xref: /freebsd/sys/amd64/amd64/fpu.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <machine/bus.h>
50 #include <sys/rman.h>
51 #include <sys/signalvar.h>
52 #include <vm/uma.h>
53 
54 #include <machine/cputypes.h>
55 #include <machine/frame.h>
56 #include <machine/intr_machdep.h>
57 #include <machine/md_var.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/resource.h>
61 #include <machine/specialreg.h>
62 #include <machine/segments.h>
63 #include <machine/ucontext.h>
64 
65 /*
66  * Floating point support.
67  */
68 
69 #if defined(__GNUCLIKE_ASM) && !defined(lint)
70 
71 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
72 #define	fnclex()		__asm __volatile("fnclex")
73 #define	fninit()		__asm __volatile("fninit")
74 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
75 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
76 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
77 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
78 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
79 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
80 
81 static __inline void
82 xrstor(char *addr, uint64_t mask)
83 {
84 	uint32_t low, hi;
85 
86 	low = mask;
87 	hi = mask >> 32;
88 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
89 }
90 
91 static __inline void
92 xsave(char *addr, uint64_t mask)
93 {
94 	uint32_t low, hi;
95 
96 	low = mask;
97 	hi = mask >> 32;
98 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
99 	    "memory");
100 }
101 
102 #else	/* !(__GNUCLIKE_ASM && !lint) */
103 
104 void	fldcw(u_short cw);
105 void	fnclex(void);
106 void	fninit(void);
107 void	fnstcw(caddr_t addr);
108 void	fnstsw(caddr_t addr);
109 void	fxsave(caddr_t addr);
110 void	fxrstor(caddr_t addr);
111 void	ldmxcsr(u_int csr);
112 void	stmxcsr(u_int *csr);
113 void	xrstor(char *addr, uint64_t mask);
114 void	xsave(char *addr, uint64_t mask);
115 
116 #endif	/* __GNUCLIKE_ASM && !lint */
117 
118 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
119 #define	stop_emulating()	clts()
120 
121 CTASSERT(sizeof(struct savefpu) == 512);
122 CTASSERT(sizeof(struct xstate_hdr) == 64);
123 CTASSERT(sizeof(struct savefpu_ymm) == 832);
124 
125 /*
126  * This requirement is to make it easier for asm code to calculate
127  * offset of the fpu save area from the pcb address. FPU save area
128  * must be 64-byte aligned.
129  */
130 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
131 
132 /*
133  * Ensure the copy of XCR0 saved in a core is contained in the padding
134  * area.
135  */
136 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
137     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
138 
139 static	void	fpu_clean_state(void);
140 
141 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
142     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
143 
144 int use_xsave;			/* non-static for cpu_switch.S */
145 uint64_t xsave_mask;		/* the same */
146 static	uma_zone_t fpu_save_area_zone;
147 static	struct savefpu *fpu_initialstate;
148 
149 struct xsave_area_elm_descr {
150 	u_int	offset;
151 	u_int	size;
152 } *xsave_area_desc;
153 
154 void
155 fpusave(void *addr)
156 {
157 
158 	if (use_xsave)
159 		xsave((char *)addr, xsave_mask);
160 	else
161 		fxsave((char *)addr);
162 }
163 
164 void
165 fpurestore(void *addr)
166 {
167 
168 	if (use_xsave)
169 		xrstor((char *)addr, xsave_mask);
170 	else
171 		fxrstor((char *)addr);
172 }
173 
174 void
175 fpususpend(void *addr)
176 {
177 	u_long cr0;
178 
179 	cr0 = rcr0();
180 	stop_emulating();
181 	fpusave(addr);
182 	load_cr0(cr0);
183 }
184 
185 void
186 fpuresume(void *addr)
187 {
188 	u_long cr0;
189 
190 	cr0 = rcr0();
191 	stop_emulating();
192 	fninit();
193 	if (use_xsave)
194 		load_xcr(XCR0, xsave_mask);
195 	fpurestore(addr);
196 	load_cr0(cr0);
197 }
198 
199 /*
200  * Enable XSAVE if supported and allowed by user.
201  * Calculate the xsave_mask.
