xref: /freebsd/sys/amd64/amd64/fpu.c (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/sysent.h>
51 #include <sys/tslog.h>
52 #include <machine/bus.h>
53 #include <sys/rman.h>
54 #include <sys/signalvar.h>
55 #include <vm/uma.h>
56 
57 #include <machine/cputypes.h>
58 #include <machine/frame.h>
59 #include <machine/intr_machdep.h>
60 #include <machine/md_var.h>
61 #include <machine/pcb.h>
62 #include <machine/psl.h>
63 #include <machine/resource.h>
64 #include <machine/specialreg.h>
65 #include <machine/segments.h>
66 #include <machine/ucontext.h>
67 #include <x86/ifunc.h>
68 
69 /*
70  * Floating point support.
71  */
72 
73 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
74 #define	fnclex()		__asm __volatile("fnclex")
75 #define	fninit()		__asm __volatile("fninit")
76 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
77 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
78 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
79 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
80 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
81 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
82 
83 static __inline void
84 xrstor32(char *addr, uint64_t mask)
85 {
86 	uint32_t low, hi;
87 
88 	low = mask;
89 	hi = mask >> 32;
90 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
91 }
92 
93 static __inline void
94 xrstor64(char *addr, uint64_t mask)
95 {
96 	uint32_t low, hi;
97 
98 	low = mask;
99 	hi = mask >> 32;
100 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
101 }
102 
103 static __inline void
104 xsave32(char *addr, uint64_t mask)
105 {
106 	uint32_t low, hi;
107 
108 	low = mask;
109 	hi = mask >> 32;
110 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
111 	    "memory");
112 }
113 
114 static __inline void
115 xsave64(char *addr, uint64_t mask)
116 {
117 	uint32_t low, hi;
118 
119 	low = mask;
120 	hi = mask >> 32;
121 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
122 	    "memory");
123 }
124 
125 static __inline void
126 xsaveopt32(char *addr, uint64_t mask)
127 {
128 	uint32_t low, hi;
129 
130 	low = mask;
131 	hi = mask >> 32;
132 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
133 	    "memory");
134 }
135 
136 static __inline void
137 xsaveopt64(char *addr, uint64_t mask)
138 {
139 	uint32_t low, hi;
140 
141 	low = mask;
142 	hi = mask >> 32;
143 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
144 	    "memory");
145 }
146 
147 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
148 #define	stop_emulating()	clts()
149 
150 CTASSERT(sizeof(struct savefpu) == 512);
151 CTASSERT(sizeof(struct xstate_hdr) == 64);
152 CTASSERT(sizeof(struct savefpu_ymm) == 832);
153 
154 /*
155  * This requirement is to make it easier for asm code to calculate
156  * offset of the fpu save area from the pcb address. FPU save area
157  * must be 64-byte aligned.
158  */
159 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
160 
161 /*
162  * Ensure the copy of XCR0 saved in a core is contained in the padding
163  * area.
164  */
165 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
166     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
167 
168 static	void	fpu_clean_state(void);
169 
170 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
171     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
172 
173 int use_xsave;			/* non-static for cpu_switch.S */
174 uint64_t xsave_mask;		/* the same */
175 static	uma_zone_t fpu_save_area_zone;
176 static	struct savefpu *fpu_initialstate;
177 
178 static struct xsave_area_elm_descr {
179 	u_int	offset;
180 	u_int	size;
181 } *xsave_area_desc;
182 
183 static void
184 fpusave_xsaveopt64(void *addr)
185 {
186 	xsaveopt64((char *)addr, xsave_mask);
187 }
188 
189 static void
190 fpusave_xsaveopt3264(void *addr)
191 {
192 	if (SV_CURPROC_FLAG(SV_ILP32))
193 		xsaveopt32((char *)addr, xsave_mask);
194 	else
195 		xsaveopt64((char *)addr, xsave_mask);
196 }
197 
198 static void
199 fpusave_xsave64(void *addr)
200 {
201 	xsave64((char *)addr, xsave_mask);
202 }
203 
204 static void
205 fpusave_xsave3264(void *addr)
206 {
207 	if (SV_CURPROC_FLAG(SV_ILP32))
