xref: /freebsd/sys/amd64/amd64/fpu.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/domainset.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 #include <sys/sysent.h>
46 #include <sys/tslog.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 #include <x86/ifunc.h>
63 
64 /*
65  * Floating point support.
66  */
67 
68 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
69 #define	fnclex()		__asm __volatile("fnclex")
70 #define	fninit()		__asm __volatile("fninit")
71 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
72 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
73 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
74 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
75 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
76 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
77 
78 static __inline void
79 xrstor32(char *addr, uint64_t mask)
80 {
81 	uint32_t low, hi;
82 
83 	low = mask;
84 	hi = mask >> 32;
85 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
86 }
87 
88 static __inline void
89 xrstor64(char *addr, uint64_t mask)
90 {
91 	uint32_t low, hi;
92 
93 	low = mask;
94 	hi = mask >> 32;
95 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
96 }
97 
98 static __inline void
99 xsave32(char *addr, uint64_t mask)
100 {
101 	uint32_t low, hi;
102 
103 	low = mask;
104 	hi = mask >> 32;
105 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
106 	    "memory");
107 }
108 
109 static __inline void
110 xsave64(char *addr, uint64_t mask)
111 {
112 	uint32_t low, hi;
113 
114 	low = mask;
115 	hi = mask >> 32;
116 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
117 	    "memory");
118 }
119 
120 static __inline void
121 xsaveopt32(char *addr, uint64_t mask)
122 {
123 	uint32_t low, hi;
124 
125 	low = mask;
126 	hi = mask >> 32;
127 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
128 	    "memory");
129 }
130 
131 static __inline void
132 xsaveopt64(char *addr, uint64_t mask)
133 {
134 	uint32_t low, hi;
135 
136 	low = mask;
137 	hi = mask >> 32;
138 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
139 	    "memory");
140 }
141 
142 CTASSERT(sizeof(struct savefpu) == 512);
143 CTASSERT(sizeof(struct xstate_hdr) == 64);
144 CTASSERT(sizeof(struct savefpu_ymm) == 832);
145 
146 /*
147  * This requirement is to make it easier for asm code to calculate
148  * offset of the fpu save area from the pcb address. FPU save area
149  * must be 64-byte aligned.
150  */
151 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
152 
153 /*
154  * Ensure the copy of XCR0 saved in a core is contained in the padding
155  * area.
156  */
157 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
158     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
159 
160 static	void	fpu_clean_state(void);
161 
162 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
163     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
164 
165 int use_xsave;			/* non-static for cpu_switch.S */
166 uint64_t xsave_mask;		/* the same */
167 static	uint64_t xsave_extensions;
168 static	uma_zone_t fpu_save_area_zone;
169 static	struct savefpu *fpu_initialstate;
170 
171 static struct xsave_area_elm_descr {
172 	u_int	offset;
173 	u_int	size;
174 	u_int	flags;
175 } *xsave_area_desc;
176 
177 static void
178 fpusave_xsaveopt64(void *addr)
179 {
180 	xsaveopt64((char *)addr, xsave_mask);
181 }
182 
183 static void
184 fpusave_xsaveopt3264(void *addr)
185 {
186 	if (SV_CURPROC_FLAG(SV_ILP32))
187 		xsaveopt32((char *)addr, xsave_mask);
188 	else
189 		xsaveopt64((char *)addr, xsave_mask);
190 }
191 
192 static void
193 fpusave_xsave64(void *addr)
194 {
195 	xsave64((char *)addr, xsave_mask);
196 }
197 
198 static void
199 fpusave_xsave3264(void *addr)
200 {
201 	if (SV_CURPROC_FLAG(SV_ILP32))
202 		xsave32((char *)addr, xsave_mask);
203 	else
204 		xsave64((char *)addr, xsave_mask);
205 }
206 
207 static void
208 fpurestore_xrstor64(void *addr)
209 {
210 	xrstor64((char *)addr, xsave_mask);
211 }
212 
213 static void
214 fpurestore_xrstor3264(void *addr)
215 {
216 	if (SV_CURPROC_FLAG(SV_ILP32))
217 		xrstor32((char *)addr, xsave_mask);
218 	else
219 		xrstor64((char *)addr, xsave_mask);
220 }
221 
222 static void
223 fpusave_fxsave(void *addr)
224 {
225 
226 	fxsave((char *)addr);
227 }
228 
229 static void
230 fpurestore_fxrstor(void *addr)
231 {
232 
233 	fxrstor((char *)addr);
234 }
235 
236 DEFINE_IFUNC(, void, fpusave, (void *))
237 {
238 	u_int cp[4];
239 
240 	if (!use_xsave)
241 		return (fpusave_fxsave);
242 	cpuid_count(0xd, 0x1, cp);
243 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
244 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
245 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
246 	}
247 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
248 	    fpusave_xsave64 : fpusave_xsave3264);
249 }
250 
251 DEFINE_IFUNC(, void, fpurestore, (void *))
252 {
253 	if (!use_xsave)
254 		return (fpurestore_fxrstor);
255 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
256 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
257 }
258 
259 void
260 fpususpend(void *addr)
261 {
262 	u_long cr0;
263 
264 	cr0 = rcr0();
265 	fpu_enable();
266 	fpusave(addr);
267 	load_cr0(cr0);
268 }
269 
270 void
271 fpuresume(void *addr)
272 {
273 	u_long cr0;
274 
275 	cr0 = rcr0();
276 	fpu_enable();
277 	fninit();
278 	if (use_xsave)
279 		load_xcr(XCR0, xsave_mask);
280 	fpurestore(addr);
281 	load_cr0(cr0);
282 }
283 
284 /*
285  * Enable XSAVE if supported and allowed by user.
