 *		o a couple of 386 instructions after
502 		 *		  "fstpl _memvar" causes a stack overflow.
503 		 *	  These are especially nasty when combined with a
504 		 *	  trace trap.
505 		 *	o an IRQ13 occurs at the same time as another higher-
506 		 *	  priority interrupt.
507 		 *
508 		 * Treat them like a true async interrupt.
509 		 */
510 		psignal(curproc, SIGFPE);
511 	}
512 }
513 
514 /*
515  * Implement device not available (DNA) exception
516  *
517  * It would be better to switch FP context here (if curproc != npxproc)
518  * and not necessarily for every context switch, but it is too hard to
519  * access foreign pcb's.
520  */
521 int
522 npxdna()
523 {
524 	if (!npx_exists)
525 		return (0);
526 	if (npxproc != NULL) {
527 		printf("npxdna: npxproc = %p, curproc = %p\n",
528 		       npxproc, curproc);
529 		panic("npxdna");
530 	}
531 	stop_emulating();
532 	/*
533 	 * Record new context early in case frstor causes an IRQ13.
534 	 */
535 	npxproc = curproc;
536 	curpcb->pcb_savefpu.sv_ex_sw = 0;
537 	/*
538 	 * The following frstor may cause an IRQ13 when the state being
539 	 * restored has a pending error.  The error will appear to have been
540 	 * triggered by the current (npx) user instruction even when that
541 	 * instruction is a no-wait instruction that should not trigger an
542 	 * error (e.g., fnclex).  On at least one 486 system all of the
543 	 * no-wait instructions are broken the same as frstor, so our
544 	 * treatment does not amplify the breakage.  On at least one
545 	 * 386/Cyrix 387 system, fnclex works correctly while frstor and
546 	 * fnsave are broken, so our treatment breaks fnclex if it is the
547 	 * first FPU instruction after a context switch.
548 	 */
549 	frstor(&curpcb->pcb_savefpu);
550 
551 	return (1);
552 }
553 
554 /*
555  * Wrapper for fnsave instruction to handle h/w bugs.  If there is an error
556  * pending, then fnsave generates a bogus IRQ13 on some systems.  Force
557  * any IRQ13 to be handled immediately, and then ignore it.  This routine is
558  * often called at splhigh so it must not use many system services.  In
559  * particular, it's much easier to install a special handler than to
560  * guarantee that it's safe to use npxintr() and its supporting code.
561  */
562 void
563 npxsave(addr)
564 	struct save87 *addr;
565 {
566 	u_char	icu1_mask;
567 	u_char	icu2_mask;
568 	u_char	old_icu1_mask;
569 	u_char	old_icu2_mask;
570 	struct gate_descriptor	save_idt_npxintr;
571 
572 	disable_intr();
573 	old_icu1_mask = inb(IO_ICU1 + 1);
574 	old_icu2_mask = inb(IO_ICU2 + 1);
575 	save_idt_npxintr = idt[npx_intrno];
576 	outb(IO_ICU1 + 1, old_icu1_mask & ~(IRQ_SLAVE | npx0_imask));
577 	outb(IO_ICU2 + 1, old_icu2_mask & ~(npx0_imask >> 8));
578 	idt[npx_intrno] = npx_idt_probeintr;
579 	enable_intr();
580 	stop_emulating();
581 	fnsave(addr);
582 	fnop();
583 	start_emulating();
584 	npxproc = NULL;
585 	disable_intr();
586 	icu1_mask = inb(IO_ICU1 + 1);	/* masks may have changed */
587 	icu2_mask = inb(IO_ICU2 + 1);
588 	outb(IO_ICU1 + 1,
589 	     (icu1_mask & ~npx0_imask) | (old_icu1_mask & npx0_imask));
590 	outb(IO_ICU2 + 1,
591 	     (icu2_mask & ~(npx0_imask >> 8))
592 	     | (old_icu2_mask & (npx0_imask >> 8)));
593 	idt[npx_intrno] = save_idt_npxintr;
594 	enable_intr();		/* back to usual state */
595 }
596 
597 #endif /* NNPX > 0 */
598