208 		xsave32((char *)addr, xsave_mask);
209 	else
210 		xsave64((char *)addr, xsave_mask);
211 }
212 
213 static void
214 fpurestore_xrstor64(void *addr)
215 {
216 	xrstor64((char *)addr, xsave_mask);
217 }
218 
219 static void
220 fpurestore_xrstor3264(void *addr)
221 {
222 	if (SV_CURPROC_FLAG(SV_ILP32))
223 		xrstor32((char *)addr, xsave_mask);
224 	else
225 		xrstor64((char *)addr, xsave_mask);
226 }
227 
228 static void
229 fpusave_fxsave(void *addr)
230 {
231 
232 	fxsave((char *)addr);
233 }
234 
235 static void
236 fpurestore_fxrstor(void *addr)
237 {
238 
239 	fxrstor((char *)addr);
240 }
241 
242 DEFINE_IFUNC(, void, fpusave, (void *))
243 {
244 	if (!use_xsave)
245 		return (fpusave_fxsave);
246 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
247 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
248 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
249 	}
250 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
251 	    fpusave_xsave64 : fpusave_xsave3264);
252 }
253 
254 DEFINE_IFUNC(, void, fpurestore, (void *))
255 {
256 	if (!use_xsave)
257 		return (fpurestore_fxrstor);
258 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
259 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
260 }
261 
262 void
263 fpususpend(void *addr)
264 {
265 	u_long cr0;
266 
267 	cr0 = rcr0();
268 	stop_emulating();
269 	fpusave(addr);
270 	load_cr0(cr0);
271 }
272 
273 void
274 fpuresume(void *addr)
275 {
276 	u_long cr0;
277 
278 	cr0 = rcr0();
279 	stop_emulating();
280 	fninit();
281 	if (use_xsave)
282 		load_xcr(XCR0, xsave_mask);
283 	fpurestore(addr);
284 	load_cr0(cr0);
285 }
286 
287 /*
288  * Enable XSAVE if supported and allowed by user.
289  * Calculate the xsave_mask.
290  */
291 static void
292 fpuinit_bsp1(void)
293 {
294 	u_int cp[4];
295 	uint64_t xsave_mask_user;
296 	bool old_wp;
297 
298 	if (!use_xsave)
299 		return;
300 	cpuid_count(0xd, 0x0, cp);
301 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
302 	if ((cp[0] & xsave_mask) != xsave_mask)
303 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
304 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
305 	xsave_mask_user = xsave_mask;
306 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
307 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
308 	xsave_mask &= xsave_mask_user;
309 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
310 		xsave_mask &= ~XFEATURE_AVX512;
311 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
312 		xsave_mask &= ~XFEATURE_MPX;
313 
314 	cpuid_count(0xd, 0x1, cp);
315 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
316 		/*
317 		 * Patch the XSAVE instruction in the cpu_switch code
318 		 * to XSAVEOPT.  We assume that XSAVE encoding used
319 		 * REX byte, and set the bit 4 of the r/m byte.
320 		 *
321 		 * It seems that some BIOSes give control to the OS
322 		 * with CR0.WP already set, making the kernel text
323 		 * read-only before cpu_startup().
324 		 */
325 		old_wp = disable_wp();
326 		ctx_switch_xsave32[3] |= 0x10;
327 		ctx_switch_xsave[3] |= 0x10;
328 		restore_wp(old_wp);
329 	}
330 }
331 
332 /*
333  * Calculate the fpu save area size.
334  */
335 static void
336 fpuinit_bsp2(void)
337 {
338 	u_int cp[4];
339 
340 	if (use_xsave) {
341 		cpuid_count(0xd, 0x0, cp);
342 		cpu_max_ext_state_size = cp[1];
343 
344 		/*
345 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
346 		 */
347 		do_cpuid(1, cp);
348 		cpu_feature2 = cp[2];
349 	} else
350 		cpu_max_ext_state_size = sizeof(struct savefpu);
351 }
352 
353 /*
354  * Initialize the floating point unit.
355  */
356 void
357 fpuinit(void)
358 {
359 	register_t saveintr;
360 	uint64_t cr4;
361 	u_int mxcsr;
362 	u_short control;
363 
364 	TSENTER();
365 	if (IS_BSP())
366 		fpuinit_bsp1();
367 
368 	if (use_xsave) {
369 		cr4 = rcr4();
370 
371 		/*
372 		 * Revert enablement of PKRU if user disabled its
373 		 * saving on context switches by clearing the bit in
374 		 * the xsave mask.  Also redundantly clear the bit in
375 		 * cpu_stdext_feature2 to prevent pmap from ever
376 		 * trying to set the page table bits.
