xref: /freebsd/sys/amd64/amd64/fpu.c (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/sysent.h>
51 #include <machine/bus.h>
52 #include <sys/rman.h>
53 #include <sys/signalvar.h>
54 #include <vm/uma.h>
55 
56 #include <machine/cputypes.h>
57 #include <machine/frame.h>
58 #include <machine/intr_machdep.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/psl.h>
62 #include <machine/resource.h>
63 #include <machine/specialreg.h>
64 #include <machine/segments.h>
65 #include <machine/ucontext.h>
66 #include <x86/ifunc.h>
67 
68 /*
69  * Floating point support.
70  */
71 
72 #if defined(__GNUCLIKE_ASM) && !defined(lint)
73 
74 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
75 #define	fnclex()		__asm __volatile("fnclex")
76 #define	fninit()		__asm __volatile("fninit")
77 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
78 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
79 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
80 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
81 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
82 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
83 
84 static __inline void
85 xrstor32(char *addr, uint64_t mask)
86 {
87 	uint32_t low, hi;
88 
89 	low = mask;
90 	hi = mask >> 32;
91 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
92 }
93 
94 static __inline void
95 xrstor64(char *addr, uint64_t mask)
96 {
97 	uint32_t low, hi;
98 
99 	low = mask;
100 	hi = mask >> 32;
101 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
102 }
103 
104 static __inline void
105 xsave32(char *addr, uint64_t mask)
106 {
107 	uint32_t low, hi;
108 
109 	low = mask;
110 	hi = mask >> 32;
111 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 	    "memory");
113 }
114 
115 static __inline void
116 xsave64(char *addr, uint64_t mask)
117 {
118 	uint32_t low, hi;
119 
120 	low = mask;
121 	hi = mask >> 32;
122 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
123 	    "memory");
124 }
125 
126 static __inline void
127 xsaveopt32(char *addr, uint64_t mask)
128 {
129 	uint32_t low, hi;
130 
131 	low = mask;
132 	hi = mask >> 32;
133 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
134 	    "memory");
135 }
136 
137 static __inline void
138 xsaveopt64(char *addr, uint64_t mask)
139 {
140 	uint32_t low, hi;
141 
142 	low = mask;
143 	hi = mask >> 32;
144 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
145 	    "memory");
146 }
147 
148 #else	/* !(__GNUCLIKE_ASM && !lint) */
149 
150 void	fldcw(u_short cw);
151 void	fnclex(void);
152 void	fninit(void);
153 void	fnstcw(caddr_t addr);
154 void	fnstsw(caddr_t addr);
155 void	fxsave(caddr_t addr);
156 void	fxrstor(caddr_t addr);
157 void	ldmxcsr(u_int csr);
158 void	stmxcsr(u_int *csr);
159 void	xrstor32(char *addr, uint64_t mask);
160 void	xrstor64(char *addr, uint64_t mask);
161 void	xsave32(char *addr, uint64_t mask);
162 void	xsave64(char *addr, uint64_t mask);
163 void	xsaveopt32(char *addr, uint64_t mask);
164 void	xsaveopt64(char *addr, uint64_t mask);
165 
166 #endif	/* __GNUCLIKE_ASM && !lint */
167 
168 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
169 #define	stop_emulating()	clts()
170 
171 CTASSERT(sizeof(struct savefpu) == 512);
172 CTASSERT(sizeof(struct xstate_hdr) == 64);
173 CTASSERT(sizeof(struct savefpu_ymm) == 832);
174 
175 /*
176  * This requirement is to make it easier for asm code to calculate
177  * offset of the fpu save area from the pcb address. FPU save area
178  * must be 64-byte aligned.
179  */
180 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
181 
182 /*
183  * Ensure the copy of XCR0 saved in a core is contained in the padding
184  * area.
