xref: /freebsd/sys/amd64/amd64/fpu.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/sysent.h>
51 #include <machine/bus.h>
52 #include <sys/rman.h>
53 #include <sys/signalvar.h>
54 #include <vm/uma.h>
55 
56 #include <machine/cputypes.h>
57 #include <machine/frame.h>
58 #include <machine/intr_machdep.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/psl.h>
62 #include <machine/resource.h>
63 #include <machine/specialreg.h>
64 #include <machine/segments.h>
65 #include <machine/ucontext.h>
66 #include <x86/ifunc.h>
67 
68 /*
69  * Floating point support.
70  */
71 
72 #if defined(__GNUCLIKE_ASM) && !defined(lint)
73 
74 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
75 #define	fnclex()		__asm __volatile("fnclex")
76 #define	fninit()		__asm __volatile("fninit")
77 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
78 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
79 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
80 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
81 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
82 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
83 
84 static __inline void
85 xrstor32(char *addr, uint64_t mask)
86 {
87 	uint32_t low, hi;
88 
89 	low = mask;
90 	hi = mask >> 32;
91 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
92 }
93 
94 static __inline void
95 xrstor64(char *addr, uint64_t mask)
96 {
97 	uint32_t low, hi;
98 
99 	low = mask;
100 	hi = mask >> 32;
101 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
102 }
103 
104 static __inline void
105 xsave32(char *addr, uint64_t mask)
106 {
107 	uint32_t low, hi;
108 
109 	low = mask;
110 	hi = mask >> 32;
111 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 	    "memory");
113 }
114 
115 static __inline void
116 xsave64(char *addr, uint64_t mask)
117 {
118 	uint32_t low, hi;
119 
120 	low = mask;
121 	hi = mask >> 32;
122 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
123 	    "memory");
124 }
125 
126 static __inline void
127 xsaveopt32(char *addr, uint64_t mask)
128 {
129 	uint32_t low, hi;
130 
131 	low = mask;
132 	hi = mask >> 32;
133 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
134 	    "memory");
135 }
136 
137 static __inline void
138 xsaveopt64(char *addr, uint64_t mask)
139 {
140 	uint32_t low, hi;
141 
142 	low = mask;
143 	hi = mask >> 32;
144 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
145 	    "memory");
146 }
147 
148 #else	/* !(__GNUCLIKE_ASM && !lint) */
149 
150 void	fldcw(u_short cw);
151 void	fnclex(void);
152 void	fninit(void);
153 void	fnstcw(caddr_t addr);
154 void	fnstsw(caddr_t addr);
155 void	fxsave(caddr_t addr);
156 void	fxrstor(caddr_t addr);
157 void	ldmxcsr(u_int csr);
158 void	stmxcsr(u_int *csr);
159 void	xrstor32(char *addr, uint64_t mask);
160 void	xrstor64(char *addr, uint64_t mask);
161 void	xsave32(char *addr, uint64_t mask);
162 void	xsave64(char *addr, uint64_t mask);
163 void	xsaveopt32(char *addr, uint64_t mask);
164 void	xsaveopt64(char *addr, uint64_t mask);
165 
166 #endif	/* __GNUCLIKE_ASM && !lint */
167 
168 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
169 #define	stop_emulating()	clts()
170 
171 CTASSERT(sizeof(struct savefpu) == 512);
172 CTASSERT(sizeof(struct xstate_hdr) == 64);
173 CTASSERT(sizeof(struct savefpu_ymm) == 832);
174 
175 /*
176  * This requirement is to make it easier for asm code to calculate
177  * offset of the fpu save area from the pcb address. FPU save area
178  * must be 64-byte aligned.
179  */
180 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
181 
182 /*
183  * Ensure the copy of XCR0 saved in a core is contained in the padding
184  * area.