286  * Calculate the xsave_mask.
287  */
288 static void
289 fpuinit_bsp1(void)
290 {
291 	u_int cp[4];
292 	uint64_t xsave_mask_user;
293 	bool old_wp;
294 
295 	if (!use_xsave)
296 		return;
297 	cpuid_count(0xd, 0x0, cp);
298 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
299 	if ((cp[0] & xsave_mask) != xsave_mask)
300 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
301 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
302 	xsave_mask_user = xsave_mask;
303 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
304 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
305 	xsave_mask &= xsave_mask_user;
306 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
307 		xsave_mask &= ~XFEATURE_AVX512;
308 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
309 		xsave_mask &= ~XFEATURE_MPX;
310 
311 	cpuid_count(0xd, 0x1, cp);
312 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
313 		/*
314 		 * Patch the XSAVE instruction in the cpu_switch code
315 		 * to XSAVEOPT.  We assume that XSAVE encoding used
316 		 * REX byte, and set the bit 4 of the r/m byte.
317 		 *
318 		 * It seems that some BIOSes give control to the OS
319 		 * with CR0.WP already set, making the kernel text
320 		 * read-only before cpu_startup().
321 		 */
322 		old_wp = disable_wp();
323 		ctx_switch_xsave32[3] |= 0x10;
324 		ctx_switch_xsave[3] |= 0x10;
325 		restore_wp(old_wp);
326 	}
327 }
328 
329 /*
330  * Calculate the fpu save area size.
331  */
332 static void
333 fpuinit_bsp2(void)
334 {
335 	u_int cp[4];
336 
337 	if (use_xsave) {
338 		cpuid_count(0xd, 0x0, cp);
339 		cpu_max_ext_state_size = cp[1];
340 
341 		/*
342 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
343 		 */
344 		do_cpuid(1, cp);
345 		cpu_feature2 = cp[2];
346 	} else
347 		cpu_max_ext_state_size = sizeof(struct savefpu);
348 }
349 
350 /*
351  * Initialize the floating point unit.
352  */
353 void
354 fpuinit(void)
355 {
356 	register_t saveintr;
357 	uint64_t cr4;
358 	u_int mxcsr;
359 	u_short control;
360 
361 	TSENTER();
362 	if (IS_BSP())
363 		fpuinit_bsp1();
364 
365 	if (use_xsave) {
366 		cr4 = rcr4();
367 
368 		/*
369 		 * Revert enablement of PKRU if user disabled its
370 		 * saving on context switches by clearing the bit in
371 		 * the xsave mask.  Also redundantly clear the bit in
372 		 * cpu_stdext_feature2 to prevent pmap from ever
373 		 * trying to set the page table bits.
374 		 */
375 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
376 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
377 			cr4 &= ~CR4_PKE;
378 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
379 		}
380 
381 		load_cr4(cr4 | CR4_XSAVE);
382 		load_xcr(XCR0, xsave_mask);
383 	}
384 
385 	/*
386 	 * XCR0 shall be set up before CPU can report the save area size.
387 	 */
388 	if (IS_BSP())
389 		fpuinit_bsp2();
390 
391 	/*
392 	 * It is too early for critical_enter() to work on AP.
393 	 */
394 	saveintr = intr_disable();
395 	fpu_enable();
396 	fninit();
397 	control = __INITIAL_FPUCW__;
398 	fldcw(control);
399 	mxcsr = __INITIAL_MXCSR__;
400 	ldmxcsr(mxcsr);
401 	fpu_disable();
402 	intr_restore(saveintr);
403 	TSEXIT();
404 }
405 
406 /*
407  * On the boot CPU we generate a clean state that is used to
408  * initialize the floating point unit when it is first used by a
409  * process.