185  */
186 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
187     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
188 
189 static	void	fpu_clean_state(void);
190 
191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
193 
194 int use_xsave;			/* non-static for cpu_switch.S */
195 uint64_t xsave_mask;		/* the same */
196 static	uma_zone_t fpu_save_area_zone;
197 static	struct savefpu *fpu_initialstate;
198 
199 static struct xsave_area_elm_descr {
200 	u_int	offset;
201 	u_int	size;
202 } *xsave_area_desc;
203 
204 static void
205 fpusave_xsaveopt64(void *addr)
206 {
207 	xsaveopt64((char *)addr, xsave_mask);
208 }
209 
210 static void
211 fpusave_xsaveopt3264(void *addr)
212 {
213 	if (SV_CURPROC_FLAG(SV_ILP32))
214 		xsaveopt32((char *)addr, xsave_mask);
215 	else
216 		xsaveopt64((char *)addr, xsave_mask);
217 }
218 
219 static void
220 fpusave_xsave64(void *addr)
221 {
222 	xsave64((char *)addr, xsave_mask);
223 }
224 
225 static void
226 fpusave_xsave3264(void *addr)
227 {
228 	if (SV_CURPROC_FLAG(SV_ILP32))
229 		xsave32((char *)addr, xsave_mask);
230 	else
231 		xsave64((char *)addr, xsave_mask);
232 }
233 
234 static void
235 fpurestore_xrstor64(void *addr)
236 {
237 	xrstor64((char *)addr, xsave_mask);
238 }
239 
240 static void
241 fpurestore_xrstor3264(void *addr)
242 {
243 	if (SV_CURPROC_FLAG(SV_ILP32))
244 		xrstor32((char *)addr, xsave_mask);
245 	else
246 		xrstor64((char *)addr, xsave_mask);
247 }
248 
249 static void
250 fpusave_fxsave(void *addr)
251 {
252 
253 	fxsave((char *)addr);
254 }
255 
256 static void
257 fpurestore_fxrstor(void *addr)
258 {
259 
260 	fxrstor((char *)addr);
261 }
262 
263 static void
264 init_xsave(void)
265 {
266 
267 	if (use_xsave)
268 		return;
269 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
270 		return;
271 	use_xsave = 1;
272 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
273 }
274 
275 DEFINE_IFUNC(, void, fpusave, (void *))
276 {
277 
278 	init_xsave();
279 	if (!use_xsave)
280 		return (fpusave_fxsave);
281 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
282 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
283 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
284 	}
285 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
286 	    fpusave_xsave64 : fpusave_xsave3264);
287 }
288 
289 DEFINE_IFUNC(, void, fpurestore, (void *))
290 {
291 
292 	init_xsave();
293 	if (!use_xsave)
294 		return (fpurestore_fxrstor);
295 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
296 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
297 }
298 
299 void
300 fpususpend(void *addr)
301 {
302 	u_long cr0;
303 
304 	cr0 = rcr0();
305 	stop_emulating();
306 	fpusave(addr);
307 	load_cr0(cr0);
308 }
309 
310 void
311 fpuresume(void *addr)
312 {
313 	u_long cr0;
314 
315 	cr0 = rcr0();
316 	stop_emulating();
317 	fninit();
318 	if (use_xsave)
319 		load_xcr(XCR0, xsave_mask);
320 	fpurestore(addr);
321 	load_cr0(cr0);
322 }
323 
324 /*
325  * Enable XSAVE if supported and allowed by user.
326  * Calculate the xsave_mask.
327  */
328 static void
329 fpuinit_bsp1(void)
330 {
331 	u_int cp[4];
332 	uint64_t xsave_mask_user;
333 	bool old_wp;
334 
335 	if (!use_xsave)
336 		return;
337 	cpuid_count(0xd, 0x0, cp);
338 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
339 	if ((cp[0] & xsave_mask) != xsave_mask)
340 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
341 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
342 	xsave_mask_user = xsave_mask;
343 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
344 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
345 	xsave_mask &= xsave_mask_user;
346 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
347 		xsave_mask &= ~XFEATURE_AVX512;
348 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
349 		xsave_mask &= ~XFEATURE_MPX;
350 
351 	cpuid_count(0xd, 0x1, cp);
352 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
353 		/*
354 		 * Patch the XSAVE instruction in the cpu_switch code
355 		 * to XSAVEOPT.  We assume that XSAVE encoding used
356 		 * REX byte, and set the bit 4 of the r/m byte.
357 		 *
358 		 * It seems that some BIOSes give control to the OS
359 		 * with CR0.WP already set, making the kernel text
360 		 * read-only before cpu_startup().
361 		 */
362 		old_wp = disable_wp();
363 		ctx_switch_xsave32[3] |= 0x10;
364 		ctx_switch_xsave[3] |= 0x10;
365 		restore_wp(old_wp);
366 	}
367 }
368 
369 /*
370  * Calculate the fpu save area size.