202  */
203 static void
204 fpuinit_bsp1(void)
205 {
206 	u_int cp[4];
207 	uint64_t xsave_mask_user;
208 
209 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
210 		use_xsave = 1;
211 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
212 	}
213 	if (!use_xsave)
214 		return;
215 
216 	cpuid_count(0xd, 0x0, cp);
217 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
218 	if ((cp[0] & xsave_mask) != xsave_mask)
219 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
220 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
221 	xsave_mask_user = xsave_mask;
222 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
223 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
224 	xsave_mask &= xsave_mask_user;
225 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
226 		xsave_mask &= ~XFEATURE_AVX512;
227 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
228 		xsave_mask &= ~XFEATURE_MPX;
229 
230 	cpuid_count(0xd, 0x1, cp);
231 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
232 		/*
233 		 * Patch the XSAVE instruction in the cpu_switch code
234 		 * to XSAVEOPT.  We assume that XSAVE encoding used
235 		 * REX byte, and set the bit 4 of the r/m byte.
236 		 */
237 		ctx_switch_xsave[3] |= 0x10;
238 	}
239 }
240 
241 /*
242  * Calculate the fpu save area size.
243  */
244 static void
245 fpuinit_bsp2(void)
246 {
247 	u_int cp[4];
248 
249 	if (use_xsave) {
250 		cpuid_count(0xd, 0x0, cp);
251 		cpu_max_ext_state_size = cp[1];
252 
253 		/*
254 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
255 		 */
256 		do_cpuid(1, cp);
257 		cpu_feature2 = cp[2];
258 	} else
259 		cpu_max_ext_state_size = sizeof(struct savefpu);
260 }
261 
262 /*
263  * Initialize the floating point unit.
264  */
265 void
266 fpuinit(void)
267 {
268 	register_t saveintr;
269 	u_int mxcsr;
270 	u_short control;
271 
272 	if (IS_BSP())
273 		fpuinit_bsp1();
274 
275 	if (use_xsave) {
276 		load_cr4(rcr4() | CR4_XSAVE);
277 		load_xcr(XCR0, xsave_mask);
278 	}
279 
280 	/*
281 	 * XCR0 shall be set up before CPU can report the save area size.
282 	 */
283 	if (IS_BSP())
284 		fpuinit_bsp2();
285 
286 	/*
287 	 * It is too early for critical_enter() to work on AP.
288 	 */
289 	saveintr = intr_disable();
290 	stop_emulating();
291 	fninit();
292 	control = __INITIAL_FPUCW__;
293 	fldcw(control);
294 	mxcsr = __INITIAL_MXCSR__;
295 	ldmxcsr(mxcsr);
296 	start_emulating();
297 	intr_restore(saveintr);
298 }
299 
300 /*
301  * On the boot CPU we generate a clean state that is used to
302  * initialize the floating point unit when it is first used by a
303  * process.
304  */
305 static void
306 fpuinitstate(void *arg __unused)
307 {
308 	register_t saveintr;
309 	int cp[4], i, max_ext_n;
310 
311 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
312 	    M_WAITOK | M_ZERO);
313 	saveintr = intr_disable();
314 	stop_emulating();
315 
316 	fpusave(fpu_initialstate);
317 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
318 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
319 	else
320 		cpu_mxcsr_mask = 0xFFBF;
321 
322 	/*
323 	 * The fninit instruction does not modify XMM registers or x87
324 	 * registers (MM/ST).  The fpusave call dumped the garbage
325 	 * contained in the registers after reset to the initial state
326 	 * saved.  Clear XMM and x87 registers file image to make the
327 	 * startup program state and signal handler XMM/x87 register
328 	 * content predictable.
329 	 */
330 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
331 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
332 
333 	/*
334 	 * Create a table describing the layout of the CPU Extended
335 	 * Save Area.
336 	 */
337 	if (use_xsave) {
338 		max_ext_n = flsl(xsave_mask);
339 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
340 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
341 		/* x87 state */
342 		xsave_area_desc[0].offset = 0;
343 		xsave_area_desc[0].size = 160;
344 		/* XMM */
345 		xsave_area_desc[1].offset = 160;
346 		xsave_area_desc[1].size = 288 - 160;
347 
348 		for (i = 2; i < max_ext_n; i++) {
349 			cpuid_count(0xd, i, cp);
350 			xsave_area_desc[i].offset = cp[1];
351 			xsave_area_desc[i].size = cp[0];
352 		}
353 	}
354 
355 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
356 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
357 	    XSAVE_AREA_ALIGN - 1, 0);
358 
359 	start_emulating();
360 	intr_restore(saveintr);
361 }
362 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
363 
364 /*
365  * Free coprocessor (if we have it).