377 		 */
378 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
379 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
380 			cr4 &= ~CR4_PKE;
381 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
382 		}
383 
384 		load_cr4(cr4 | CR4_XSAVE);
385 		load_xcr(XCR0, xsave_mask);
386 	}
387 
388 	/*
389 	 * XCR0 shall be set up before CPU can report the save area size.
390 	 */
391 	if (IS_BSP())
392 		fpuinit_bsp2();
393 
394 	/*
395 	 * It is too early for critical_enter() to work on AP.
396 	 */
397 	saveintr = intr_disable();
398 	stop_emulating();
399 	fninit();
400 	control = __INITIAL_FPUCW__;
401 	fldcw(control);
402 	mxcsr = __INITIAL_MXCSR__;
403 	ldmxcsr(mxcsr);
404 	start_emulating();
405 	intr_restore(saveintr);
406 	TSEXIT();
407 }
408 
409 /*
410  * On the boot CPU we generate a clean state that is used to
411  * initialize the floating point unit when it is first used by a
412  * process.
413  */
414 static void
415 fpuinitstate(void *arg __unused)
416 {
417 	uint64_t *xstate_bv;
418 	register_t saveintr;
419 	int cp[4], i, max_ext_n;
420 
421 	/* Do potentially blocking operations before disabling interrupts. */
422 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
423 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
424 	    XSAVE_AREA_ALIGN - 1, 0);
425 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
426 	if (use_xsave) {
427 		max_ext_n = flsl(xsave_mask);
428 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
429 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
430 	}
431 
432 	cpu_thread_alloc(&thread0);
433 
434 	saveintr = intr_disable();
435 	stop_emulating();
436 
437 	fpusave_fxsave(fpu_initialstate);
438 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
439 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
440 	else
441 		cpu_mxcsr_mask = 0xFFBF;
442 
443 	/*
444 	 * The fninit instruction does not modify XMM registers or x87
445 	 * registers (MM/ST).  The fpusave call dumped the garbage
446 	 * contained in the registers after reset to the initial state
447 	 * saved.  Clear XMM and x87 registers file image to make the
448 	 * startup program state and signal handler XMM/x87 register
449 	 * content predictable.
450 	 */
451 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
452 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
453 
454 	/*
455 	 * Create a table describing the layout of the CPU Extended
456 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
457 	 * Region of an XSAVE Area" for the source of offsets/sizes.
458 	 */
459 	if (use_xsave) {
460 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
461 		    offsetof(struct xstate_hdr, xstate_bv));
462 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
463 
464 		/* x87 state */
465 		xsave_area_desc[0].offset = 0;
466 		xsave_area_desc[0].size = 160;
467 		/* XMM */
468 		xsave_area_desc[1].offset = 160;
469 		xsave_area_desc[1].size = 416 - 160;
470 
471 		for (i = 2; i < max_ext_n; i++) {
472 			cpuid_count(0xd, i, cp);
473 			xsave_area_desc[i].offset = cp[1];
474 			xsave_area_desc[i].size = cp[0];
475 		}
476 	}
477 
478 	start_emulating();
479 	intr_restore(saveintr);
480 }
481 /* EFIRT needs this to be initialized before we can enter our EFI environment */
482 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
483 
484 /*
485  * Free coprocessor (if we have it).
486  */
487 void
488 fpuexit(struct thread *td)
489 {
490 
491 	critical_enter();
492 	if (curthread == PCPU_GET(fpcurthread)) {
493 		stop_emulating();
494 		fpusave(curpcb->pcb_save);
495 		start_emulating();
496 		PCPU_SET(fpcurthread, NULL);
497 	}
498 	critical_exit();
499 }
500 
501 int
502 fpuformat(void)
503 {
504 
505 	return (_MC_FPFMT_XMM);
506 }
507 
508 /*
509  * The following mechanism is used to ensure that the FPE_... value
510  * that is passed as a trapcode to the signal handler of the user
511  * process does not have more than one bit set.