371  */
372 static void
373 fpuinit_bsp2(void)
374 {
375 	u_int cp[4];
376 
377 	if (use_xsave) {
378 		cpuid_count(0xd, 0x0, cp);
379 		cpu_max_ext_state_size = cp[1];
380 
381 		/*
382 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
383 		 */
384 		do_cpuid(1, cp);
385 		cpu_feature2 = cp[2];
386 	} else
387 		cpu_max_ext_state_size = sizeof(struct savefpu);
388 }
389 
390 /*
391  * Initialize the floating point unit.
392  */
393 void
394 fpuinit(void)
395 {
396 	register_t saveintr;
397 	u_int mxcsr;
398 	u_short control;
399 
400 	if (IS_BSP())
401 		fpuinit_bsp1();
402 
403 	if (use_xsave) {
404 		load_cr4(rcr4() | CR4_XSAVE);
405 		load_xcr(XCR0, xsave_mask);
406 	}
407 
408 	/*
409 	 * XCR0 shall be set up before CPU can report the save area size.
410 	 */
411 	if (IS_BSP())
412 		fpuinit_bsp2();
413 
414 	/*
415 	 * It is too early for critical_enter() to work on AP.
416 	 */
417 	saveintr = intr_disable();
418 	stop_emulating();
419 	fninit();
420 	control = __INITIAL_FPUCW__;
421 	fldcw(control);
422 	mxcsr = __INITIAL_MXCSR__;
423 	ldmxcsr(mxcsr);
424 	start_emulating();
425 	intr_restore(saveintr);
426 }
427 
428 /*
429  * On the boot CPU we generate a clean state that is used to
430  * initialize the floating point unit when it is first used by a
431  * process.
432  */
433 static void
434 fpuinitstate(void *arg __unused)
435 {
436 	uint64_t *xstate_bv;
437 	register_t saveintr;
438 	int cp[4], i, max_ext_n;
439 
440 	/* Do potentially blocking operations before disabling interrupts. */
441 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
442 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
443 	    XSAVE_AREA_ALIGN - 1, 0);
444 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
445 	if (use_xsave) {
446 		max_ext_n = flsl(xsave_mask);
447 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
448 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
449 	}
450 
451 	cpu_thread_alloc(&thread0);
452 
453 	saveintr = intr_disable();
454 	stop_emulating();
455 
456 	fpusave_fxsave(fpu_initialstate);
457 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
458 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
459 	else
460 		cpu_mxcsr_mask = 0xFFBF;
461 
462 	/*
463 	 * The fninit instruction does not modify XMM registers or x87
464 	 * registers (MM/ST).  The fpusave call dumped the garbage
465 	 * contained in the registers after reset to the initial state
466 	 * saved.  Clear XMM and x87 registers file image to make the
467 	 * startup program state and signal handler XMM/x87 register
468 	 * content predictable.
469 	 */
470 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
471 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
472 
473 	/*
474 	 * Create a table describing the layout of the CPU Extended
475 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
476 	 * Region of an XSAVE Area" for the source of offsets/sizes.
477 	 */
478 	if (use_xsave) {
479 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
480 		    offsetof(struct xstate_hdr, xstate_bv));
481 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
482 
483 		/* x87 state */
484 		xsave_area_desc[0].offset = 0;
485 		xsave_area_desc[0].size = 160;
486 		/* XMM */
487 		xsave_area_desc[1].offset = 160;
488 		xsave_area_desc[1].size = 416 - 160;
489 
490 		for (i = 2; i < max_ext_n; i++) {
491 			cpuid_count(0xd, i, cp);
492 			xsave_area_desc[i].offset = cp[1];
493 			xsave_area_desc[i].size = cp[0];
494 		}
495 	}
496 
497 	start_emulating();
498 	intr_restore(saveintr);
499 }
500 /* EFIRT needs this to be initialized before we can enter our EFI environment */
501 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
502 
503 /*
504  * Free coprocessor (if we have it).
505  */
506 void
507 fpuexit(struct thread *td)
508 {
509 
510 	critical_enter();
511 	if (curthread == PCPU_GET(fpcurthread)) {
512 		stop_emulating();
513 		fpusave(curpcb->pcb_save);
514 		start_emulating();
515 		PCPU_SET(fpcurthread, NULL);
516 	}
517 	critical_exit();
518 }
519 
520 int
521 fpuformat(void)
522 {
523 
524 	return (_MC_FPFMT_XMM);
525 }
526 
527 /*
528  * The following mechanism is used to ensure that the FPE_... value
529  * that is passed as a trapcode to the signal handler of the user
530  * process does not have more than one bit set.