366  */
367 void
368 fpuexit(struct thread *td)
369 {
370 
371 	critical_enter();
372 	if (curthread == PCPU_GET(fpcurthread)) {
373 		stop_emulating();
374 		fpusave(curpcb->pcb_save);
375 		start_emulating();
376 		PCPU_SET(fpcurthread, NULL);
377 	}
378 	critical_exit();
379 }
380 
381 int
382 fpuformat(void)
383 {
384 
385 	return (_MC_FPFMT_XMM);
386 }
387 
388 /*
389  * The following mechanism is used to ensure that the FPE_... value
390  * that is passed as a trapcode to the signal handler of the user
391  * process does not have more than one bit set.
392  *
393  * Multiple bits may be set if the user process modifies the control
394  * word while a status word bit is already set.  While this is a sign
395  * of bad coding, we have no choise than to narrow them down to one
396  * bit, since we must not send a trapcode that is not exactly one of
397  * the FPE_ macros.
398  *
399  * The mechanism has a static table with 127 entries.  Each combination
400  * of the 7 FPU status word exception bits directly translates to a
401  * position in this table, where a single FPE_... value is stored.
402  * This FPE_... value stored there is considered the "most important"
403  * of the exception bits and will be sent as the signal code.  The
404  * precedence of the bits is based upon Intel Document "Numerical
405  * Applications", Chapter "Special Computational Situations".
406  *
407  * The macro to choose one of these values does these steps: 1) Throw
408  * away status word bits that cannot be masked.  2) Throw away the bits
409  * currently masked in the control word, assuming the user isn't
410  * interested in them anymore.  3) Reinsert status word bit 7 (stack
411  * fault) if it is set, which cannot be masked but must be presered.
412  * 4) Use the remaining bits to point into the trapcode table.
413  *
414  * The 6 maskable bits in order of their preference, as stated in the
415  * above referenced Intel manual:
416  * 1  Invalid operation (FP_X_INV)
417  * 1a   Stack underflow
418  * 1b   Stack overflow
419  * 1c   Operand of unsupported format
420  * 1d   SNaN operand.
421  * 2  QNaN operand (not an exception, irrelavant here)
422  * 3  Any other invalid-operation not mentioned above or zero divide
423  *      (FP_X_INV, FP_X_DZ)
424  * 4  Denormal operand (FP_X_DNML)
425  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
426  * 6  Inexact result (FP_X_IMP)
427  */
428 static char fpetable[128] = {
429 	0,
430 	FPE_FLTINV,	/*  1 - INV */
431 	FPE_FLTUND,	/*  2 - DNML */
432 	FPE_FLTINV,	/*  3 - INV | DNML */
433 	FPE_FLTDIV,	/*  4 - DZ */
434 	FPE_FLTINV,	/*  5 - INV | DZ */
435 	FPE_FLTDIV,	/*  6 - DNML | DZ */
436 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
437 	FPE_FLTOVF,	/*  8 - OFL */
438 	FPE_FLTINV,	/*  9 - INV | OFL */
439 	FPE_FLTUND,	/*  A - DNML | OFL */
440 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
441 	FPE_FLTDIV,	/*  C - DZ | OFL */
442 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
443 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
444 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
445 	FPE_FLTUND,	/* 10 - UFL */
446 	FPE_FLTINV,	/* 11 - INV | UFL */
447 	FPE_FLTUND,	/* 12 - DNML | UFL */
448 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
449 	FPE_FLTDIV,	/* 14 - DZ | UFL */
450 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
451 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
452 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
453 	FPE_FLTOVF,	/* 18 - OFL | UFL */
454 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
455 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
456 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
457 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
458 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
459 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
460 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
461 	FPE_FLTRES,	/* 20 - IMP */
462 	FPE_FLTINV,	/* 21 - INV | IMP */
463 	FPE_FLTUND,	/* 22 - DNML | IMP */
464 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
465 	FPE_FLTDIV,	/* 24 - DZ | IMP */
466 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
467 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
468 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
469 	FPE_FLTOVF,	/* 28 - OFL | IMP */
470 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
471 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
472 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
473 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
474 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
475 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
476 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
477 	FPE_FLTUND,	/* 30 - UFL | IMP */
478 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
479 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
480 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
481 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
482 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
483 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
484 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
485 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
486 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
487 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
488 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
489 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
490 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
491 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
492 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
493 	FPE_FLTSUB,	/* 40 - STK */
494 	FPE_FLTSUB,	/* 41 - INV | STK */
495 	FPE_FLTUND,	/* 42 - DNML | STK */
496 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
497 	FPE_FLTDIV,	/* 44 - DZ | STK */
498 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
