1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990 William Jolitz. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/domainset.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/sysctl.h> 50 #include <sys/sysent.h> 51 #include <sys/tslog.h> 52 #include <machine/bus.h> 53 #include <sys/rman.h> 54 #include <sys/signalvar.h> 55 #include <vm/uma.h> 56 57 #include <machine/cputypes.h> 58 #include <machine/frame.h> 59 #include <machine/intr_machdep.h> 60 #include <machine/md_var.h> 61 #include <machine/pcb.h> 62 #include <machine/psl.h> 63 #include <machine/resource.h> 64 #include <machine/specialreg.h> 65 #include <machine/segments.h> 66 #include <machine/ucontext.h> 67 #include <x86/ifunc.h> 68 69 /* 70 * Floating point support. 71 */ 72 73 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 74 #define fnclex() __asm __volatile("fnclex") 75 #define fninit() __asm __volatile("fninit") 76 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 77 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 78 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 79 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 80 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 81 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : "=m" (*(addr))) 82 83 static __inline void 84 xrstor32(char *addr, uint64_t mask) 85 { 86 uint32_t low, hi; 87 88 low = mask; 89 hi = mask >> 32; 90 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 91 } 92 93 static __inline void 94 xrstor64(char *addr, uint64_t mask) 95 { 96 uint32_t low, hi; 97 98 low = mask; 99 hi = mask >> 32; 100 __asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi)); 101 } 102 103 static __inline void 104 xsave32(char *addr, uint64_t mask) 105 { 106 uint32_t low, hi; 107 108 low = mask; 109 hi = mask >> 32; 110 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 111 "memory"); 112 } 113 114 static __inline void 115 xsave64(char *addr, uint64_t mask) 116 { 117 uint32_t low, hi; 118 119 low = mask; 120 hi = mask >> 32; 121 __asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) : 122 "memory"); 123 } 124 125 static __inline void 126 xsaveopt32(char *addr, uint64_t mask) 127 { 128 uint32_t low, hi; 129 130 low = mask; 131 hi = mask >> 32; 132 __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) : 133 "memory"); 134 } 135 136 static __inline void 137 xsaveopt64(char *addr, uint64_t mask) 138 { 139 uint32_t low, hi; 140 141 low = mask; 142 hi = mask >> 32; 143 __asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) : 144 "memory"); 145 } 146 147 #define start_emulating() load_cr0(rcr0() | CR0_TS) 148 #define stop_emulating() clts() 149 150 CTASSERT(sizeof(struct savefpu) == 512); 151 CTASSERT(sizeof(struct xstate_hdr) == 64); 152 CTASSERT(sizeof(struct savefpu_ymm) == 832); 153 154 /* 155 * This requirement is to make it easier for asm code to calculate 156 * offset of the fpu save area from the pcb address. FPU save area 157 * must be 64-byte aligned. 158 */ 159 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 160 161 /* 162 * Ensure the copy of XCR0 saved in a core is contained in the padding 163 * area. 164 */ 165 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) && 166 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu)); 167 168 static void fpu_clean_state(void); 169 170 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 171 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware"); 172 173 int use_xsave; /* non-static for cpu_switch.S */ 174 uint64_t xsave_mask; /* the same */ 175 static uma_zone_t fpu_save_area_zone; 176 static struct savefpu *fpu_initialstate; 177 178 static struct xsave_area_elm_descr { 179 u_int offset; 180 u_int size; 181 } *xsave_area_desc; 182 183 static void 184 fpusave_xsaveopt64(void *addr) 185 { 186 xsaveopt64((char *)addr, xsave_mask); 187 } 188 189 static void 190 fpusave_xsaveopt3264(void *addr) 191 { 192 if (SV_CURPROC_FLAG(SV_ILP32)) 193 xsaveopt32((char *)addr, xsave_mask); 194 else 195 xsaveopt64((char *)addr, xsave_mask); 196 } 197 198 static void 199 fpusave_xsave64(void *addr) 200 { 201 xsave64((char *)addr, xsave_mask); 202 } 203 204 static void 205 fpusave_xsave3264(void *addr) 206 { 207 if (SV_CURPROC_FLAG(SV_ILP32)) 208 xsave32((char *)addr, xsave_mask); 209 else 210 xsave64((char *)addr, xsave_mask); 211 } 212 213 static void 214 fpurestore_xrstor64(void *addr) 215 { 216 xrstor64((char *)addr, xsave_mask); 217 } 218 219 static void 220 fpurestore_xrstor3264(void *addr) 221 { 222 if (SV_CURPROC_FLAG(SV_ILP32)) 223 xrstor32((char *)addr, xsave_mask); 224 else 225 xrstor64((char *)addr, xsave_mask); 226 } 227 228 static void 229 fpusave_fxsave(void *addr) 