531  *
532  * Multiple bits may be set if the user process modifies the control
533  * word while a status word bit is already set.  While this is a sign
534  * of bad coding, we have no choise than to narrow them down to one
535  * bit, since we must not send a trapcode that is not exactly one of
536  * the FPE_ macros.
537  *
538  * The mechanism has a static table with 127 entries.  Each combination
539  * of the 7 FPU status word exception bits directly translates to a
540  * position in this table, where a single FPE_... value is stored.
541  * This FPE_... value stored there is considered the "most important"
542  * of the exception bits and will be sent as the signal code.  The
543  * precedence of the bits is based upon Intel Document "Numerical
544  * Applications", Chapter "Special Computational Situations".
545  *
546  * The macro to choose one of these values does these steps: 1) Throw
547  * away status word bits that cannot be masked.  2) Throw away the bits
548  * currently masked in the control word, assuming the user isn't
549  * interested in them anymore.  3) Reinsert status word bit 7 (stack
550  * fault) if it is set, which cannot be masked but must be presered.
551  * 4) Use the remaining bits to point into the trapcode table.
552  *
553  * The 6 maskable bits in order of their preference, as stated in the
554  * above referenced Intel manual:
555  * 1  Invalid operation (FP_X_INV)
556  * 1a   Stack underflow
557  * 1b   Stack overflow
558  * 1c   Operand of unsupported format
559  * 1d   SNaN operand.
560  * 2  QNaN operand (not an exception, irrelavant here)
561  * 3  Any other invalid-operation not mentioned above or zero divide
562  *      (FP_X_INV, FP_X_DZ)
563  * 4  Denormal operand (FP_X_DNML)
564  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
565  * 6  Inexact result (FP_X_IMP)
566  */
567 static char fpetable[128] = {
568 	0,
569 	FPE_FLTINV,	/*  1 - INV */
570 	FPE_FLTUND,	/*  2 - DNML */
571 	FPE_FLTINV,	/*  3 - INV | DNML */
572 	FPE_FLTDIV,	/*  4 - DZ */
573 	FPE_FLTINV,	/*  5 - INV | DZ */
574 	FPE_FLTDIV,	/*  6 - DNML | DZ */
575 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
576 	FPE_FLTOVF,	/*  8 - OFL */
577 	FPE_FLTINV,	/*  9 - INV | OFL */
578 	FPE_FLTUND,	/*  A - DNML | OFL */
579 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
580 	FPE_FLTDIV,	/*  C - DZ | OFL */
581 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
582 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
583 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
584 	FPE_FLTUND,	/* 10 - UFL */
585 	FPE_FLTINV,	/* 11 - INV | UFL */
586 	FPE_FLTUND,	/* 12 - DNML | UFL */
587 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
588 	FPE_FLTDIV,	/* 14 - DZ | UFL */
589 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
590 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
591 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
592 	FPE_FLTOVF,	/* 18 - OFL | UFL */
593 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
594 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
595 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
596 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
597 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
598 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
599 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
600 	FPE_FLTRES,	/* 20 - IMP */
601 	FPE_FLTINV,	/* 21 - INV | IMP */
602 	FPE_FLTUND,	/* 22 - DNML | IMP */
603 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
604 	FPE_FLTDIV,	/* 24 - DZ | IMP */
605 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
606 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
607 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
608 	FPE_FLTOVF,	/* 28 - OFL | IMP */
609 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
610 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
611 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
612 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
613 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
614 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
615 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
616 	FPE_FLTUND,	/* 30 - UFL | IMP */
617 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
618 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
619 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
620 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
621 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
622 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
623 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
624 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
625 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
626 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
627 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
628 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
629 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
630 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
631 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
632 	FPE_FLTSUB,	/* 40 - STK */
633 	FPE_FLTSUB,	/* 41 - INV | STK */
634 	FPE_FLTUND,	/* 42 - DNML | STK */
635 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
636 	FPE_FLTDIV,	/* 44 - DZ | STK */
637 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
638 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
639 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
640 	FPE_FLTOVF,	/* 48 - OFL | STK */
641 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
642 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
643 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
644 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
645 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
646 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
647 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
648 	FPE_FLTUND,	/* 50 - UFL | STK */
649 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
650 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
651 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
652 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
653 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
654 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
655 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
656 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
657 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
658 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
659 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
660 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
661 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
662 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
663 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
664 	FPE_FLTRES,	/* 60 - IMP | STK */
665 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
666 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
667 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
668 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
669 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
670 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
671 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
672 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
673 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
674 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
675 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
676 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
677 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
678 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
679 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
680 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
681 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
682 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
683 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
684 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
685 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
686 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
687 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
688 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
689 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
690 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
691 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
692 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
693 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
694 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
695 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
696 };
697 
698 /*
699  * Read the FP status and control words, then generate si_code value
700  * for SIGFPE.  The error code chosen will be one of the
701  * FPE_... macros.  It will be sent as the second argument to old
702  * BSD-style signal handlers and as "siginfo_t->si_code" (second
703  * argument) to SA_SIGINFO signal handlers.