499 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
500 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
501 	FPE_FLTOVF,	/* 48 - OFL | STK */
502 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
503 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
504 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
505 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
506 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
507 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
508 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
509 	FPE_FLTUND,	/* 50 - UFL | STK */
510 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
511 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
512 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
513 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
514 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
515 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
516 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
517 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
518 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
519 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
520 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
521 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
522 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
523 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
524 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
525 	FPE_FLTRES,	/* 60 - IMP | STK */
526 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
527 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
528 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
529 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
530 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
531 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
532 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
533 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
534 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
535 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
536 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
537 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
538 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
539 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
540 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
541 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
542 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
543 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
544 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
545 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
546 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
547 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
548 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
549 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
550 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
551 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
552 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
553 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
554 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
555 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
556 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
557 };
558 
559 /*
560  * Read the FP status and control words, then generate si_code value
561  * for SIGFPE.  The error code chosen will be one of the
562  * FPE_... macros.  It will be sent as the second argument to old
563  * BSD-style signal handlers and as "siginfo_t->si_code" (second
564  * argument) to SA_SIGINFO signal handlers.
565  *
566  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
567  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
568  * usermode code which understands the FPU hardware enough to enable
569  * the exceptions, can also handle clearing the exception state in the
570  * handler.  The only consequence of not clearing the exception is the
571  * rethrow of the SIGFPE on return from the signal handler and
572  * reexecution of the corresponding instruction.
573  *
574  * For XMM traps, the exceptions were never cleared.
575  */
576 int
577 fputrap_x87(void)
578 {
579 	struct savefpu *pcb_save;
580 	u_short control, status;
581 
582 	critical_enter();
583 
584 	/*
585 	 * Interrupt handling (for another interrupt) may have pushed the
586 	 * state to memory.  Fetch the relevant parts of the state from
587 	 * wherever they are.
588 	 */
589 	if (PCPU_GET(fpcurthread) != curthread) {
590 		pcb_save = curpcb->pcb_save;
591 		control = pcb_save->sv_env.en_cw;
592 		status = pcb_save->sv_env.en_sw;
593 	} else {
594 		fnstcw(&control);
595 		fnstsw(&status);
596 	}
597 
598 	critical_exit();
599 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
600 }
601 
602 int
603 fputrap_sse(void)
604 {
605 	u_int mxcsr;
606 
607 	critical_enter();
608 	if (PCPU_GET(fpcurthread) != curthread)
609 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
610 	else
611 		stmxcsr(&mxcsr);
612 	critical_exit();
613 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
614 }
615 
616 /*
617  * Device Not Available (DNA, #NM) exception handler.
618  *
619  * It would be better to switch FP context here (if curthread !=
620  * fpcurthread) and not necessarily for every context switch, but it
621  * is too hard to access foreign pcb's.
622  */
623 void
624 fpudna(void)
625 {
626 
627 	/*
628 	 * This handler is entered with interrupts enabled, so context
629 	 * switches may occur before critical_enter() is executed.  If
630 	 * a context switch occurs, then when we regain control, our
631 	 * state will have been completely restored.  The CPU may
632 	 * change underneath us, but the only part of our context that
633 	 * lives in the CPU is CR0.TS and that will be "restored" by
634 	 * setting it on the new CPU.