410  */
411 static void
412 fpuinitstate(void *arg __unused)
413 {
414 	uint64_t *xstate_bv;
415 	register_t saveintr;
416 	int cp[4], i, max_ext_n;
417 
418 	/* Do potentially blocking operations before disabling interrupts. */
419 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
420 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
421 	    XSAVE_AREA_ALIGN - 1, 0);
422 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
423 	if (use_xsave) {
424 		max_ext_n = flsl(xsave_mask);
425 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
426 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
427 	}
428 
429 	cpu_thread_alloc(&thread0);
430 
431 	saveintr = intr_disable();
432 	fpu_enable();
433 
434 	fpusave_fxsave(fpu_initialstate);
435 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
436 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
437 	else
438 		cpu_mxcsr_mask = 0xFFBF;
439 
440 	/*
441 	 * The fninit instruction does not modify XMM registers or x87
442 	 * registers (MM/ST).  The fpusave call dumped the garbage
443 	 * contained in the registers after reset to the initial state
444 	 * saved.  Clear XMM and x87 registers file image to make the
445 	 * startup program state and signal handler XMM/x87 register
446 	 * content predictable.
447 	 */
448 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
449 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
450 
451 	/*
452 	 * Create a table describing the layout of the CPU Extended
453 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
454 	 * Region of an XSAVE Area" for the source of offsets/sizes.
455 	 */
456 	if (use_xsave) {
457 		cpuid_count(0xd, 1, cp);
458 		xsave_extensions = cp[0];
459 
460 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
461 		    offsetof(struct xstate_hdr, xstate_bv));
462 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
463 
464 		/* x87 state */
465 		xsave_area_desc[0].offset = 0;
466 		xsave_area_desc[0].size = 160;
467 		/* XMM */
468 		xsave_area_desc[1].offset = 160;
469 		xsave_area_desc[1].size = 416 - 160;
470 
471 		for (i = 2; i < max_ext_n; i++) {
472 			cpuid_count(0xd, i, cp);
473 			xsave_area_desc[i].size = cp[0];
474 			xsave_area_desc[i].offset = cp[1];
475 			xsave_area_desc[i].flags = cp[2];
476 		}
477 	}
478 
479 	fpu_disable();
480 	intr_restore(saveintr);
481 }
482 /* EFIRT needs this to be initialized before we can enter our EFI environment */
483 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
484 
485 /*
486  * Free coprocessor (if we have it).
487  */
488 void
489 fpuexit(struct thread *td)
490 {
491 
492 	critical_enter();
493 	if (curthread == PCPU_GET(fpcurthread)) {
494 		fpu_enable();
495 		fpusave(curpcb->pcb_save);
496 		fpu_disable();
497 		PCPU_SET(fpcurthread, NULL);
498 	}
499 	critical_exit();
500 }
501 
502 int
503 fpuformat(void)
504 {
505 
506 	return (_MC_FPFMT_XMM);
507 }
508 
509 /*
510  * The following mechanism is used to ensure that the FPE_... value
511  * that is passed as a trapcode to the signal handler of the user
512  * process does not have more than one bit set.
513  *
514  * Multiple bits may be set if the user process modifies the control
515  * word while a status word bit is already set.  While this is a sign
516  * of bad coding, we have no choice than to narrow them down to one
517  * bit, since we must not send a trapcode that is not exactly one of
518  * the FPE_ macros.
519  *
520  * The mechanism has a static table with 127 entries.  Each combination
521  * of the 7 FPU status word exception bits directly translates to a
522  * position in this table, where a single FPE_... value is stored.
523  * This FPE_... value stored there is considered the "most important"
524  * of the exception bits and will be sent as the signal code.  The
525  * precedence of the bits is based upon Intel Document "Numerical
526  * Applications", Chapter "Special Computational Situations".
527  *
528  * The macro to choose one of these values does these steps: 1) Throw
529  * away status word bits that cannot be masked.  2) Throw away the bits
530  * currently masked in the control word, assuming the user isn't
531  * interested in them anymore.  3) Reinsert status word bit 7 (stack
532  * fault) if it is set, which cannot be masked but must be presered.
533  * 4) Use the remaining bits to point into the trapcode table.
534  *
535  * The 6 maskable bits in order of their preference, as stated in the
536  * above referenced Intel manual:
537  * 1  Invalid operation (FP_X_INV)
538  * 1a   Stack underflow
539  * 1b   Stack overflow
540  * 1c   Operand of unsupported format
541  * 1d   SNaN operand.