704  *
705  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
706  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
707  * usermode code which understands the FPU hardware enough to enable
708  * the exceptions, can also handle clearing the exception state in the
709  * handler.  The only consequence of not clearing the exception is the
710  * rethrow of the SIGFPE on return from the signal handler and
711  * reexecution of the corresponding instruction.
712  *
713  * For XMM traps, the exceptions were never cleared.
714  */
715 int
716 fputrap_x87(void)
717 {
718 	struct savefpu *pcb_save;
719 	u_short control, status;
720 
721 	critical_enter();
722 
723 	/*
724 	 * Interrupt handling (for another interrupt) may have pushed the
725 	 * state to memory.  Fetch the relevant parts of the state from
726 	 * wherever they are.
727 	 */
728 	if (PCPU_GET(fpcurthread) != curthread) {
729 		pcb_save = curpcb->pcb_save;
730 		control = pcb_save->sv_env.en_cw;
731 		status = pcb_save->sv_env.en_sw;
732 	} else {
733 		fnstcw(&control);
734 		fnstsw(&status);
735 	}
736 
737 	critical_exit();
738 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
739 }
740 
741 int
742 fputrap_sse(void)
743 {
744 	u_int mxcsr;
745 
746 	critical_enter();
747 	if (PCPU_GET(fpcurthread) != curthread)
748 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
749 	else
750 		stmxcsr(&mxcsr);
751 	critical_exit();
752 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
753 }
754 
755 static void
756 restore_fpu_curthread(struct thread *td)
757 {
758 	struct pcb *pcb;
759 
760 	/*
761 	 * Record new context early in case frstor causes a trap.
762 	 */
763 	PCPU_SET(fpcurthread, td);
764 
765 	stop_emulating();
766 	fpu_clean_state();
767 	pcb = td->td_pcb;
768 
769 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
770 		/*
771 		 * This is the first time this thread has used the FPU or
772 		 * the PCB doesn't contain a clean FPU state.  Explicitly
773 		 * load an initial state.
774 		 *
775 		 * We prefer to restore the state from the actual save
776 		 * area in PCB instead of directly loading from
777 		 * fpu_initialstate, to ignite the XSAVEOPT
778 		 * tracking engine.
779 		 */
780 		bcopy(fpu_initialstate, pcb->pcb_save,
781 		    cpu_max_ext_state_size);
782 		fpurestore(pcb->pcb_save);
783 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
784 			fldcw(pcb->pcb_initial_fpucw);
785 		if (PCB_USER_FPU(pcb))
786 			set_pcb_flags(pcb, PCB_FPUINITDONE |
787 			    PCB_USERFPUINITDONE);
788 		else
789 			set_pcb_flags(pcb, PCB_FPUINITDONE);
790 	} else
791 		fpurestore(pcb->pcb_save);
792 }
793 
794 /*
795  * Device Not Available (DNA, #NM) exception handler.
796  *
797  * It would be better to switch FP context here (if curthread !=
798  * fpcurthread) and not necessarily for every context switch, but it
799  * is too hard to access foreign pcb's.