230 { 231 232 fxsave((char *)addr); 233 } 234 235 static void 236 fpurestore_fxrstor(void *addr) 237 { 238 239 fxrstor((char *)addr); 240 } 241 242 DEFINE_IFUNC(, void, fpusave, (void *)) 243 { 244 if (!use_xsave) 245 return (fpusave_fxsave); 246 if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) { 247 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 248 fpusave_xsaveopt64 : fpusave_xsaveopt3264); 249 } 250 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 251 fpusave_xsave64 : fpusave_xsave3264); 252 } 253 254 DEFINE_IFUNC(, void, fpurestore, (void *)) 255 { 256 if (!use_xsave) 257 return (fpurestore_fxrstor); 258 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 259 fpurestore_xrstor64 : fpurestore_xrstor3264); 260 } 261 262 void 263 fpususpend(void *addr) 264 { 265 u_long cr0; 266 267 cr0 = rcr0(); 268 stop_emulating(); 269 fpusave(addr); 270 load_cr0(cr0); 271 } 272 273 void 274 fpuresume(void *addr) 275 { 276 u_long cr0; 277 278 cr0 = rcr0(); 279 stop_emulating(); 280 fninit(); 281 if (use_xsave) 282 load_xcr(XCR0, xsave_mask); 283 fpurestore(addr); 284 load_cr0(cr0); 285 } 286 287 /* 288 * Enable XSAVE if supported and allowed by user. 289 * Calculate the xsave_mask. 290 */ 291 static void 292 fpuinit_bsp1(void) 293 { 294 u_int cp[4]; 295 uint64_t xsave_mask_user; 296 bool old_wp; 297 298 if (!use_xsave) 299 return; 300 cpuid_count(0xd, 0x0, cp); 301 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 302 if ((cp[0] & xsave_mask) != xsave_mask) 303 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 304 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 305 xsave_mask_user = xsave_mask; 306 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 307 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 308 xsave_mask &= xsave_mask_user; 309 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512) 310 xsave_mask &= ~XFEATURE_AVX512; 311 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX) 312 xsave_mask &= ~XFEATURE_MPX; 313 314 cpuid_count(0xd, 0x1, cp); 315 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 316 /* 317 * Patch the XSAVE instruction in the cpu_switch code 318 * to XSAVEOPT. We assume that XSAVE encoding used 319 * REX byte, and set the bit 4 of the r/m byte. 320 * 321 * It seems that some BIOSes give control to the OS 322 * with CR0.WP already set, making the kernel text 323 * read-only before cpu_startup(). 324 */ 325 old_wp = disable_wp(); 326 ctx_switch_xsave32[3] |= 0x10; 327 ctx_switch_xsave[3] |= 0x10; 328 restore_wp(old_wp); 329 } 330 } 331 332 /* 333 * Calculate the fpu save area size. 334 */ 335 static void 336 fpuinit_bsp2(void) 337 { 338 u_int cp[4]; 339 340 if (use_xsave) { 341 cpuid_count(0xd, 0x0, cp); 342 cpu_max_ext_state_size = cp[1]; 343 344 /* 345 * Reload the cpu_feature2, since we enabled OSXSAVE. 346 */ 347 do_cpuid(1, cp); 348 cpu_feature2 = cp[2]; 349 } else 350 cpu_max_ext_state_size = sizeof(struct savefpu); 351 } 352 353 /* 354 * Initialize the floating point unit. 355 */ 356 void 357 fpuinit(void) 358 { 359 register_t saveintr; 360 uint64_t cr4; 361 u_int mxcsr; 362 u_short control; 363 364 TSENTER(); 365 if (IS_BSP()) 366 fpuinit_bsp1(); 367 368 if (use_xsave) { 369 cr4 = rcr4(); 370 371 /* 372 * Revert enablement of PKRU if user disabled its 373 * saving on context switches by clearing the bit in 374 * the xsave mask. Also redundantly clear the bit in 375 * cpu_stdext_feature2 to prevent pmap from ever 376 * trying to set the page table bits. 377 */ 378 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 && 379 (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) { 380 cr4 &= ~CR4_PKE; 381 cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU; 382 } 383 384 load_cr4(cr4 | CR4_XSAVE); 385 load_xcr(XCR0, xsave_mask); 386 } 387 388 /* 389 * XCR0 shall be set up before CPU can report the save area size. 390 */ 391 if (IS_BSP()) 392 fpuinit_bsp2(); 393 394 /* 395 * It is too early for critical_enter() to work on AP. 396 */ 397 saveintr = intr_disable(); 398 stop_emulating(); 399 fninit(); 400 control = __INITIAL_FPUCW__; 401 fldcw(control); 402 mxcsr = __INITIAL_MXCSR__; 403 ldmxcsr(mxcsr); 404 start_emulating(); 405 intr_restore(saveintr); 406 TSEXIT(); 407 } 408 409 /* 410 * On the boot CPU we generate a clean state that is used to 411 * initialize the floating point unit when it is first used by a 412 * process. 