542  * 2  QNaN operand (not an exception, irrelavant here)
543  * 3  Any other invalid-operation not mentioned above or zero divide
544  *      (FP_X_INV, FP_X_DZ)
545  * 4  Denormal operand (FP_X_DNML)
546  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
547  * 6  Inexact result (FP_X_IMP)
548  */
549 static char fpetable[128] = {
550 	0,
551 	FPE_FLTINV,	/*  1 - INV */
552 	FPE_FLTUND,	/*  2 - DNML */
553 	FPE_FLTINV,	/*  3 - INV | DNML */
554 	FPE_FLTDIV,	/*  4 - DZ */
555 	FPE_FLTINV,	/*  5 - INV | DZ */
556 	FPE_FLTDIV,	/*  6 - DNML | DZ */
557 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
558 	FPE_FLTOVF,	/*  8 - OFL */
559 	FPE_FLTINV,	/*  9 - INV | OFL */
560 	FPE_FLTUND,	/*  A - DNML | OFL */
561 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
562 	FPE_FLTDIV,	/*  C - DZ | OFL */
563 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
564 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
565 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
566 	FPE_FLTUND,	/* 10 - UFL */
567 	FPE_FLTINV,	/* 11 - INV | UFL */
568 	FPE_FLTUND,	/* 12 - DNML | UFL */
569 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
570 	FPE_FLTDIV,	/* 14 - DZ | UFL */
571 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
572 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
573 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
574 	FPE_FLTOVF,	/* 18 - OFL | UFL */
575 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
576 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
577 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
578 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
579 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
580 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
581 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
582 	FPE_FLTRES,	/* 20 - IMP */
583 	FPE_FLTINV,	/* 21 - INV | IMP */
584 	FPE_FLTUND,	/* 22 - DNML | IMP */
585 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
586 	FPE_FLTDIV,	/* 24 - DZ | IMP */
587 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
588 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
589 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
590 	FPE_FLTOVF,	/* 28 - OFL | IMP */
591 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
592 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
593 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
594 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
595 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
596 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
597 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
598 	FPE_FLTUND,	/* 30 - UFL | IMP */
599 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
600 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
601 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
602 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
603 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
604 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
605 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
606 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
607 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
608 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
609 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
610 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
611 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
612 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
613 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
614 	FPE_FLTSUB,	/* 40 - STK */
615 	FPE_FLTSUB,	/* 41 - INV | STK */
616 	FPE_FLTUND,	/* 42 - DNML | STK */
617 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
618 	FPE_FLTDIV,	/* 44 - DZ | STK */
619 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
620 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
621 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
622 	FPE_FLTOVF,	/* 48 - OFL | STK */
623 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
624 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
625 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
626 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
627 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
628 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
629 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
630 	FPE_FLTUND,	/* 50 - UFL | STK */
631 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
632 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
633 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
634 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
635 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
636 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
637 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
638 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
639 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
640 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
641 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
642 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
643 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
644 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
645 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
646 	FPE_FLTRES,	/* 60 - IMP | STK */
647 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
648 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
649 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
650 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
651 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
652 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
653 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
654 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
655 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
656 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
657 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
658 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
659 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
660 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
661 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
662 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
663 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
664 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
665 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
666 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
667 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
668 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
669 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
670 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
671 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
672 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
673 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
674 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
675 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
676 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
677 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
678 };
679 
680 /*
681  * Read the FP status and control words, then generate si_code value
682  * for SIGFPE.  The error code chosen will be one of the
683  * FPE_... macros.  It will be sent as the second argument to old
684  * BSD-style signal handlers and as "siginfo_t->si_code" (second
685  * argument) to SA_SIGINFO signal handlers.
686  *
687  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
688  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
689  * usermode code which understands the FPU hardware enough to enable
690  * the exceptions, can also handle clearing the exception state in the
691  * handler.  The only consequence of not clearing the exception is the
692  * rethrow of the SIGFPE on return from the signal handler and
693  * reexecution of the corresponding instruction.
694  *
695  * For XMM traps, the exceptions were never cleared.
696  */
697 int
698 fputrap_x87(void)
699 {
700 	struct savefpu *pcb_save;
701 	u_short control, status;
702 
703 	critical_enter();
704 
705 	/*
706 	 * Interrupt handling (for another interrupt) may have pushed the
707 	 * state to memory.  Fetch the relevant parts of the state from
708 	 * wherever they are.
709 	 */
710 	if (PCPU_GET(fpcurthread) != curthread) {
711 		pcb_save = curpcb->pcb_save;
712 		control = pcb_save->sv_env.en_cw;
713 		status = pcb_save->sv_env.en_sw;
714 	} else {
715 		fnstcw(&control);
716 		fnstsw(&status);
717 	}
718 
719 	critical_exit();
720 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
721 }
722 
723 int
724 fputrap_sse(void)
725 {
726 	u_int mxcsr;
727 
728 	critical_enter();
729 	if (PCPU_GET(fpcurthread) != curthread)
730 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
731 	else
732 		stmxcsr(&mxcsr);
733 	critical_exit();
734 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
735 }
736 
737 static void
738 restore_fpu_curthread(struct thread *td)
739 {
740 	struct pcb *pcb;
741 
742 	/*
743 	 * Record new context early in case frstor causes a trap.