635 	 */
636 	critical_enter();
637 
638 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
639 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
640 	if (PCPU_GET(fpcurthread) == curthread) {
641 		printf("fpudna: fpcurthread == curthread\n");
642 		stop_emulating();
643 		critical_exit();
644 		return;
645 	}
646 	if (PCPU_GET(fpcurthread) != NULL) {
647 		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
648 		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
649 		    curthread, curthread->td_tid);
650 	}
651 	stop_emulating();
652 	/*
653 	 * Record new context early in case frstor causes a trap.
654 	 */
655 	PCPU_SET(fpcurthread, curthread);
656 
657 	fpu_clean_state();
658 
659 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
660 		/*
661 		 * This is the first time this thread has used the FPU or
662 		 * the PCB doesn't contain a clean FPU state.  Explicitly
663 		 * load an initial state.
664 		 *
665 		 * We prefer to restore the state from the actual save
666 		 * area in PCB instead of directly loading from
667 		 * fpu_initialstate, to ignite the XSAVEOPT
668 		 * tracking engine.
669 		 */
670 		bcopy(fpu_initialstate, curpcb->pcb_save,
671 		    cpu_max_ext_state_size);
672 		fpurestore(curpcb->pcb_save);
673 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
674 			fldcw(curpcb->pcb_initial_fpucw);
675 		if (PCB_USER_FPU(curpcb))
676 			set_pcb_flags(curpcb,
677 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
678 		else
679 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
680 	} else
681 		fpurestore(curpcb->pcb_save);
682 	critical_exit();
683 }
684 
685 void
686 fpudrop(void)
687 {
688 	struct thread *td;
689 
690 	td = PCPU_GET(fpcurthread);
691 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
692 	CRITICAL_ASSERT(td);
693 	PCPU_SET(fpcurthread, NULL);
694 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
695 	start_emulating();
696 }
697 
698 /*
699  * Get the user state of the FPU into pcb->pcb_user_save without
700  * dropping ownership (if possible).  It returns the FPU ownership
701  * status.
702  */
703 int
704 fpugetregs(struct thread *td)
705 {
706 	struct pcb *pcb;
707 	uint64_t *xstate_bv, bit;
708 	char *sa;
709 	int max_ext_n, i, owned;
710 
711 	pcb = td->td_pcb;
712 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
713 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
714 		    cpu_max_ext_state_size);
715 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
716 		    pcb->pcb_initial_fpucw;
717 		fpuuserinited(td);
718 		return (_MC_FPOWNED_PCB);
719 	}
720 	critical_enter();
721 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
722 		fpusave(get_pcb_user_save_pcb(pcb));
723 		owned = _MC_FPOWNED_FPU;
724 	} else {
725 		owned = _MC_FPOWNED_PCB;
726 	}
727 	critical_exit();
728 	if (use_xsave) {
729 		/*
730 		 * Handle partially saved state.
731 		 */
732 		sa = (char *)get_pcb_user_save_pcb(pcb);
733 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
734 		    offsetof(struct xstate_hdr, xstate_bv));
735 		max_ext_n = flsl(xsave_mask);
736 		for (i = 0; i < max_ext_n; i++) {
737 			bit = 1ULL << i;
738 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
739 				continue;
740 			bcopy((char *)fpu_initialstate +
741 			    xsave_area_desc[i].offset,
742 			    sa + xsave_area_desc[i].offset,
743 			    xsave_area_desc[i].size);
744 			*xstate_bv |= bit;
745 		}
746 	}
747 	return (owned);
748 }
749 
750 void
751 fpuuserinited(struct thread *td)
752 {
753 	struct pcb *pcb;
754 
755 	pcb = td->td_pcb;
756 	if (PCB_USER_FPU(pcb))
757 		set_pcb_flags(pcb,
758 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
759 	else
760 		set_pcb_flags(pcb, PCB_FPUINITDONE);
761 }
762 
763 int
764 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
765 {
766 	struct xstate_hdr *hdr, *ehdr;
767 	size_t len, max_len;
768 	uint64_t bv;
769 
770 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
771 	if (xfpustate == NULL)
772 		return (0);
773 	if (!use_xsave)
774 		return (EOPNOTSUPP);
775 
776 	len = xfpustate_size;
777 	if (len < sizeof(struct xstate_hdr))
778 		return (EINVAL);
779 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
780 	if (len > max_len)
781 		return (EINVAL);
782 
783 	ehdr = (struct xstate_hdr *)xfpustate;
784 	bv = ehdr->xstate_bv;
785 
786 	/*
787 	 * Avoid #gp.