185  */
186 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
187     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
188 
189 static	void	fpu_clean_state(void);
190 
191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
193 
194 int use_xsave;			/* non-static for cpu_switch.S */
195 uint64_t xsave_mask;		/* the same */
196 static	uma_zone_t fpu_save_area_zone;
197 static	struct savefpu *fpu_initialstate;
198 
199 static struct xsave_area_elm_descr {
200 	u_int	offset;
201 	u_int	size;
202 } *xsave_area_desc;
203 
204 static void
205 fpusave_xsaveopt64(void *addr)
206 {
207 	xsaveopt64((char *)addr, xsave_mask);
208 }
209 
210 static void
211 fpusave_xsaveopt3264(void *addr)
212 {
213 	if (SV_CURPROC_FLAG(SV_ILP32))
214 		xsaveopt32((char *)addr, xsave_mask);
215 	else
216 		xsaveopt64((char *)addr, xsave_mask);
217 }
218 
219 static void
220 fpusave_xsave64(void *addr)
221 {
222 	xsave64((char *)addr, xsave_mask);
223 }
224 
225 static void
226 fpusave_xsave3264(void *addr)
227 {
228 	if (SV_CURPROC_FLAG(SV_ILP32))
229 		xsave32((char *)addr, xsave_mask);
230 	else
231 		xsave64((char *)addr, xsave_mask);
232 }
233 
234 static void
235 fpurestore_xrstor64(void *addr)
236 {
237 	xrstor64((char *)addr, xsave_mask);
238 }
239 
240 static void
241 fpurestore_xrstor3264(void *addr)
242 {
243 	if (SV_CURPROC_FLAG(SV_ILP32))
244 		xrstor32((char *)addr, xsave_mask);
245 	else
246 		xrstor64((char *)addr, xsave_mask);
247 }
248 
249 static void
250 fpusave_fxsave(void *addr)
251 {
252 
253 	fxsave((char *)addr);
254 }
255 
256 static void
257 fpurestore_fxrstor(void *addr)
258 {
259 
260 	fxrstor((char *)addr);
261 }
262 
263 static void
264 init_xsave(void)
265 {
266 
267 	if (use_xsave)
268 		return;
269 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
270 		return;
271 	use_xsave = 1;
272 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
273 }
274 
275 DEFINE_IFUNC(, void, fpusave, (void *))
276 {
277 
278 	init_xsave();
279 	if (!use_xsave)
280 		return (fpusave_fxsave);
281 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
282 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
283 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
284 	}
285 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
286 	    fpusave_xsave64 : fpusave_xsave3264);
287 }
288 
289 DEFINE_IFUNC(, void, fpurestore, (void *))
290 {
291 
292 	init_xsave();
293 	if (!use_xsave)
294 		return (fpurestore_fxrstor);
295 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
296 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
297 }
298 
299 void
300 fpususpend(void *addr)
301 {
302 	u_long cr0;
303 
304 	cr0 = rcr0();
305 	stop_emulating();
306 	fpusave(addr);
307 	load_cr0(cr0);
308 }
309 
310 void
311 fpuresume(void *addr)
312 {
313 	u_long cr0;
314 
315 	cr0 = rcr0();
316 	stop_emulating();
317 	fninit();
318 	if (use_xsave)
319 		load_xcr(XCR0, xsave_mask);
320 	fpurestore(addr);
321 	load_cr0(cr0);
322 }
323 
324 /*
325  * Enable XSAVE if supported and allowed by user.
326  * Calculate the xsave_mask.
327  */
328 static void
329 fpuinit_bsp1(void)
330 {
331 	u_int cp[4];
332 	uint64_t xsave_mask_user;
333 	bool old_wp;
334 
335 	if (!use_xsave)
336 		return;
337 	cpuid_count(0xd, 0x0, cp);
338 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
339 	if ((cp[0] & xsave_mask) != xsave_mask)
340 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
341 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
342 	xsave_mask_user = xsave_mask;
343 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
344 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
345 	xsave_mask &= xsave_mask_user;
346 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
347 		xsave_mask &= ~XFEATURE_AVX512;
348 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
349 		xsave_mask &= ~XFEATURE_MPX;
350 
351 	cpuid_count(0xd, 0x1, cp);
352 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
353 		/*
354 		 * Patch the XSAVE instruction in the cpu_switch code
355 		 * to XSAVEOPT.  We assume that XSAVE encoding used
356 		 * REX byte, and set the bit 4 of the r/m byte.
357 		 *
358 		 * It seems that some BIOSes give control to the OS
359 		 * with CR0.WP already set, making the kernel text
360 		 * read-only before cpu_startup().
361 		 */
362 		old_wp = disable_wp();
363 		ctx_switch_xsave32[3] |= 0x10;
364 		ctx_switch_xsave[3] |= 0x10;
365 		restore_wp(old_wp);
366 	}
367 }
368 
369 /*
370  * Calculate the fpu save area size.