744 	 */
745 	PCPU_SET(fpcurthread, td);
746 
747 	fpu_enable();
748 	fpu_clean_state();
749 	pcb = td->td_pcb;
750 
751 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
752 		/*
753 		 * This is the first time this thread has used the FPU or
754 		 * the PCB doesn't contain a clean FPU state.  Explicitly
755 		 * load an initial state.
756 		 *
757 		 * We prefer to restore the state from the actual save
758 		 * area in PCB instead of directly loading from
759 		 * fpu_initialstate, to ignite the XSAVEOPT
760 		 * tracking engine.
761 		 */
762 		bcopy(fpu_initialstate, pcb->pcb_save,
763 		    cpu_max_ext_state_size);
764 		fpurestore(pcb->pcb_save);
765 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
766 			fldcw(pcb->pcb_initial_fpucw);
767 		if (PCB_USER_FPU(pcb))
768 			set_pcb_flags(pcb, PCB_FPUINITDONE |
769 			    PCB_USERFPUINITDONE);
770 		else
771 			set_pcb_flags(pcb, PCB_FPUINITDONE);
772 	} else
773 		fpurestore(pcb->pcb_save);
774 }
775 
776 /*
777  * Device Not Available (DNA, #NM) exception handler.
778  *
779  * It would be better to switch FP context here (if curthread !=
780  * fpcurthread) and not necessarily for every context switch, but it
781  * is too hard to access foreign pcb's.
782  */
783 void
784 fpudna(void)
785 {
786 	struct thread *td;
787 
788 	td = curthread;
789 	/*
790 	 * This handler is entered with interrupts enabled, so context
791 	 * switches may occur before critical_enter() is executed.  If
792 	 * a context switch occurs, then when we regain control, our
793 	 * state will have been completely restored.  The CPU may
794 	 * change underneath us, but the only part of our context that
795 	 * lives in the CPU is CR0.TS and that will be "restored" by
796 	 * setting it on the new CPU.
797 	 */
798 	critical_enter();
799 
800 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
801 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
802 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
803 		/*
804 		 * Some virtual machines seems to set %cr0.TS at
805 		 * arbitrary moments.  Silently clear the TS bit
806 		 * regardless of the eager/lazy FPU context switch
807 		 * mode.
808 		 */
809 		fpu_enable();
810 	} else {
811 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
812 			panic(
813 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
814 			    PCPU_GET(fpcurthread),
815 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
816 		}
817 		restore_fpu_curthread(td);
818 	}
819 	critical_exit();
820 }
821 
822 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
823 void
824 fpu_activate_sw(struct thread *td)
825 {
826 
827 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
828 		PCPU_SET(fpcurthread, NULL);
829 		fpu_disable();
830 	} else if (PCPU_GET(fpcurthread) != td) {
831 		restore_fpu_curthread(td);
832 	}
833 }
834 
835 void
836 fpudrop(void)
837 {
838 	struct thread *td;
839 
840 	td = PCPU_GET(fpcurthread);
841 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
842 	CRITICAL_ASSERT(td);
843 	PCPU_SET(fpcurthread, NULL);
844 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
845 	fpu_disable();
846 }
847 
848 /*
849  * Get the user state of the FPU into pcb->pcb_user_save without
850  * dropping ownership (if possible).  It returns the FPU ownership
851  * status.
852  */
853 int
854 fpugetregs(struct thread *td)
855 {
856 	struct pcb *pcb;
857 	uint64_t *xstate_bv, bit;
858 	char *sa;
859 	struct savefpu *s;
860 	uint32_t mxcsr, mxcsr_mask;
861 	int max_ext_n, i, owned;
862 	bool do_mxcsr;
863 
864 	pcb = td->td_pcb;
865 	critical_enter();
866 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
867 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
868 		    cpu_max_ext_state_size);
869 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
870 		    pcb->pcb_initial_fpucw;
871 		fpuuserinited(td);
872 		critical_exit();
873 		return (_MC_FPOWNED_PCB);
874 	}
875 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
876 		fpusave(get_pcb_user_save_pcb(pcb));
877 		owned = _MC_FPOWNED_FPU;
878 	} else {
879 		owned = _MC_FPOWNED_PCB;
880 	}
881 	if (use_xsave) {
882 		/*
883 		 * Handle partially saved state.
884 		 */
885 		sa = (char *)get_pcb_user_save_pcb(pcb);
886 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
887 		    offsetof(struct xstate_hdr, xstate_bv));
888 		max_ext_n = flsl(xsave_mask);
889 		for (i = 0; i < max_ext_n; i++) {
890 			bit = 1ULL << i;
891 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
892 				continue;
893 			do_mxcsr = false;
894 			if (i == 0 && (*xstate_bv & (XFEATURE_ENABLED_SSE |
895 			    XFEATURE_ENABLED_AVX)) != 0) {
896 				/*
897 				 * x87 area was not saved by XSAVEOPT,
898 				 * but one of XMM or AVX was.  Then we need
899 				 * to preserve MXCSR from being overwritten
900 				 * with the default value.