788 	 */
789 	if (bv & ~xsave_mask)
790 		return (EINVAL);
791 
792 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
793 
794 	hdr->xstate_bv = bv;
795 	bcopy(xfpustate + sizeof(struct xstate_hdr),
796 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
797 
798 	return (0);
799 }
800 
801 /*
802  * Set the state of the FPU.
803  */
804 int
805 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
806     size_t xfpustate_size)
807 {
808 	struct pcb *pcb;
809 	int error;
810 
811 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
812 	pcb = td->td_pcb;
813 	critical_enter();
814 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
815 		error = fpusetxstate(td, xfpustate, xfpustate_size);
816 		if (error != 0) {
817 			critical_exit();
818 			return (error);
819 		}
820 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
821 		fpurestore(get_pcb_user_save_td(td));
822 		critical_exit();
823 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
824 	} else {
825 		critical_exit();
826 		error = fpusetxstate(td, xfpustate, xfpustate_size);
827 		if (error != 0)
828 			return (error);
829 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
830 		fpuuserinited(td);
831 	}
832 	return (0);
833 }
834 
835 /*
836  * On AuthenticAMD processors, the fxrstor instruction does not restore
837  * the x87's stored last instruction pointer, last data pointer, and last
838  * opcode values, except in the rare case in which the exception summary
839  * (ES) bit in the x87 status word is set to 1.
840  *
841  * In order to avoid leaking this information across processes, we clean
842  * these values by performing a dummy load before executing fxrstor().
843  */
844 static void
845 fpu_clean_state(void)
846 {
847 	static float dummy_variable = 0.0;
848 	u_short status;
849 
850 	/*
851 	 * Clear the ES bit in the x87 status word if it is currently
852 	 * set, in order to avoid causing a fault in the upcoming load.
853 	 */
854 	fnstsw(&status);
855 	if (status & 0x80)
856 		fnclex();
857 
858 	/*
859 	 * Load the dummy variable into the x87 stack.  This mangles
860 	 * the x87 stack, but we don't care since we're about to call
861 	 * fxrstor() anyway.
862 	 */
863 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
864 }
865 
866 /*
867  * This really sucks.  We want the acpi version only, but it requires
868  * the isa_if.h file in order to get the definitions.
869  */
870 #include "opt_isa.h"
871 #ifdef DEV_ISA
872 #include <isa/isavar.h>
873 /*
874  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
875  */
876 static struct isa_pnp_id fpupnp_ids[] = {
877 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
878 	{ 0 }
879 };
880 
881 static int
882 fpupnp_probe(device_t dev)
883 {
884 	int result;
885 
886 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
887 	if (result <= 0)
888 		device_quiet(dev);
889 	return (result);
890 }
891 
892 static int
893 fpupnp_attach(device_t dev)
894 {
895 
896 	return (0);
897 }
898 
899 static device_method_t fpupnp_methods[] = {
900 	/* Device interface */
901 	DEVMETHOD(device_probe,		fpupnp_probe),
902 	DEVMETHOD(device_attach,	fpupnp_attach),
903 	DEVMETHOD(device_detach,	bus_generic_detach),
904 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
905 	DEVMETHOD(device_suspend,	bus_generic_suspend),
906 	DEVMETHOD(device_resume,	bus_generic_resume),
907 
908 	{ 0, 0 }
909 };
910 
911 static driver_t fpupnp_driver = {
912 	"fpupnp",
913 	fpupnp_methods,
914 	1,			/* no softc */
915 };
916 
917 static devclass_t fpupnp_devclass;
918 
919 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
920 #endif	/* DEV_ISA */
921 
922 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
923     "Kernel contexts for FPU state");
924 
925 #define	FPU_KERN_CTX_FPUINITDONE 0x01
926 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
927 #define	FPU_KERN_CTX_INUSE	 0x04
928 
929 struct fpu_kern_ctx {
930 	struct savefpu *prev;
931 	uint32_t flags;
932 	char hwstate1[];
933 };
934 
935 struct fpu_kern_ctx *
936 fpu_kern_alloc_ctx(u_int flags)
937 {
938 	struct fpu_kern_ctx *res;
939 	size_t sz;
940 
941 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
942 	    cpu_max_ext_state_size;
943 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
944 	    M_NOWAIT : M_WAITOK) | M_ZERO);
945 	return (res);
946 }
947 
948 void
949 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
950 {
951 
952 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
953 	/* XXXKIB clear the memory ? */
954 	free(ctx, M_FPUKERN_CTX);
955 }
956 
957 static struct savefpu *