413 */ 414 static void 415 fpuinitstate(void *arg __unused) 416 { 417 uint64_t *xstate_bv; 418 register_t saveintr; 419 int cp[4], i, max_ext_n; 420 421 /* Do potentially blocking operations before disabling interrupts. */ 422 fpu_save_area_zone = uma_zcreate("FPU_save_area", 423 cpu_max_ext_state_size, NULL, NULL, NULL, NULL, 424 XSAVE_AREA_ALIGN - 1, 0); 425 fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO); 426 if (use_xsave) { 427 max_ext_n = flsl(xsave_mask); 428 xsave_area_desc = malloc(max_ext_n * sizeof(struct 429 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 430 } 431 432 cpu_thread_alloc(&thread0); 433 434 saveintr = intr_disable(); 435 stop_emulating(); 436 437 fpusave_fxsave(fpu_initialstate); 438 if (fpu_initialstate->sv_env.en_mxcsr_mask) 439 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 440 else 441 cpu_mxcsr_mask = 0xFFBF; 442 443 /* 444 * The fninit instruction does not modify XMM registers or x87 445 * registers (MM/ST). The fpusave call dumped the garbage 446 * contained in the registers after reset to the initial state 447 * saved. Clear XMM and x87 registers file image to make the 448 * startup program state and signal handler XMM/x87 register 449 * content predictable. 450 */ 451 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp)); 452 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm)); 453 454 /* 455 * Create a table describing the layout of the CPU Extended 456 * Save Area. See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy 457 * Region of an XSAVE Area" for the source of offsets/sizes. 458 */ 459 if (use_xsave) { 460 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) + 461 offsetof(struct xstate_hdr, xstate_bv)); 462 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 463 464 /* x87 state */ 465 xsave_area_desc[0].offset = 0; 466 xsave_area_desc[0].size = 160; 467 /* XMM */ 468 xsave_area_desc[1].offset = 160; 469 xsave_area_desc[1].size = 416 - 160; 470 471 for (i = 2; i < max_ext_n; i++) { 472 cpuid_count(0xd, i, cp); 473 xsave_area_desc[i].offset = cp[1]; 474 xsave_area_desc[i].size = cp[0]; 475 } 476 } 477 478 start_emulating(); 479 intr_restore(saveintr); 480 } 481 /* EFIRT needs this to be initialized before we can enter our EFI environment */ 482 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL); 483 484 /* 485 * Free coprocessor (if we have it). 486 */ 487 void 488 fpuexit(struct thread *td) 489 { 490 491 critical_enter(); 492 if (curthread == PCPU_GET(fpcurthread)) { 493 stop_emulating(); 494 fpusave(curpcb->pcb_save); 495 start_emulating(); 496 PCPU_SET(fpcurthread, NULL); 497 } 498 critical_exit(); 499 } 500 501 int 502 fpuformat(void) 503 { 504 505 return (_MC_FPFMT_XMM); 506 } 507 508 /* 509 * The following mechanism is used to ensure that the FPE_... value 510 * that is passed as a trapcode to the signal handler of the user 511 * process does not have more than one bit set. 512 * 513 * Multiple bits may be set if the user process modifies the control 514 * word while a status word bit is already set. While this is a sign 515 * of bad coding, we have no choice than to narrow them down to one 516 * bit, since we must not send a trapcode that is not exactly one of 517 * the FPE_ macros. 518 * 519 * The mechanism has a static table with 127 entries. Each combination 520 * of the 7 FPU status word exception bits directly translates to a 521 * position in this table, where a single FPE_... value is stored. 522 * This FPE_... value stored there is considered the "most important" 523 * of the exception bits and will be sent as the signal code. The 524 * precedence of the bits is based upon Intel Document "Numerical 525 * Applications", Chapter "Special Computational Situations". 526 * 527 * The macro to choose one of these values does these steps: 1) Throw 528 * away status word bits that cannot be masked. 2) Throw away the bits 529 * currently masked in the control word, assuming the user isn't 530 * interested in them anymore. 3) Reinsert status word bit 7 (stack 531 * fault) if it is set, which cannot be masked but must be presered. 532 * 4) Use the remaining bits to point into the trapcode table. 533 * 534 * The 6 maskable bits in order of their preference, as stated in the 535 * above referenced Intel manual: 536 * 1 Invalid operation (FP_X_INV) 537 * 1a Stack underflow 538 * 1b Stack overflow 539 * 1c Operand of unsupported format 540 * 1d SNaN operand. 