371  */
372 static void
373 fpuinit_bsp2(void)
374 {
375 	u_int cp[4];
376 
377 	if (use_xsave) {
378 		cpuid_count(0xd, 0x0, cp);
379 		cpu_max_ext_state_size = cp[1];
380 
381 		/*
382 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
383 		 */
384 		do_cpuid(1, cp);
385 		cpu_feature2 = cp[2];
386 	} else
387 		cpu_max_ext_state_size = sizeof(struct savefpu);
388 }
389 
390 /*
391  * Initialize the floating point unit.
392  */
393 void
394 fpuinit(void)
395 {
396 	register_t saveintr;
397 	u_int mxcsr;
398 	u_short control;
399 
400 	if (IS_BSP())
401 		fpuinit_bsp1();
402 
403 	if (use_xsave) {
404 		load_cr4(rcr4() | CR4_XSAVE);
405 		load_xcr(XCR0, xsave_mask);
406 	}
407 
408 	/*
409 	 * XCR0 shall be set up before CPU can report the save area size.
410 	 */
411 	if (IS_BSP())
412 		fpuinit_bsp2();
413 
414 	/*
415 	 * It is too early for critical_enter() to work on AP.
416 	 */
417 	saveintr = intr_disable();
418 	stop_emulating();
419 	fninit();
420 	control = __INITIAL_FPUCW__;
421 	fldcw(control);
422 	mxcsr = __INITIAL_MXCSR__;
423 	ldmxcsr(mxcsr);
424 	start_emulating();
425 	intr_restore(saveintr);
426 }
427 
428 /*
429  * On the boot CPU we generate a clean state that is used to
430  * initialize the floating point unit when it is first used by a
431  * process.
432  */
433 static void
434 fpuinitstate(void *arg __unused)
435 {
436 	uint64_t *xstate_bv;
437 	register_t saveintr;
438 	int cp[4], i, max_ext_n;
439 
440 	/* Do potentially blocking operations before disabling interrupts. */
441 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
442 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
443 	    XSAVE_AREA_ALIGN - 1, 0);
444 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
445 	if (use_xsave) {
446 		max_ext_n = flsl(xsave_mask);
447 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
448 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
449 	}
450 
451 	cpu_thread_alloc(&thread0);
452 
453 	saveintr = intr_disable();
454 	stop_emulating();
455 
456 	fpusave_fxsave(fpu_initialstate);
457 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
458 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
459 	else
460 		cpu_mxcsr_mask = 0xFFBF;
461 
462 	/*
463 	 * The fninit instruction does not modify XMM registers or x87
464 	 * registers (MM/ST).  The fpusave call dumped the garbage
465 	 * contained in the registers after reset to the initial state
466 	 * saved.  Clear XMM and x87 registers file image to make the
467 	 * startup program state and signal handler XMM/x87 register
468 	 * content predictable.
469 	 */
470 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
471 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
472 
473 	/*
474 	 * Create a table describing the layout of the CPU Extended
475 	 * Save Area.
476 	 */
477 	if (use_xsave) {
478 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
479 		    offsetof(struct xstate_hdr, xstate_bv));
480 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
481 
482 		/* x87 state */
483 		xsave_area_desc[0].offset = 0;
484 		xsave_area_desc[0].size = 160;
485 		/* XMM */
486 		xsave_area_desc[1].offset = 160;
487 		xsave_area_desc[1].size = 288 - 160;
488 
489 		for (i = 2; i < max_ext_n; i++) {
490 			cpuid_count(0xd, i, cp);
491 			xsave_area_desc[i].offset = cp[1];
492 			xsave_area_desc[i].size = cp[0];
493 		}
494 	}
495 
496 	start_emulating();
497 	intr_restore(saveintr);
498 }
499 /* EFIRT needs this to be initialized before we can enter our EFI environment */
500 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
501 
502 /*
503  * Free coprocessor (if we have it).
504  */
505 void
506 fpuexit(struct thread *td)
507 {
508 
509 	critical_enter();
510 	if (curthread == PCPU_GET(fpcurthread)) {
511 		stop_emulating();
512 		fpusave(curpcb->pcb_save);
513 		start_emulating();
514 		PCPU_SET(fpcurthread, NULL);
515 	}
516 	critical_exit();
517 }
518 
519 int
520 fpuformat(void)
521 {
522 
523 	return (_MC_FPFMT_XMM);
524 }
525 
526 /*
527  * The following mechanism is used to ensure that the FPE_... value
528  * that is passed as a trapcode to the signal handler of the user
529  * process does not have more than one bit set.