800  */
801 void
802 fpudna(void)
803 {
804 	struct thread *td;
805 
806 	td = curthread;
807 	/*
808 	 * This handler is entered with interrupts enabled, so context
809 	 * switches may occur before critical_enter() is executed.  If
810 	 * a context switch occurs, then when we regain control, our
811 	 * state will have been completely restored.  The CPU may
812 	 * change underneath us, but the only part of our context that
813 	 * lives in the CPU is CR0.TS and that will be "restored" by
814 	 * setting it on the new CPU.
815 	 */
816 	critical_enter();
817 
818 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
819 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
820 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
821 		/*
822 		 * Some virtual machines seems to set %cr0.TS at
823 		 * arbitrary moments.  Silently clear the TS bit
824 		 * regardless of the eager/lazy FPU context switch
825 		 * mode.
826 		 */
827 		stop_emulating();
828 	} else {
829 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
830 			panic(
831 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
832 			    PCPU_GET(fpcurthread),
833 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
834 		}
835 		restore_fpu_curthread(td);
836 	}
837 	critical_exit();
838 }
839 
840 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
841 void
842 fpu_activate_sw(struct thread *td)
843 {
844 
845 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
846 		PCPU_SET(fpcurthread, NULL);
847 		start_emulating();
848 	} else if (PCPU_GET(fpcurthread) != td) {
849 		restore_fpu_curthread(td);
850 	}
851 }
852 
853 void
854 fpudrop(void)
855 {
856 	struct thread *td;
857 
858 	td = PCPU_GET(fpcurthread);
859 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
860 	CRITICAL_ASSERT(td);
861 	PCPU_SET(fpcurthread, NULL);
862 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
863 	start_emulating();
864 }
865 
866 /*
867  * Get the user state of the FPU into pcb->pcb_user_save without
868  * dropping ownership (if possible).  It returns the FPU ownership
869  * status.
870  */
871 int
872 fpugetregs(struct thread *td)
873 {
874 	struct pcb *pcb;
875 	uint64_t *xstate_bv, bit;
876 	char *sa;
877 	int max_ext_n, i, owned;
878 
879 	pcb = td->td_pcb;
880 	critical_enter();
881 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
882 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
883 		    cpu_max_ext_state_size);
884 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
885 		    pcb->pcb_initial_fpucw;
886 		fpuuserinited(td);
887 		critical_exit();
888 		return (_MC_FPOWNED_PCB);
889 	}
890 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
891 		fpusave(get_pcb_user_save_pcb(pcb));
892 		owned = _MC_FPOWNED_FPU;
893 	} else {
894 		owned = _MC_FPOWNED_PCB;
895 	}
896 	if (use_xsave) {
897 		/*
898 		 * Handle partially saved state.
899 		 */
900 		sa = (char *)get_pcb_user_save_pcb(pcb);
901 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
902 		    offsetof(struct xstate_hdr, xstate_bv));
903 		max_ext_n = flsl(xsave_mask);
904 		for (i = 0; i < max_ext_n; i++) {
905 			bit = 1ULL << i;
906 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
907 				continue;
908 			bcopy((char *)fpu_initialstate +
909 			    xsave_area_desc[i].offset,
910 			    sa + xsave_area_desc[i].offset,
911 			    xsave_area_desc[i].size);
912 			*xstate_bv |= bit;
913 		}
914 	}
915 	critical_exit();
916 	return (owned);
917 }
918 
919 void
920 fpuuserinited(struct thread *td)
921 {
922 	struct pcb *pcb;
923 
924 	CRITICAL_ASSERT(td);
925 	pcb = td->td_pcb;
926 	if (PCB_USER_FPU(pcb))
927 		set_pcb_flags(pcb,
928 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
929 	else
930 		set_pcb_flags(pcb, PCB_FPUINITDONE);
931 }
932 
933 int
934 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
935 {
936 	struct xstate_hdr *hdr, *ehdr;
937 	size_t len, max_len;
938 	uint64_t bv;
939 
940 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
941 	if (xfpustate == NULL)
942 		return (0);
943 	if (!use_xsave)
944 		return (EOPNOTSUPP);
945 
946 	len = xfpustate_size;
947 	if (len < sizeof(struct xstate_hdr))
948 		return (EINVAL);
949 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
950 	if (len > max_len)
951 		return (EINVAL);
952 
953 	ehdr = (struct xstate_hdr *)xfpustate;
954 	bv = ehdr->xstate_bv;
955 
956 	/*
957 	 * Avoid #gp.