541 * 2 QNaN operand (not an exception, irrelavant here) 542 * 3 Any other invalid-operation not mentioned above or zero divide 543 * (FP_X_INV, FP_X_DZ) 544 * 4 Denormal operand (FP_X_DNML) 545 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 546 * 6 Inexact result (FP_X_IMP) 547 */ 548 static char fpetable[128] = { 549 0, 550 FPE_FLTINV, /* 1 - INV */ 551 FPE_FLTUND, /* 2 - DNML */ 552 FPE_FLTINV, /* 3 - INV | DNML */ 553 FPE_FLTDIV, /* 4 - DZ */ 554 FPE_FLTINV, /* 5 - INV | DZ */ 555 FPE_FLTDIV, /* 6 - DNML | DZ */ 556 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 557 FPE_FLTOVF, /* 8 - OFL */ 558 FPE_FLTINV, /* 9 - INV | OFL */ 559 FPE_FLTUND, /* A - DNML | OFL */ 560 FPE_FLTINV, /* B - INV | DNML | OFL */ 561 FPE_FLTDIV, /* C - DZ | OFL */ 562 FPE_FLTINV, /* D - INV | DZ | OFL */ 563 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 564 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 565 FPE_FLTUND, /* 10 - UFL */ 566 FPE_FLTINV, /* 11 - INV | UFL */ 567 FPE_FLTUND, /* 12 - DNML | UFL */ 568 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 569 FPE_FLTDIV, /* 14 - DZ | UFL */ 570 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 571 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 572 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 573 FPE_FLTOVF, /* 18 - OFL | UFL */ 574 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 575 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 576 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 577 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 578 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 579 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 580 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 581 FPE_FLTRES, /* 20 - IMP */ 582 FPE_FLTINV, /* 21 - INV | IMP */ 583 FPE_FLTUND, /* 22 - DNML | IMP */ 584 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 585 FPE_FLTDIV, /* 24 - DZ | IMP */ 586 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 587 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 588 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 589 FPE_FLTOVF, /* 28 - OFL | IMP */ 590 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 591 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 592 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 593 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 594 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 595 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 596 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 597 FPE_FLTUND, /* 30 - UFL | IMP */ 598 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 599 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 600 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 601 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 602 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 603 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 604 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 605 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 606 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 607 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 608 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 609 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 610 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 611 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 612 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 613 FPE_FLTSUB, /* 40 - STK */ 614 FPE_FLTSUB, /* 41 - INV | STK */ 615 FPE_FLTUND, /* 42 - DNML | STK */ 616 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 617 FPE_FLTDIV, /* 44 - DZ | STK */ 618 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 619 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 620 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 621 FPE_FLTOVF, /* 48 - OFL | STK */ 622 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 623 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 624 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 625 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 626 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 627 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 628 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 629 FPE_FLTUND, /* 50 - UFL | STK */ 630 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 631 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 632 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 633 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 634 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 635 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 636 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 637 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 638 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 639 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 640 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 641 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 642 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 643 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 644 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 645 FPE_FLTRES, /* 60 - IMP | STK */ 646 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 647 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 648 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 649 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 650 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 651 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 652 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 653 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 654 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 655 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 656 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 657 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 658 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 659 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 660 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 661 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 662 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 663 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 664 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 665 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 666 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 667 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 668 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 669 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 670 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 671 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 672 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 673 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 674 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 675 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 676 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 677 }; 678 679 /* 680 * Read the FP status and control words, then generate si_code value 681 * for SIGFPE. The error code chosen will be one of the 682 * FPE_... macros. It will be sent as the second argument to old 683 * BSD-style signal handlers and as "siginfo_t->si_code" (second 684 * argument) to SA_SIGINFO signal handlers. 685 * 686 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 687 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 688 * usermode code which understands the FPU hardware enough to enable 689 * the exceptions, can also handle clearing the exception state in the 690 * handler. The only consequence of not clearing the exception is the 691 * rethrow of the SIGFPE on return from the signal handler and 692 * reexecution of the corresponding instruction. 693 * 694 * For XMM traps, the exceptions were never cleared. 695 */ 696 int 697 fputrap_x87(void) 698 { 699 struct savefpu *pcb_save; 700 u_short control, status; 701 702 critical_enter(); 703 704 /* 705 * Interrupt handling (for another interrupt) may have pushed the 706 * state to memory. Fetch the relevant parts of the state from 707 * wherever they are. 708 */ 709 if (PCPU_GET(fpcurthread) != curthread) { 710 pcb_save = curpcb->pcb_save; 711 control = pcb_save->sv_env.en_cw; 712 status = pcb_save->sv_env.en_sw; 713 } else { 714 fnstcw(&control); 715 fnstsw(&status); 716 } 717 718 critical_exit(); 719 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 720 } 721 722 int 723 fputrap_sse(void) 724 { 725 u_int mxcsr; 726 727 critical_enter(); 728 if (PCPU_GET(fpcurthread) != curthread) 729 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 730 else 731 stmxcsr(&mxcsr); 732 critical_exit(); 733 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 734 } 735 736 static void 737 restore_fpu_curthread(struct thread *td) 738 { 739 struct pcb *pcb; 740 741 /* 742 * Record new context early in case frstor causes a trap. 743 */ 744 PCPU_SET(fpcurthread, td); 745 746 stop_emulating(); 747 fpu_clean_state(); 748 pcb = td->td_pcb; 749 750 if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) { 751 /* 752 * This is the first time this thread has used the FPU or 753 * the PCB doesn't contain a clean FPU state. Explicitly 754 * load an initial state. 755 * 756 * We prefer to restore the state from the actual save 757 * area in PCB instead of directly loading from 758 * fpu_initialstate, to ignite the XSAVEOPT 759 * tracking engine. 760 */ 761 bcopy(fpu_initialstate, pcb->pcb_save, 762 cpu_max_ext_state_size); 763 fpurestore(pcb->pcb_save); 764 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 765 fldcw(pcb->pcb_initial_fpucw); 766 if (PCB_USER_FPU(pcb)) 767 set_pcb_flags(pcb, PCB_FPUINITDONE | 768 PCB_USERFPUINITDONE); 769 else 770 set_pcb_flags(pcb, PCB_FPUINITDONE); 771 } else 772 fpurestore(pcb->pcb_save); 773 } 774 775 /* 776 * Device Not Available (DNA, #NM) exception handler. 