530  *
531  * Multiple bits may be set if the user process modifies the control
532  * word while a status word bit is already set.  While this is a sign
533  * of bad coding, we have no choise than to narrow them down to one
534  * bit, since we must not send a trapcode that is not exactly one of
535  * the FPE_ macros.
536  *
537  * The mechanism has a static table with 127 entries.  Each combination
538  * of the 7 FPU status word exception bits directly translates to a
539  * position in this table, where a single FPE_... value is stored.
540  * This FPE_... value stored there is considered the "most important"
541  * of the exception bits and will be sent as the signal code.  The
542  * precedence of the bits is based upon Intel Document "Numerical
543  * Applications", Chapter "Special Computational Situations".
544  *
545  * The macro to choose one of these values does these steps: 1) Throw
546  * away status word bits that cannot be masked.  2) Throw away the bits
547  * currently masked in the control word, assuming the user isn't
548  * interested in them anymore.  3) Reinsert status word bit 7 (stack
549  * fault) if it is set, which cannot be masked but must be presered.
550  * 4) Use the remaining bits to point into the trapcode table.
551  *
552  * The 6 maskable bits in order of their preference, as stated in the
553  * above referenced Intel manual:
554  * 1  Invalid operation (FP_X_INV)
555  * 1a   Stack underflow
556  * 1b   Stack overflow
557  * 1c   Operand of unsupported format
558  * 1d   SNaN operand.
559  * 2  QNaN operand (not an exception, irrelavant here)
560  * 3  Any other invalid-operation not mentioned above or zero divide
561  *      (FP_X_INV, FP_X_DZ)
562  * 4  Denormal operand (FP_X_DNML)
563  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
564  * 6  Inexact result (FP_X_IMP)
565  */
566 static char fpetable[128] = {
567 	0,
568 	FPE_FLTINV,	/*  1 - INV */
569 	FPE_FLTUND,	/*  2 - DNML */
570 	FPE_FLTINV,	/*  3 - INV | DNML */
571 	FPE_FLTDIV,	/*  4 - DZ */
572 	FPE_FLTINV,	/*  5 - INV | DZ */
573 	FPE_FLTDIV,	/*  6 - DNML | DZ */
574 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
575 	FPE_FLTOVF,	/*  8 - OFL */
576 	FPE_FLTINV,	/*  9 - INV | OFL */
577 	FPE_FLTUND,	/*  A - DNML | OFL */
578 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
579 	FPE_FLTDIV,	/*  C - DZ | OFL */
580 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
581 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
582 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
583 	FPE_FLTUND,	/* 10 - UFL */
584 	FPE_FLTINV,	/* 11 - INV | UFL */
585 	FPE_FLTUND,	/* 12 - DNML | UFL */
586 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
587 	FPE_FLTDIV,	/* 14 - DZ | UFL */
588 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
589 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
590 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
591 	FPE_FLTOVF,	/* 18 - OFL | UFL */
592 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
593 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
594 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
595 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
596 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
597 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
598 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
599 	FPE_FLTRES,	/* 20 - IMP */
600 	FPE_FLTINV,	/* 21 - INV | IMP */
601 	FPE_FLTUND,	/* 22 - DNML | IMP */
602 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
603 	FPE_FLTDIV,	/* 24 - DZ | IMP */
604 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
605 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
606 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
607 	FPE_FLTOVF,	/* 28 - OFL | IMP */
608 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
609 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
610 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
611 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
612 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
613 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
614 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
615 	FPE_FLTUND,	/* 30 - UFL | IMP */
616 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
617 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
618 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
619 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
620 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
621 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
622 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
623 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
624 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
625 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
626 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
627 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
628 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
629 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
630 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
631 	FPE_FLTSUB,	/* 40 - STK */
632 	FPE_FLTSUB,	/* 41 - INV | STK */
633 	FPE_FLTUND,	/* 42 - DNML | STK */
634 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
635 	FPE_FLTDIV,	/* 44 - DZ | STK */
636 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
637 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
638 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
639 	FPE_FLTOVF,	/* 48 - OFL | STK */
640 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
641 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
642 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
643 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
644 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
645 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
646 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
647 	FPE_FLTUND,	/* 50 - UFL | STK */
648 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
649 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
650 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
651 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
652 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
653 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
654 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
655 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
656 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
657 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
658 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
659 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
660 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
661 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
662 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
663 	FPE_FLTRES,	/* 60 - IMP | STK */
664 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
665 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
666 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
667 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
668 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
669 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
670 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
671 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
672 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
673 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
674 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
675 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
676 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
677 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
678 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
679 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
680 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
681 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
682 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
683 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
684 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
685 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
686 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
687 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
688 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
689 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
690 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
691 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
692 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
693 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
694 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
695 };
696 
697 /*
698  * Read the FP status and control words, then generate si_code value
699  * for SIGFPE.  The error code chosen will be one of the
700  * FPE_... macros.  It will be sent as the second argument to old
701  * BSD-style signal handlers and as "siginfo_t->si_code" (second
702  * argument) to SA_SIGINFO signal handlers.