512  *
513  * Multiple bits may be set if the user process modifies the control
514  * word while a status word bit is already set.  While this is a sign
515  * of bad coding, we have no choice than to narrow them down to one
516  * bit, since we must not send a trapcode that is not exactly one of
517  * the FPE_ macros.
518  *
519  * The mechanism has a static table with 127 entries.  Each combination
520  * of the 7 FPU status word exception bits directly translates to a
521  * position in this table, where a single FPE_... value is stored.
522  * This FPE_... value stored there is considered the "most important"
523  * of the exception bits and will be sent as the signal code.  The
524  * precedence of the bits is based upon Intel Document "Numerical
525  * Applications", Chapter "Special Computational Situations".
526  *
527  * The macro to choose one of these values does these steps: 1) Throw
528  * away status word bits that cannot be masked.  2) Throw away the bits
529  * currently masked in the control word, assuming the user isn't
530  * interested in them anymore.  3) Reinsert status word bit 7 (stack
531  * fault) if it is set, which cannot be masked but must be presered.
532  * 4) Use the remaining bits to point into the trapcode table.
533  *
534  * The 6 maskable bits in order of their preference, as stated in the
535  * above referenced Intel manual:
536  * 1  Invalid operation (FP_X_INV)
537  * 1a   Stack underflow
538  * 1b   Stack overflow
539  * 1c   Operand of unsupported format
540  * 1d   SNaN operand.
541  * 2  QNaN operand (not an exception, irrelavant here)
542  * 3  Any other invalid-operation not mentioned above or zero divide
543  *      (FP_X_INV, FP_X_DZ)
544  * 4  Denormal operand (FP_X_DNML)
545  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
546  * 6  Inexact result (FP_X_IMP)
547  */
548 static char fpetable[128] = {
549 	0,
550 	FPE_FLTINV,	/*  1 - INV */
551 	FPE_FLTUND,	/*  2 - DNML */
552 	FPE_FLTINV,	/*  3 - INV | DNML */
553 	FPE_FLTDIV,	/*  4 - DZ */
554 	FPE_FLTINV,	/*  5 - INV | DZ */
555 	FPE_FLTDIV,	/*  6 - DNML | DZ */
556 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
557 	FPE_FLTOVF,	/*  8 - OFL */
558 	FPE_FLTINV,	/*  9 - INV | OFL */
559 	FPE_FLTUND,	/*  A - DNML | OFL */
560 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
561 	FPE_FLTDIV,	/*  C - DZ | OFL */
562 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
563 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
564 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
565 	FPE_FLTUND,	/* 10 - UFL */
566 	FPE_FLTINV,	/* 11 - INV | UFL */
567 	FPE_FLTUND,	/* 12 - DNML | UFL */
568 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
569 	FPE_FLTDIV,	/* 14 - DZ | UFL */
570 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
571 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
572 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
573 	FPE_FLTOVF,	/* 18 - OFL | UFL */
574 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
575 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
576 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
577 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
578 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
579 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
580 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
581 	FPE_FLTRES,	/* 20 - IMP */
582 	FPE_FLTINV,	/* 21 - INV | IMP */
583 	FPE_FLTUND,	/* 22 - DNML | IMP */
584 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
585 	FPE_FLTDIV,	/* 24 - DZ | IMP */
586 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
587 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
588 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
589 	FPE_FLTOVF,	/* 28 - OFL | IMP */
590 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
591 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
592 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
593 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
594 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
595 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
596 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
597 	FPE_FLTUND,	/* 30 - UFL | IMP */
598 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
599 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
600 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
601 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
602 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
603 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
604 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
605 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
606 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
607 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
608 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
609 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
610 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
611 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
612 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
613 	FPE_FLTSUB,	/* 40 - STK */
614 	FPE_FLTSUB,	/* 41 - INV | STK */
615 	FPE_FLTUND,	/* 42 - DNML | STK */
616 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
617 	FPE_FLTDIV,	/* 44 - DZ | STK */
618 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
619 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
620 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
621 	FPE_FLTOVF,	/* 48 - OFL | STK */
622 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
623 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
624 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
625 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
626 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
627 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
628 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
629 	FPE_FLTUND,	/* 50 - UFL | STK */
630 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
631 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
632 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
633 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
634 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
635 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
636 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
637 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
638 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
639 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
640 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
641 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
642 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
643 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
644 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
645 	FPE_FLTRES,	/* 60 - IMP | STK */
646 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
647 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
648 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
649 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
650 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
651 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
652 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
653 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
654 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
655 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
656 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
657 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
658 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
659 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
660 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
661 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
662 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
663 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
664 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
665 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
666 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
667 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
668 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
669 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
670 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
671 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
672 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
673 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
674 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
675 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
676 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
677 };
678 
679 /*
680  * Read the FP status and control words, then generate si_code value
681  * for SIGFPE.  The error code chosen will be one of the
682  * FPE_... macros.  It will be sent as the second argument to old
683  * BSD-style signal handlers and as "siginfo_t->si_code" (second
684  * argument) to SA_SIGINFO signal handlers.