958 	 */
959 	if (bv & ~xsave_mask)
960 		return (EINVAL);
961 
962 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
963 
964 	hdr->xstate_bv = bv;
965 	bcopy(xfpustate + sizeof(struct xstate_hdr),
966 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
967 
968 	return (0);
969 }
970 
971 /*
972  * Set the state of the FPU.
973  */
974 int
975 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
976     size_t xfpustate_size)
977 {
978 	struct pcb *pcb;
979 	int error;
980 
981 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
982 	pcb = td->td_pcb;
983 	error = 0;
984 	critical_enter();
985 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
986 		error = fpusetxstate(td, xfpustate, xfpustate_size);
987 		if (error == 0) {
988 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
989 			fpurestore(get_pcb_user_save_td(td));
990 			set_pcb_flags(pcb, PCB_FPUINITDONE |
991 			    PCB_USERFPUINITDONE);
992 		}
993 	} else {
994 		error = fpusetxstate(td, xfpustate, xfpustate_size);
995 		if (error == 0) {
996 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
997 			fpuuserinited(td);
998 		}
999 	}
1000 	critical_exit();
1001 	return (error);
1002 }
1003 
1004 /*
1005  * On AuthenticAMD processors, the fxrstor instruction does not restore
1006  * the x87's stored last instruction pointer, last data pointer, and last
1007  * opcode values, except in the rare case in which the exception summary
1008  * (ES) bit in the x87 status word is set to 1.
1009  *
1010  * In order to avoid leaking this information across processes, we clean
1011  * these values by performing a dummy load before executing fxrstor().
1012  */
1013 static void
1014 fpu_clean_state(void)
1015 {
1016 	static float dummy_variable = 0.0;
1017 	u_short status;
1018 
1019 	/*
1020 	 * Clear the ES bit in the x87 status word if it is currently
1021 	 * set, in order to avoid causing a fault in the upcoming load.
1022 	 */
1023 	fnstsw(&status);
1024 	if (status & 0x80)
1025 		fnclex();
1026 
1027 	/*
1028 	 * Load the dummy variable into the x87 stack.  This mangles
1029 	 * the x87 stack, but we don't care since we're about to call
1030 	 * fxrstor() anyway.
1031 	 */
1032 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1033 }
1034 
1035 /*
1036  * This really sucks.  We want the acpi version only, but it requires
1037  * the isa_if.h file in order to get the definitions.
1038  */
1039 #include "opt_isa.h"
1040 #ifdef DEV_ISA
1041 #include <isa/isavar.h>
1042 /*
1043  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1044  */
1045 static struct isa_pnp_id fpupnp_ids[] = {
1046 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1047 	{ 0 }
1048 };
1049 
1050 static int
1051 fpupnp_probe(device_t dev)
1052 {
1053 	int result;
1054 
1055 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1056 	if (result <= 0)
1057 		device_quiet(dev);
1058 	return (result);
1059 }
1060 
1061 static int
1062 fpupnp_attach(device_t dev)
1063 {
1064 
1065 	return (0);
1066 }
1067 
1068 static device_method_t fpupnp_methods[] = {
1069 	/* Device interface */
1070 	DEVMETHOD(device_probe,		fpupnp_probe),
1071 	DEVMETHOD(device_attach,	fpupnp_attach),
1072 	DEVMETHOD(device_detach,	bus_generic_detach),
1073 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1074 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1075 	DEVMETHOD(device_resume,	bus_generic_resume),
1076 	{ 0, 0 }
1077 };
1078 
1079 static driver_t fpupnp_driver = {
1080 	"fpupnp",
1081 	fpupnp_methods,
1082 	1,			/* no softc */
1083 };
1084 
1085 static devclass_t fpupnp_devclass;
1086 
1087 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1088 ISA_PNP_INFO(fpupnp_ids);
1089 #endif	/* DEV_ISA */
1090 
1091 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1092     "Kernel contexts for FPU state");
1093 
1094 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1095 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1096 #define	FPU_KERN_CTX_INUSE	 0x04
1097 
1098 struct fpu_kern_ctx {
1099 	struct savefpu *prev;
1100 	uint32_t flags;
1101 	char hwstate1[];
1102 };
1103 
1104 static inline size_t __pure2
1105 fpu_kern_alloc_sz(u_int max_est)
1106 {
1107 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1108 }
1109 
1110 static inline int __pure2
1111 fpu_kern_malloc_flags(u_int fpflags)
1112 {
1113 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1114 }
1115 
1116 struct fpu_kern_ctx *
1117 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1118 {
1119 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1120 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1121 	    fpu_kern_malloc_flags(flags)));
1122 }
1123 
1124 struct fpu_kern_ctx *
1125 fpu_kern_alloc_ctx(u_int flags)
1126 {
1127 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1128 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1129 }
1130 
1131 void
1132 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1133 {
1134 