901 				 */
902 				s = (struct savefpu *)sa;
903 				mxcsr = s->sv_env.en_mxcsr;
904 				mxcsr_mask = s->sv_env.en_mxcsr_mask;
905 				do_mxcsr = true;
906 			}
907 			bcopy((char *)fpu_initialstate +
908 			    xsave_area_desc[i].offset,
909 			    sa + xsave_area_desc[i].offset,
910 			    xsave_area_desc[i].size);
911 			if (do_mxcsr) {
912 				s->sv_env.en_mxcsr = mxcsr;
913 				s->sv_env.en_mxcsr_mask = mxcsr_mask;
914 			}
915 			*xstate_bv |= bit;
916 		}
917 	}
918 	critical_exit();
919 	return (owned);
920 }
921 
922 void
923 fpuuserinited(struct thread *td)
924 {
925 	struct pcb *pcb;
926 
927 	CRITICAL_ASSERT(td);
928 	pcb = td->td_pcb;
929 	if (PCB_USER_FPU(pcb))
930 		set_pcb_flags(pcb,
931 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
932 	else
933 		set_pcb_flags(pcb, PCB_FPUINITDONE);
934 }
935 
936 int
937 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
938 {
939 	struct xstate_hdr *hdr, *ehdr;
940 	size_t len, max_len;
941 	uint64_t bv;
942 
943 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
944 	if (xfpustate == NULL)
945 		return (0);
946 	if (!use_xsave)
947 		return (EOPNOTSUPP);
948 
949 	len = xfpustate_size;
950 	if (len < sizeof(struct xstate_hdr))
951 		return (EINVAL);
952 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
953 	if (len > max_len)
954 		return (EINVAL);
955 
956 	ehdr = (struct xstate_hdr *)xfpustate;
957 	bv = ehdr->xstate_bv;
958 
959 	/*
960 	 * Avoid #gp.
961 	 */
962 	if (bv & ~xsave_mask)
963 		return (EINVAL);
964 
965 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
966 
967 	hdr->xstate_bv = bv;
968 	bcopy(xfpustate + sizeof(struct xstate_hdr),
969 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
970 
971 	return (0);
972 }
973 
974 /*
975  * Set the state of the FPU.
976  */
977 int
978 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
979     size_t xfpustate_size)
980 {
981 	struct pcb *pcb;
982 	int error;
983 
984 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
985 	pcb = td->td_pcb;
986 	error = 0;
987 	critical_enter();
988 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
989 		error = fpusetxstate(td, xfpustate, xfpustate_size);
990 		if (error == 0) {
991 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
992 			fpurestore(get_pcb_user_save_td(td));
993 			set_pcb_flags(pcb, PCB_FPUINITDONE |
994 			    PCB_USERFPUINITDONE);
995 		}
996 	} else {
997 		error = fpusetxstate(td, xfpustate, xfpustate_size);
998 		if (error == 0) {
999 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1000 			fpuuserinited(td);
1001 		}
1002 	}
1003 	critical_exit();
1004 	return (error);
1005 }
1006 
1007 /*
1008  * On AuthenticAMD processors, the fxrstor instruction does not restore
1009  * the x87's stored last instruction pointer, last data pointer, and last
1010  * opcode values, except in the rare case in which the exception summary
1011  * (ES) bit in the x87 status word is set to 1.
1012  *
1013  * In order to avoid leaking this information across processes, we clean
1014  * these values by performing a dummy load before executing fxrstor().
1015  */
1016 static void
1017 fpu_clean_state(void)
1018 {
1019 	static float dummy_variable = 0.0;
1020 	u_short status;
1021 
1022 	/*
1023 	 * Clear the ES bit in the x87 status word if it is currently
1024 	 * set, in order to avoid causing a fault in the upcoming load.
1025 	 */
1026 	fnstsw(&status);
1027 	if (status & 0x80)
1028 		fnclex();
1029 
1030 	/*
1031 	 * Load the dummy variable into the x87 stack.  This mangles
1032 	 * the x87 stack, but we don't care since we're about to call
1033 	 * fxrstor() anyway.
1034 	 */
1035 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1036 }
1037 
1038 /*
1039  * This really sucks.  We want the acpi version only, but it requires
1040  * the isa_if.h file in order to get the definitions.