685  *
686  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
687  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
688  * usermode code which understands the FPU hardware enough to enable
689  * the exceptions, can also handle clearing the exception state in the
690  * handler.  The only consequence of not clearing the exception is the
691  * rethrow of the SIGFPE on return from the signal handler and
692  * reexecution of the corresponding instruction.
693  *
694  * For XMM traps, the exceptions were never cleared.
695  */
696 int
697 fputrap_x87(void)
698 {
699 	struct savefpu *pcb_save;
700 	u_short control, status;
701 
702 	critical_enter();
703 
704 	/*
705 	 * Interrupt handling (for another interrupt) may have pushed the
706 	 * state to memory.  Fetch the relevant parts of the state from
707 	 * wherever they are.
708 	 */
709 	if (PCPU_GET(fpcurthread) != curthread) {
710 		pcb_save = curpcb->pcb_save;
711 		control = pcb_save->sv_env.en_cw;
712 		status = pcb_save->sv_env.en_sw;
713 	} else {
714 		fnstcw(&control);
715 		fnstsw(&status);
716 	}
717 
718 	critical_exit();
719 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
720 }
721 
722 int
723 fputrap_sse(void)
724 {
725 	u_int mxcsr;
726 
727 	critical_enter();
728 	if (PCPU_GET(fpcurthread) != curthread)
729 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
730 	else
731 		stmxcsr(&mxcsr);
732 	critical_exit();
733 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
734 }
735 
736 static void
737 restore_fpu_curthread(struct thread *td)
738 {
739 	struct pcb *pcb;
740 
741 	/*
742 	 * Record new context early in case frstor causes a trap.
743 	 */
744 	PCPU_SET(fpcurthread, td);
745 
746 	stop_emulating();
747 	fpu_clean_state();
748 	pcb = td->td_pcb;
749 
750 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
751 		/*
752 		 * This is the first time this thread has used the FPU or
753 		 * the PCB doesn't contain a clean FPU state.  Explicitly
754 		 * load an initial state.
755 		 *
756 		 * We prefer to restore the state from the actual save
757 		 * area in PCB instead of directly loading from
758 		 * fpu_initialstate, to ignite the XSAVEOPT
759 		 * tracking engine.
760 		 */
761 		bcopy(fpu_initialstate, pcb->pcb_save,
762 		    cpu_max_ext_state_size);
763 		fpurestore(pcb->pcb_save);
764 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
765 			fldcw(pcb->pcb_initial_fpucw);
766 		if (PCB_USER_FPU(pcb))
767 			set_pcb_flags(pcb, PCB_FPUINITDONE |
768 			    PCB_USERFPUINITDONE);
769 		else
770 			set_pcb_flags(pcb, PCB_FPUINITDONE);
771 	} else
772 		fpurestore(pcb->pcb_save);
773 }
774 
775 /*
776  * Device Not Available (DNA, #NM) exception handler.
777  *
778  * It would be better to switch FP context here (if curthread !=
779  * fpcurthread) and not necessarily for every context switch, but it
780  * is too hard to access foreign pcb's.
781  */
782 void
783 fpudna(void)
784 {
785 	struct thread *td;
786 
787 	td = curthread;
788 	/*
789 	 * This handler is entered with interrupts enabled, so context
790 	 * switches may occur before critical_enter() is executed.  If
791 	 * a context switch occurs, then when we regain control, our
792 	 * state will have been completely restored.  The CPU may
793 	 * change underneath us, but the only part of our context that
794 	 * lives in the CPU is CR0.TS and that will be "restored" by
795 	 * setting it on the new CPU.