1135 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1136 	/* XXXKIB clear the memory ? */
1137 	free(ctx, M_FPUKERN_CTX);
1138 }
1139 
1140 static struct savefpu *
1141 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1142 {
1143 	vm_offset_t p;
1144 
1145 	p = (vm_offset_t)&ctx->hwstate1;
1146 	p = roundup2(p, XSAVE_AREA_ALIGN);
1147 	return ((struct savefpu *)p);
1148 }
1149 
1150 void
1151 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1152 {
1153 	struct pcb *pcb;
1154 
1155 	pcb = td->td_pcb;
1156 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1157 	    ("ctx is required when !FPU_KERN_NOCTX"));
1158 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1159 	    ("using inuse ctx"));
1160 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1161 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1162 
1163 	if ((flags & FPU_KERN_NOCTX) != 0) {
1164 		critical_enter();
1165 		stop_emulating();
1166 		if (curthread == PCPU_GET(fpcurthread)) {
1167 			fpusave(curpcb->pcb_save);
1168 			PCPU_SET(fpcurthread, NULL);
1169 		} else {
1170 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1171 			    ("invalid fpcurthread"));
1172 		}
1173 
1174 		/*
1175 		 * This breaks XSAVEOPT tracker, but
1176 		 * PCB_FPUNOSAVE state is supposed to never need to
1177 		 * save FPU context at all.
1178 		 */
1179 		fpurestore(fpu_initialstate);
1180 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1181 		    PCB_FPUINITDONE);
1182 		return;
1183 	}
1184 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1185 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1186 		return;
1187 	}
1188 	critical_enter();
1189 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1190 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1191 	ctx->flags = FPU_KERN_CTX_INUSE;
1192 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1193 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1194 	fpuexit(td);
1195 	ctx->prev = pcb->pcb_save;
1196 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1197 	set_pcb_flags(pcb, PCB_KERNFPU);
1198 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1199 	critical_exit();
1200 }
1201 
1202 int
1203 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1204 {
1205 	struct pcb *pcb;
1206 
1207 	pcb = td->td_pcb;
1208 
1209 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1210 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1211 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1212 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1213 		CRITICAL_ASSERT(td);
1214 
1215 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1216 		start_emulating();
1217 	} else {
1218 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1219 		    ("leaving not inuse ctx"));
1220 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1221 
1222 		if (is_fpu_kern_thread(0) &&
1223 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1224 			return (0);
1225 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1226 		    ("dummy ctx"));
1227 		critical_enter();
1228 		if (curthread == PCPU_GET(fpcurthread))
1229 			fpudrop();
1230 		pcb->pcb_save = ctx->prev;
1231 	}
1232 
1233 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1234 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1235 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1236 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1237 				clear_pcb_flags(pcb, PCB_KERNFPU);
1238 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1239 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1240 	} else {
1241 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1242 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1243 		else
1244 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1245 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1246 	}
1247 	critical_exit();
1248 	return (0);
1249 }
1250 
1251 int
1252 fpu_kern_thread(u_int flags)
1253 {
1254 
1255 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1256 	    ("Only kthread may use fpu_kern_thread"));
1257 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1258 	    ("mangled pcb_save"));
1259 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1260 
1261 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1262 	return (0);
1263 }
1264 
1265 int
1266 is_fpu_kern_thread(u_int flags)
1267 {
1268 
1269 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1270 		return (0);
1271 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1272 }
1273 
1274 /*
1275  * FPU save area alloc/free/init utility routines
1276  */
1277 struct savefpu *
1278 fpu_save_area_alloc(void)
1279 {
1280 
1281 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1282 }
1283 
1284 void
1285 fpu_save_area_free(struct savefpu *fsa)
1286 {
1287 
1288 	uma_zfree(fpu_save_area_zone, fsa);
1289 }
1290 
1291 void
1292 fpu_save_area_reset(struct savefpu *fsa)
1293 {
1294 
1295 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1296 }
1297