958 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
959 {
960 	vm_offset_t p;
961 
962 	p = (vm_offset_t)&ctx->hwstate1;
963 	p = roundup2(p, XSAVE_AREA_ALIGN);
964 	return ((struct savefpu *)p);
965 }
966 
967 int
968 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
969 {
970 	struct pcb *pcb;
971 
972 	pcb = td->td_pcb;
973 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
974 	    ("ctx is required when !FPU_KERN_NOCTX"));
975 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
976 	    ("using inuse ctx"));
977 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
978 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
979 
980 	if ((flags & FPU_KERN_NOCTX) != 0) {
981 		critical_enter();
982 		stop_emulating();
983 		if (curthread == PCPU_GET(fpcurthread)) {
984 			fpusave(curpcb->pcb_save);
985 			PCPU_SET(fpcurthread, NULL);
986 		} else {
987 			KASSERT(PCPU_GET(fpcurthread) == NULL,
988 			    ("invalid fpcurthread"));
989 		}
990 
991 		/*
992 		 * This breaks XSAVEOPT tracker, but
993 		 * PCB_FPUNOSAVE state is supposed to never need to
994 		 * save FPU context at all.
995 		 */
996 		fpurestore(fpu_initialstate);
997 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
998 		    PCB_FPUINITDONE);
999 		return (0);
1000 	}
1001 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1002 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1003 		return (0);
1004 	}
1005 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1006 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1007 	ctx->flags = FPU_KERN_CTX_INUSE;
1008 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1009 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1010 	fpuexit(td);
1011 	ctx->prev = pcb->pcb_save;
1012 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1013 	set_pcb_flags(pcb, PCB_KERNFPU);
1014 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1015 	return (0);
1016 }
1017 
1018 int
1019 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1020 {
1021 	struct pcb *pcb;
1022 
1023 	pcb = td->td_pcb;
1024 
1025 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1026 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1027 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1028 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1029 		CRITICAL_ASSERT(td);
1030 
1031 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1032 		start_emulating();
1033 		critical_exit();
1034 	} else {
1035 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1036 		    ("leaving not inuse ctx"));
1037 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1038 
1039 		if (is_fpu_kern_thread(0) &&
1040 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1041 			return (0);
1042 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1043 		    ("dummy ctx"));
1044 		critical_enter();
1045 		if (curthread == PCPU_GET(fpcurthread))
1046 			fpudrop();
1047 		critical_exit();
1048 		pcb->pcb_save = ctx->prev;
1049 	}
1050 
1051 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1052 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1053 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1054 			clear_pcb_flags(pcb, PCB_KERNFPU);
1055 		} else
1056 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1057 	} else {
1058 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1059 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1060 		else
1061 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1062 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1063 	}
1064 	return (0);
1065 }
1066 
1067 int
1068 fpu_kern_thread(u_int flags)
1069 {
1070 
1071 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1072 	    ("Only kthread may use fpu_kern_thread"));
1073 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1074 	    ("mangled pcb_save"));
1075 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1076 
1077 	set_pcb_flags(curpcb, PCB_KERNFPU);
1078 	return (0);
1079 }
1080 
1081 int
1082 is_fpu_kern_thread(u_int flags)
1083 {
1084 
1085 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1086 		return (0);
1087 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1088 }
1089 
1090 /*
1091  * FPU save area alloc/free/init utility routines
1092  */
1093 struct savefpu *
1094 fpu_save_area_alloc(void)
1095 {
1096 
1097 	return (uma_zalloc(fpu_save_area_zone, 0));
1098 }
1099 
1100 void
1101 fpu_save_area_free(struct savefpu *fsa)
1102 {
1103 
1104 	uma_zfree(fpu_save_area_zone, fsa);
1105 }
1106 
1107 void
1108 fpu_save_area_reset(struct savefpu *fsa)
1109 {
1110 
1111 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1112 }
1113