777 * 778 * It would be better to switch FP context here (if curthread != 779 * fpcurthread) and not necessarily for every context switch, but it 780 * is too hard to access foreign pcb's. 781 */ 782 void 783 fpudna(void) 784 { 785 struct thread *td; 786 787 td = curthread; 788 /* 789 * This handler is entered with interrupts enabled, so context 790 * switches may occur before critical_enter() is executed. If 791 * a context switch occurs, then when we regain control, our 792 * state will have been completely restored. The CPU may 793 * change underneath us, but the only part of our context that 794 * lives in the CPU is CR0.TS and that will be "restored" by 795 * setting it on the new CPU. 796 */ 797 critical_enter(); 798 799 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0, 800 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)")); 801 if (__predict_false(PCPU_GET(fpcurthread) == td)) { 802 /* 803 * Some virtual machines seems to set %cr0.TS at 804 * arbitrary moments. Silently clear the TS bit 805 * regardless of the eager/lazy FPU context switch 806 * mode. 807 */ 808 stop_emulating(); 809 } else { 810 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) { 811 panic( 812 "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 813 PCPU_GET(fpcurthread), 814 PCPU_GET(fpcurthread)->td_tid, td, td->td_tid); 815 } 816 restore_fpu_curthread(td); 817 } 818 critical_exit(); 819 } 820 821 void fpu_activate_sw(struct thread *td); /* Called from the context switch */ 822 void 823 fpu_activate_sw(struct thread *td) 824 { 825 826 if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) { 827 PCPU_SET(fpcurthread, NULL); 828 start_emulating(); 829 } else if (PCPU_GET(fpcurthread) != td) { 830 restore_fpu_curthread(td); 831 } 832 } 833 834 void 835 fpudrop(void) 836 { 837 struct thread *td; 838 839 td = PCPU_GET(fpcurthread); 840 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 841 CRITICAL_ASSERT(td); 842 PCPU_SET(fpcurthread, NULL); 843 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 844 start_emulating(); 845 } 846 847 /* 848 * Get the user state of the FPU into pcb->pcb_user_save without 849 * dropping ownership (if possible). It returns the FPU ownership 850 * status. 851 */ 852 int 853 fpugetregs(struct thread *td) 854 { 855 struct pcb *pcb; 856 uint64_t *xstate_bv, bit; 857 char *sa; 858 int max_ext_n, i, owned; 859 860 pcb = td->td_pcb; 861 critical_enter(); 862 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 863 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 864 cpu_max_ext_state_size); 865 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 866 pcb->pcb_initial_fpucw; 867 fpuuserinited(td); 868 critical_exit(); 869 return (_MC_FPOWNED_PCB); 870 } 871 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 872 fpusave(get_pcb_user_save_pcb(pcb)); 873 owned = _MC_FPOWNED_FPU; 874 } else { 875 owned = _MC_FPOWNED_PCB; 876 } 877 if (use_xsave) { 878 /* 879 * Handle partially saved state. 880 */ 881 sa = (char *)get_pcb_user_save_pcb(pcb); 882 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 883 offsetof(struct xstate_hdr, xstate_bv)); 884 max_ext_n = flsl(xsave_mask); 885 for (i = 0; i < max_ext_n; i++) { 886 bit = 1ULL << i; 887 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0) 888 continue; 889 bcopy((char *)fpu_initialstate + 890 xsave_area_desc[i].offset, 891 sa + xsave_area_desc[i].offset, 892 xsave_area_desc[i].size); 893 *xstate_bv |= bit; 894 } 895 } 896 critical_exit(); 897 return (owned); 898 } 899 900 void 901 fpuuserinited(struct thread *td) 902 { 903 struct pcb *pcb; 904 905 CRITICAL_ASSERT(td); 906 pcb = td->td_pcb; 907 if (PCB_USER_FPU(pcb)) 908 set_pcb_flags(pcb, 909 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 910 else 911 set_pcb_flags(pcb, PCB_FPUINITDONE); 912 } 913 914 int 915 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 916 { 917 struct xstate_hdr *hdr, *ehdr; 918 size_t len, max_len; 919 uint64_t bv; 920 921 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 922 if (xfpustate == NULL) 923 return (0); 924 if (!use_xsave) 925 return (EOPNOTSUPP); 926 927 len = xfpustate_size; 928 if (len < sizeof(struct xstate_hdr)) 929 return (EINVAL); 930 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 931 if (len > max_len) 932 return (EINVAL); 933 934 ehdr = (struct xstate_hdr *)xfpustate; 935 bv = ehdr->xstate_bv; 936 937 /* 938 * Avoid #gp. 939 */ 940 if (bv & ~xsave_mask) 941 return (EINVAL); 942 943 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 944 945 hdr->xstate_bv = bv; 946 bcopy(xfpustate + sizeof(struct xstate_hdr), 947 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 