796 	 */
797 	critical_enter();
798 
799 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
800 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
801 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
802 		/*
803 		 * Some virtual machines seems to set %cr0.TS at
804 		 * arbitrary moments.  Silently clear the TS bit
805 		 * regardless of the eager/lazy FPU context switch
806 		 * mode.
807 		 */
808 		stop_emulating();
809 	} else {
810 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
811 			panic(
812 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
813 			    PCPU_GET(fpcurthread),
814 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
815 		}
816 		restore_fpu_curthread(td);
817 	}
818 	critical_exit();
819 }
820 
821 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
822 void
823 fpu_activate_sw(struct thread *td)
824 {
825 
826 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
827 		PCPU_SET(fpcurthread, NULL);
828 		start_emulating();
829 	} else if (PCPU_GET(fpcurthread) != td) {
830 		restore_fpu_curthread(td);
831 	}
832 }
833 
834 void
835 fpudrop(void)
836 {
837 	struct thread *td;
838 
839 	td = PCPU_GET(fpcurthread);
840 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
841 	CRITICAL_ASSERT(td);
842 	PCPU_SET(fpcurthread, NULL);
843 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
844 	start_emulating();
845 }
846 
847 /*
848  * Get the user state of the FPU into pcb->pcb_user_save without
849  * dropping ownership (if possible).  It returns the FPU ownership
850  * status.
851  */
852 int
853 fpugetregs(struct thread *td)
854 {
855 	struct pcb *pcb;
856 	uint64_t *xstate_bv, bit;
857 	char *sa;
858 	int max_ext_n, i, owned;
859 
860 	pcb = td->td_pcb;
861 	critical_enter();
862 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
863 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
864 		    cpu_max_ext_state_size);
865 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
866 		    pcb->pcb_initial_fpucw;
867 		fpuuserinited(td);
868 		critical_exit();
869 		return (_MC_FPOWNED_PCB);
870 	}
871 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
872 		fpusave(get_pcb_user_save_pcb(pcb));
873 		owned = _MC_FPOWNED_FPU;
874 	} else {
875 		owned = _MC_FPOWNED_PCB;
876 	}
877 	if (use_xsave) {
878 		/*
879 		 * Handle partially saved state.
880 		 */
881 		sa = (char *)get_pcb_user_save_pcb(pcb);
882 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
883 		    offsetof(struct xstate_hdr, xstate_bv));
884 		max_ext_n = flsl(xsave_mask);
885 		for (i = 0; i < max_ext_n; i++) {
886 			bit = 1ULL << i;
887 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
888 				continue;
889 			bcopy((char *)fpu_initialstate +
890 			    xsave_area_desc[i].offset,
891 			    sa + xsave_area_desc[i].offset,
892 			    xsave_area_desc[i].size);
893 			*xstate_bv |= bit;
894 		}
895 	}
896 	critical_exit();
897 	return (owned);
898 }
899 
900 void
901 fpuuserinited(struct thread *td)
902 {
903 	struct pcb *pcb;
904 
905 	CRITICAL_ASSERT(td);
906 	pcb = td->td_pcb;
907 	if (PCB_USER_FPU(pcb))
908 		set_pcb_flags(pcb,
909 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
910 	else
911 		set_pcb_flags(pcb, PCB_FPUINITDONE);
912 }
913 
914 int
915 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
916 {
917 	struct xstate_hdr *hdr, *ehdr;
918 	size_t len, max_len;
919 	uint64_t bv;
920 
921 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
922 	if (xfpustate == NULL)
923 		return (0);
924 	if (!use_xsave)
925 		return (EOPNOTSUPP);
926 
927 	len = xfpustate_size;
928 	if (len < sizeof(struct xstate_hdr))
929 		return (EINVAL);
930 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
931 	if (len > max_len)
932 		return (EINVAL);
933 
934 	ehdr = (struct xstate_hdr *)xfpustate;
935 	bv = ehdr->xstate_bv;
936 
937 	/*
938 	 * Avoid #gp.