1041  */
1042 #include "opt_isa.h"
1043 #ifdef DEV_ISA
1044 #include <isa/isavar.h>
1045 /*
1046  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1047  */
1048 static struct isa_pnp_id fpupnp_ids[] = {
1049 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1050 	{ 0 }
1051 };
1052 
1053 static int
1054 fpupnp_probe(device_t dev)
1055 {
1056 	int result;
1057 
1058 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1059 	if (result <= 0)
1060 		device_quiet(dev);
1061 	return (result);
1062 }
1063 
1064 static int
1065 fpupnp_attach(device_t dev)
1066 {
1067 
1068 	return (0);
1069 }
1070 
1071 static device_method_t fpupnp_methods[] = {
1072 	/* Device interface */
1073 	DEVMETHOD(device_probe,		fpupnp_probe),
1074 	DEVMETHOD(device_attach,	fpupnp_attach),
1075 	{ 0, 0 }
1076 };
1077 
1078 static driver_t fpupnp_driver = {
1079 	"fpupnp",
1080 	fpupnp_methods,
1081 	1,			/* no softc */
1082 };
1083 
1084 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1085 ISA_PNP_INFO(fpupnp_ids);
1086 #endif	/* DEV_ISA */
1087 
1088 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1089     "Kernel contexts for FPU state");
1090 
1091 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1092 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1093 #define	FPU_KERN_CTX_INUSE	 0x04
1094 
1095 struct fpu_kern_ctx {
1096 	struct savefpu *prev;
1097 	uint32_t flags;
1098 	char hwstate1[];
1099 };
1100 
1101 static inline size_t __pure2
1102 fpu_kern_alloc_sz(u_int max_est)
1103 {
1104 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1105 }
1106 
1107 static inline int __pure2
1108 fpu_kern_malloc_flags(u_int fpflags)
1109 {
1110 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1111 }
1112 
1113 struct fpu_kern_ctx *
1114 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1115 {
1116 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1117 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1118 	    fpu_kern_malloc_flags(flags)));
1119 }
1120 
1121 struct fpu_kern_ctx *
1122 fpu_kern_alloc_ctx(u_int flags)
1123 {
1124 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1125 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1126 }
1127 
1128 void
1129 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1130 {
1131 
1132 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1133 	/* XXXKIB clear the memory ? */
1134 	free(ctx, M_FPUKERN_CTX);
1135 }
1136 
1137 static struct savefpu *
1138 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1139 {
1140 	vm_offset_t p;
1141 
1142 	p = (vm_offset_t)&ctx->hwstate1;
1143 	p = roundup2(p, XSAVE_AREA_ALIGN);
1144 	return ((struct savefpu *)p);
1145 }
1146 
1147 void
1148 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1149 {
1150 	struct pcb *pcb;
1151 
1152 	pcb = td->td_pcb;
1153 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1154 	    ("ctx is required when !FPU_KERN_NOCTX"));
1155 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1156 	    ("using inuse ctx"));
1157 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1158 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1159 
1160 	if ((flags & FPU_KERN_NOCTX) != 0) {
1161 		critical_enter();
1162 		fpu_enable();
1163 		if (curthread == PCPU_GET(fpcurthread)) {
1164 			fpusave(curpcb->pcb_save);
1165 			PCPU_SET(fpcurthread, NULL);
1166 		} else {
1167 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1168 			    ("invalid fpcurthread"));
1169 		}
1170 
1171 		/*
1172 		 * This breaks XSAVEOPT tracker, but
1173 		 * PCB_FPUNOSAVE state is supposed to never need to
1174 		 * save FPU context at all.
1175 		 */
1176 		fpurestore(fpu_initialstate);
1177 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1178 		    PCB_FPUINITDONE);
1179 		return;
1180 	}
1181 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1182 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1183 		return;
1184 	}
1185 	critical_enter();
1186 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1187 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1188 	ctx->flags = FPU_KERN_CTX_INUSE;
1189 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1190 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1191 	fpuexit(td);
1192 	ctx->prev = pcb->pcb_save;
1193 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1194 	set_pcb_flags(pcb, PCB_KERNFPU);
1195 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1196 	critical_exit();
1197 }
1198 
1199 int
1200 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1201 {
1202 	struct pcb *pcb;
1203 
1204 	pcb = td->td_pcb;
1205 
1206 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1207 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1208 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1209 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1210 		CRITICAL_ASSERT(td);
1211 
1212 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1213 		fpu_disable();
1214 	} else {
1215 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1216 		    ("leaving not inuse ctx"));
1217 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1218 
1219 		if (is_fpu_kern_thread(0) &&