948 949 return (0); 950 } 951 952 /* 953 * Set the state of the FPU. 954 */ 955 int 956 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 957 size_t xfpustate_size) 958 { 959 struct pcb *pcb; 960 int error; 961 962 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask; 963 pcb = td->td_pcb; 964 error = 0; 965 critical_enter(); 966 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 967 error = fpusetxstate(td, xfpustate, xfpustate_size); 968 if (error == 0) { 969 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 970 fpurestore(get_pcb_user_save_td(td)); 971 set_pcb_flags(pcb, PCB_FPUINITDONE | 972 PCB_USERFPUINITDONE); 973 } 974 } else { 975 error = fpusetxstate(td, xfpustate, xfpustate_size); 976 if (error == 0) { 977 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 978 fpuuserinited(td); 979 } 980 } 981 critical_exit(); 982 return (error); 983 } 984 985 /* 986 * On AuthenticAMD processors, the fxrstor instruction does not restore 987 * the x87's stored last instruction pointer, last data pointer, and last 988 * opcode values, except in the rare case in which the exception summary 989 * (ES) bit in the x87 status word is set to 1. 990 * 991 * In order to avoid leaking this information across processes, we clean 992 * these values by performing a dummy load before executing fxrstor(). 993 */ 994 static void 995 fpu_clean_state(void) 996 { 997 static float dummy_variable = 0.0; 998 u_short status; 999 1000 /* 1001 * Clear the ES bit in the x87 status word if it is currently 1002 * set, in order to avoid causing a fault in the upcoming load. 1003 */ 1004 fnstsw(&status); 1005 if (status & 0x80) 1006 fnclex(); 1007 1008 /* 1009 * Load the dummy variable into the x87 stack. This mangles 1010 * the x87 stack, but we don't care since we're about to call 1011 * fxrstor() anyway. 1012 */ 1013 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 1014 } 1015 1016 /* 1017 * This really sucks. We want the acpi version only, but it requires 1018 * the isa_if.h file in order to get the definitions. 1019 */ 1020 #include "opt_isa.h" 1021 #ifdef DEV_ISA 1022 #include <isa/isavar.h> 1023 /* 1024 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 1025 */ 1026 static struct isa_pnp_id fpupnp_ids[] = { 1027 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 1028 { 0 } 1029 }; 1030 1031 static int 1032 fpupnp_probe(device_t dev) 1033 { 1034 int result; 1035 1036 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 1037 if (result <= 0) 1038 device_quiet(dev); 1039 return (result); 1040 } 1041 1042 static int 1043 fpupnp_attach(device_t dev) 1044 { 1045 1046 return (0); 1047 } 1048 1049 static device_method_t fpupnp_methods[] = { 1050 /* Device interface */ 1051 DEVMETHOD(device_probe, fpupnp_probe), 1052 DEVMETHOD(device_attach, fpupnp_attach), 1053 DEVMETHOD(device_detach, bus_generic_detach), 1054 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1055 DEVMETHOD(device_suspend, bus_generic_suspend), 1056 DEVMETHOD(device_resume, bus_generic_resume), 1057 { 0, 0 } 1058 }; 1059 1060 static driver_t fpupnp_driver = { 1061 "fpupnp", 1062 fpupnp_methods, 1063 1, /* no softc */ 1064 }; 1065 1066 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0); 1067 ISA_PNP_INFO(fpupnp_ids); 1068 #endif /* DEV_ISA */ 1069 1070 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 1071 "Kernel contexts for FPU state"); 1072 1073 #define FPU_KERN_CTX_FPUINITDONE 0x01 1074 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */ 1075 #define FPU_KERN_CTX_INUSE 0x04 1076 1077 struct fpu_kern_ctx { 1078 struct savefpu *prev; 1079 uint32_t flags; 1080 char hwstate1[]; 1081 }; 1082 1083 static inline size_t __pure2 1084 fpu_kern_alloc_sz(u_int max_est) 1085 { 1086 return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est); 1087 } 1088 1089 static inline int __pure2 1090 fpu_kern_malloc_flags(u_int fpflags) 1091 { 1092 return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO); 1093 } 1094 1095 struct fpu_kern_ctx * 1096 fpu_kern_alloc_ctx_domain(int domain, u_int flags) 1097 { 1098 return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size), 1099 M_FPUKERN_CTX, DOMAINSET_PREF(domain), 1100 fpu_kern_malloc_flags(flags))); 1101 } 1102 1103 struct fpu_kern_ctx * 1104 fpu_kern_alloc_ctx(u_int flags) 1105 { 1106 return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size), 1107 M_FPUKERN_CTX, fpu_kern_malloc_flags(flags))); 1108 } 1109 1110 void 1111 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 1112 { 1113 1114 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx")); 1115 /* XXXKIB clear the memory ? */ 1116 free(ctx, M_FPUKERN_CTX); 1117 } 1118 1119 static