939 	 */
940 	if (bv & ~xsave_mask)
941 		return (EINVAL);
942 
943 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
944 
945 	hdr->xstate_bv = bv;
946 	bcopy(xfpustate + sizeof(struct xstate_hdr),
947 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
948 
949 	return (0);
950 }
951 
952 /*
953  * Set the state of the FPU.
954  */
955 int
956 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
957     size_t xfpustate_size)
958 {
959 	struct pcb *pcb;
960 	int error;
961 
962 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
963 	pcb = td->td_pcb;
964 	error = 0;
965 	critical_enter();
966 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
967 		error = fpusetxstate(td, xfpustate, xfpustate_size);
968 		if (error == 0) {
969 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
970 			fpurestore(get_pcb_user_save_td(td));
971 			set_pcb_flags(pcb, PCB_FPUINITDONE |
972 			    PCB_USERFPUINITDONE);
973 		}
974 	} else {
975 		error = fpusetxstate(td, xfpustate, xfpustate_size);
976 		if (error == 0) {
977 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
978 			fpuuserinited(td);
979 		}
980 	}
981 	critical_exit();
982 	return (error);
983 }
984 
985 /*
986  * On AuthenticAMD processors, the fxrstor instruction does not restore
987  * the x87's stored last instruction pointer, last data pointer, and last
988  * opcode values, except in the rare case in which the exception summary
989  * (ES) bit in the x87 status word is set to 1.
990  *
991  * In order to avoid leaking this information across processes, we clean
992  * these values by performing a dummy load before executing fxrstor().
993  */
994 static void
995 fpu_clean_state(void)
996 {
997 	static float dummy_variable = 0.0;
998 	u_short status;
999 
1000 	/*
1001 	 * Clear the ES bit in the x87 status word if it is currently
1002 	 * set, in order to avoid causing a fault in the upcoming load.
1003 	 */
1004 	fnstsw(&status);
1005 	if (status & 0x80)
1006 		fnclex();
1007 
1008 	/*
1009 	 * Load the dummy variable into the x87 stack.  This mangles
1010 	 * the x87 stack, but we don't care since we're about to call
1011 	 * fxrstor() anyway.
1012 	 */
1013 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1014 }
1015 
1016 /*
1017  * This really sucks.  We want the acpi version only, but it requires
1018  * the isa_if.h file in order to get the definitions.
1019  */
1020 #include "opt_isa.h"
1021 #ifdef DEV_ISA
1022 #include <isa/isavar.h>
1023 /*
1024  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1025  */
1026 static struct isa_pnp_id fpupnp_ids[] = {
1027 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1028 	{ 0 }
1029 };
1030 
1031 static int
1032 fpupnp_probe(device_t dev)
1033 {
1034 	int result;
1035 
1036 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1037 	if (result <= 0)
1038 		device_quiet(dev);
1039 	return (result);
1040 }
1041 
1042 static int
1043 fpupnp_attach(device_t dev)
1044 {
1045 
1046 	return (0);
1047 }
1048 
1049 static device_method_t fpupnp_methods[] = {
1050 	/* Device interface */
1051 	DEVMETHOD(device_probe,		fpupnp_probe),
1052 	DEVMETHOD(device_attach,	fpupnp_attach),
1053 	DEVMETHOD(device_detach,	bus_generic_detach),
1054 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1055 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1056 	DEVMETHOD(device_resume,	bus_generic_resume),
1057 	{ 0, 0 }
1058 };
1059 
1060 static driver_t fpupnp_driver = {
1061 	"fpupnp",
1062 	fpupnp_methods,
1063 	1,			/* no softc */
1064 };
1065 
1066 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1067 ISA_PNP_INFO(fpupnp_ids);
1068 #endif	/* DEV_ISA */
1069 
1070 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1071     "Kernel contexts for FPU state");
1072 
1073 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1074 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1075 #define	FPU_KERN_CTX_INUSE	 0x04
1076 
1077 struct fpu_kern_ctx {
1078 	struct savefpu *prev;
1079 	uint32_t flags;
1080 	char hwstate1[];
1081 };
1082 
1083 static inline size_t __pure2
1084 fpu_kern_alloc_sz(u_int max_est)
1085 {
1086 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1087 }
1088 
1089 static inline int __pure2
1090 fpu_kern_malloc_flags(u_int fpflags)
1091 {
1092 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1093 }
1094 
1095 struct fpu_kern_ctx *
1096 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1097 {
1098 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1099 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1100 	    fpu_kern_malloc_flags(flags)));
1101 }
1102 
1103 struct fpu_kern_ctx *
1104 fpu_kern_alloc_ctx(u_int flags)
1105 {
1106 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1107 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1108 }
1109 
1110 void
1111 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1112 {
1113 