1220 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1221 			return (0);
1222 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1223 		    ("dummy ctx"));
1224 		critical_enter();
1225 		if (curthread == PCPU_GET(fpcurthread))
1226 			fpudrop();
1227 		pcb->pcb_save = ctx->prev;
1228 	}
1229 
1230 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1231 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1232 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1233 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1234 				clear_pcb_flags(pcb, PCB_KERNFPU);
1235 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1236 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1237 	} else {
1238 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1239 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1240 		else
1241 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1242 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1243 	}
1244 	critical_exit();
1245 	return (0);
1246 }
1247 
1248 int
1249 fpu_kern_thread(u_int flags)
1250 {
1251 
1252 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1253 	    ("Only kthread may use fpu_kern_thread"));
1254 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1255 	    ("mangled pcb_save"));
1256 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1257 
1258 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1259 	return (0);
1260 }
1261 
1262 int
1263 is_fpu_kern_thread(u_int flags)
1264 {
1265 
1266 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1267 		return (0);
1268 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1269 }
1270 
1271 /*
1272  * FPU save area alloc/free/init utility routines
1273  */
1274 struct savefpu *
1275 fpu_save_area_alloc(void)
1276 {
1277 
1278 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1279 }
1280 
1281 void
1282 fpu_save_area_free(struct savefpu *fsa)
1283 {
1284 
1285 	uma_zfree(fpu_save_area_zone, fsa);
1286 }
1287 
1288 void
1289 fpu_save_area_reset(struct savefpu *fsa)
1290 {
1291 
1292 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1293 }
1294 
1295 static __inline void
1296 xsave_extfeature_check(uint64_t feature)
1297 {
1298 
1299 	KASSERT((feature & (feature - 1)) == 0,
1300 	    ("%s: invalid XFEATURE 0x%lx", __func__, feature));
1301 	KASSERT(feature < flsl(xsave_mask),
1302 	    ("%s: unsupported XFEATURE 0x%lx", __func__, feature));
1303 }
1304 
1305 static __inline void
1306 xsave_extstate_bv_check(uint64_t xstate_bv)
1307 {
1308 	KASSERT(xstate_bv != 0 && ilog2(xstate_bv) < flsl(xsave_mask),
1309 	    ("%s: invalid XSTATE_BV 0x%lx", __func__, xstate_bv));
1310 }
1311 
1312 /*
1313  * Returns whether the XFEATURE 'feature' is supported as a user state
1314  * or supervisor state component.
1315  */
1316 bool
1317 xsave_extfeature_supported(uint64_t feature, bool supervisor)
1318 {
1319 	int idx;
1320 
1321 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1322 	xsave_extfeature_check(feature);
1323 
1324 	if ((xsave_mask & feature) == 0)
1325 		return (false);
1326 	idx = ilog2(feature);
1327 	return (((xsave_area_desc[idx].flags & CPUID_EXTSTATE_SUPERVISOR) != 0) ==
1328 	    supervisor);
1329 }
1330 
1331 /*
1332  * Returns whether the given XSAVE extension is supported.
1333  */
1334 bool
1335 xsave_extension_supported(uint64_t extension)
1336 {
1337 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1338 
1339 	return ((xsave_extensions & extension) != 0);
1340 }
1341 
1342 /*
1343  * Returns offset for XFEATURE 'feature' given the requested feature bitmap
1344  * 'xstate_bv', and extended region format ('compact').
1345  */
1346 size_t
1347 xsave_area_offset(uint64_t xstate_bv, uint64_t feature,
1348     bool compact)
1349 {
1350 	int i, idx;
1351 	size_t offs;
1352 	struct xsave_area_elm_descr *xep;
1353 
1354 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1355 	xsave_extstate_bv_check(xstate_bv);
1356 	xsave_extfeature_check(feature);
1357 
1358 	idx = ilog2(feature);
1359 	if (!compact)
1360 		return (xsave_area_desc[idx].offset);
1361 	offs = sizeof(struct savefpu) + sizeof(struct xstate_hdr);
1362 	xstate_bv &= ~(XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE);
1363 	while ((i = ffs(xstate_bv) - 1) > 0 && i < idx) {
1364 		xep = &xsave_area_desc[i];
1365 		if ((xep->flags & CPUID_EXTSTATE_ALIGNED) != 0)
1366 			offs = roundup2(offs, 64);
1367 		offs += xep->size;
1368 		xstate_bv &= ~((uint64_t)1 << i);
1369 	}
1370 
1371 	return (offs);
1372 }
1373 
1374 /*
1375  * Returns the XSAVE area size for the requested feature bitmap
1376  * 'xstate_bv' and extended region format ('compact').
1377  */
1378 size_t
1379 xsave_area_size(uint64_t xstate_bv, bool compact)
1380 {
1381 	int last_idx;
1382 
1383 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1384 	xsave_extstate_bv_check(xstate_bv);
1385 
1386 	last_idx = ilog2(xstate_bv);
1387 
1388 	return (xsave_area_offset(xstate_bv, (uint64_t)1 << last_idx, compact) +
1389 	    xsave_area_desc[last_idx].size);
1390 }
1391 
1392 size_t
1393 xsave_area_hdr_offset(void)
1394 {
1395 	return (sizeof(struct savefpu));
1396 }
1397