struct savefpu * 1120 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 1121 { 1122 vm_offset_t p; 1123 1124 p = (vm_offset_t)&ctx->hwstate1; 1125 p = roundup2(p, XSAVE_AREA_ALIGN); 1126 return ((struct savefpu *)p); 1127 } 1128 1129 void 1130 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 1131 { 1132 struct pcb *pcb; 1133 1134 pcb = td->td_pcb; 1135 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL, 1136 ("ctx is required when !FPU_KERN_NOCTX")); 1137 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0, 1138 ("using inuse ctx")); 1139 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0, 1140 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state")); 1141 1142 if ((flags & FPU_KERN_NOCTX) != 0) { 1143 critical_enter(); 1144 stop_emulating(); 1145 if (curthread == PCPU_GET(fpcurthread)) { 1146 fpusave(curpcb->pcb_save); 1147 PCPU_SET(fpcurthread, NULL); 1148 } else { 1149 KASSERT(PCPU_GET(fpcurthread) == NULL, 1150 ("invalid fpcurthread")); 1151 } 1152 1153 /* 1154 * This breaks XSAVEOPT tracker, but 1155 * PCB_FPUNOSAVE state is supposed to never need to 1156 * save FPU context at all. 1157 */ 1158 fpurestore(fpu_initialstate); 1159 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE | 1160 PCB_FPUINITDONE); 1161 return; 1162 } 1163 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) { 1164 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE; 1165 return; 1166 } 1167 critical_enter(); 1168 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 1169 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 1170 ctx->flags = FPU_KERN_CTX_INUSE; 1171 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 1172 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 1173 fpuexit(td); 1174 ctx->prev = pcb->pcb_save; 1175 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 1176 set_pcb_flags(pcb, PCB_KERNFPU); 1177 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1178 critical_exit(); 1179 } 1180 1181 int 1182 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 1183 { 1184 struct pcb *pcb; 1185 1186 pcb = td->td_pcb; 1187 1188 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) { 1189 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX")); 1190 KASSERT(PCPU_GET(fpcurthread) == NULL, 1191 ("non-NULL fpcurthread for PCB_FPUNOSAVE")); 1192 CRITICAL_ASSERT(td); 1193 1194 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE); 1195 start_emulating(); 1196 } else { 1197 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0, 1198 ("leaving not inuse ctx")); 1199 ctx->flags &= ~FPU_KERN_CTX_INUSE; 1200 1201 if (is_fpu_kern_thread(0) && 1202 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0) 1203 return (0); 1204 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, 1205 ("dummy ctx")); 1206 critical_enter(); 1207 if (curthread == PCPU_GET(fpcurthread)) 1208 fpudrop(); 1209 pcb->pcb_save = ctx->prev; 1210 } 1211 1212 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 1213 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 1214 set_pcb_flags(pcb, PCB_FPUINITDONE); 1215 if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0) 1216 clear_pcb_flags(pcb, PCB_KERNFPU); 1217 } else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0) 1218 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 1219 } else { 1220 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 1221 set_pcb_flags(pcb, PCB_FPUINITDONE); 1222 else 1223 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1224 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 1225 } 1226 critical_exit(); 1227 return (0); 1228 } 1229 1230 int 1231 fpu_kern_thread(u_int flags) 1232 { 1233 1234 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 1235 ("Only kthread may use fpu_kern_thread")); 1236 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 1237 ("mangled pcb_save")); 1238 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 1239 1240 set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR); 1241 return (0); 1242 } 1243 1244 int 1245 is_fpu_kern_thread(u_int flags) 1246 { 1247 1248 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 1249 return (0); 1250 return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0); 1251 } 1252 1253 /* 1254 * FPU save area alloc/free/init utility routines 1255 */ 1256 struct savefpu * 1257 fpu_save_area_alloc(void) 1258 { 1259 1260 return (uma_zalloc(fpu_save_area_zone, M_WAITOK)); 1261 } 1262 1263 void 1264 fpu_save_area_free(struct savefpu *fsa) 1265 { 1266 1267 uma_zfree(fpu_save_area_zone, fsa); 1268 } 1269 1270 void 1271 fpu_save_area_reset(struct savefpu *fsa) 1272 { 1273 1274 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size); 1275 } 1276