1114 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1115 	/* XXXKIB clear the memory ? */
1116 	free(ctx, M_FPUKERN_CTX);
1117 }
1118 
1119 static struct savefpu *
1120 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1121 {
1122 	vm_offset_t p;
1123 
1124 	p = (vm_offset_t)&ctx->hwstate1;
1125 	p = roundup2(p, XSAVE_AREA_ALIGN);
1126 	return ((struct savefpu *)p);
1127 }
1128 
1129 void
1130 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1131 {
1132 	struct pcb *pcb;
1133 
1134 	pcb = td->td_pcb;
1135 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1136 	    ("ctx is required when !FPU_KERN_NOCTX"));
1137 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1138 	    ("using inuse ctx"));
1139 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1140 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1141 
1142 	if ((flags & FPU_KERN_NOCTX) != 0) {
1143 		critical_enter();
1144 		stop_emulating();
1145 		if (curthread == PCPU_GET(fpcurthread)) {
1146 			fpusave(curpcb->pcb_save);
1147 			PCPU_SET(fpcurthread, NULL);
1148 		} else {
1149 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1150 			    ("invalid fpcurthread"));
1151 		}
1152 
1153 		/*
1154 		 * This breaks XSAVEOPT tracker, but
1155 		 * PCB_FPUNOSAVE state is supposed to never need to
1156 		 * save FPU context at all.
1157 		 */
1158 		fpurestore(fpu_initialstate);
1159 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1160 		    PCB_FPUINITDONE);
1161 		return;
1162 	}
1163 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1164 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1165 		return;
1166 	}
1167 	critical_enter();
1168 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1169 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1170 	ctx->flags = FPU_KERN_CTX_INUSE;
1171 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1172 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1173 	fpuexit(td);
1174 	ctx->prev = pcb->pcb_save;
1175 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1176 	set_pcb_flags(pcb, PCB_KERNFPU);
1177 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1178 	critical_exit();
1179 }
1180 
1181 int
1182 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1183 {
1184 	struct pcb *pcb;
1185 
1186 	pcb = td->td_pcb;
1187 
1188 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1189 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1190 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1191 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1192 		CRITICAL_ASSERT(td);
1193 
1194 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1195 		start_emulating();
1196 	} else {
1197 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1198 		    ("leaving not inuse ctx"));
1199 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1200 
1201 		if (is_fpu_kern_thread(0) &&
1202 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1203 			return (0);
1204 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1205 		    ("dummy ctx"));
1206 		critical_enter();
1207 		if (curthread == PCPU_GET(fpcurthread))
1208 			fpudrop();
1209 		pcb->pcb_save = ctx->prev;
1210 	}
1211 
1212 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1213 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1214 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1215 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1216 				clear_pcb_flags(pcb, PCB_KERNFPU);
1217 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1218 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1219 	} else {
1220 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1221 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1222 		else
1223 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1224 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1225 	}
1226 	critical_exit();
1227 	return (0);
1228 }
1229 
1230 int
1231 fpu_kern_thread(u_int flags)
1232 {
1233 
1234 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1235 	    ("Only kthread may use fpu_kern_thread"));
1236 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1237 	    ("mangled pcb_save"));
1238 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1239 
1240 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1241 	return (0);
1242 }
1243 
1244 int
1245 is_fpu_kern_thread(u_int flags)
1246 {
1247 
1248 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1249 		return (0);
1250 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1251 }
1252 
1253 /*
1254  * FPU save area alloc/free/init utility routines
1255  */
1256 struct savefpu *
1257 fpu_save_area_alloc(void)
1258 {
1259 
1260 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1261 }
1262 
1263 void
1264 fpu_save_area_free(struct savefpu *fsa)
1265 {
1266 
1267 	uma_zfree(fpu_save_area_zone, fsa);
1268 }
1269 
1270 void
1271 fpu_save_area_reset(struct savefpu *fsa)
1272 {
1273 
1274 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1275 }
1276