703  *
704  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
705  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
706  * usermode code which understands the FPU hardware enough to enable
707  * the exceptions, can also handle clearing the exception state in the
708  * handler.  The only consequence of not clearing the exception is the
709  * rethrow of the SIGFPE on return from the signal handler and
710  * reexecution of the corresponding instruction.
711  *
712  * For XMM traps, the exceptions were never cleared.
713  */
714 int
715 fputrap_x87(void)
716 {
717 	struct savefpu *pcb_save;
718 	u_short control, status;
719 
720 	critical_enter();
721 
722 	/*
723 	 * Interrupt handling (for another interrupt) may have pushed the
724 	 * state to memory.  Fetch the relevant parts of the state from
725 	 * wherever they are.
726 	 */
727 	if (PCPU_GET(fpcurthread) != curthread) {
728 		pcb_save = curpcb->pcb_save;
729 		control = pcb_save->sv_env.en_cw;
730 		status = pcb_save->sv_env.en_sw;
731 	} else {
732 		fnstcw(&control);
733 		fnstsw(&status);
734 	}
735 
736 	critical_exit();
737 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
738 }
739 
740 int
741 fputrap_sse(void)
742 {
743 	u_int mxcsr;
744 
745 	critical_enter();
746 	if (PCPU_GET(fpcurthread) != curthread)
747 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
748 	else
749 		stmxcsr(&mxcsr);
750 	critical_exit();
751 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
752 }
753 
754 static void
755 restore_fpu_curthread(struct thread *td)
756 {
757 	struct pcb *pcb;
758 
759 	/*
760 	 * Record new context early in case frstor causes a trap.
761 	 */
762 	PCPU_SET(fpcurthread, td);
763 
764 	stop_emulating();
765 	fpu_clean_state();
766 	pcb = td->td_pcb;
767 
768 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
769 		/*
770 		 * This is the first time this thread has used the FPU or
771 		 * the PCB doesn't contain a clean FPU state.  Explicitly
772 		 * load an initial state.
773 		 *
774 		 * We prefer to restore the state from the actual save
775 		 * area in PCB instead of directly loading from
776 		 * fpu_initialstate, to ignite the XSAVEOPT
777 		 * tracking engine.
778 		 */
779 		bcopy(fpu_initialstate, pcb->pcb_save,
780 		    cpu_max_ext_state_size);
781 		fpurestore(pcb->pcb_save);
782 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
783 			fldcw(pcb->pcb_initial_fpucw);
784 		if (PCB_USER_FPU(pcb))
785 			set_pcb_flags(pcb, PCB_FPUINITDONE |
786 			    PCB_USERFPUINITDONE);
787 		else
788 			set_pcb_flags(pcb, PCB_FPUINITDONE);
789 	} else
790 		fpurestore(pcb->pcb_save);
791 }
792 
793 /*
794  * Device Not Available (DNA, #NM) exception handler.
795  *
796  * It would be better to switch FP context here (if curthread !=
797  * fpcurthread) and not necessarily for every context switch, but it
798  * is too hard to access foreign pcb's.
799  */
800 void
801 fpudna(void)
802 {
803 	struct thread *td;
804 
805 	td = curthread;
806 	/*
807 	 * This handler is entered with interrupts enabled, so context
808 	 * switches may occur before critical_enter() is executed.  If
809 	 * a context switch occurs, then when we regain control, our
810 	 * state will have been completely restored.  The CPU may
811 	 * change underneath us, but the only part of our context that
812 	 * lives in the CPU is CR0.TS and that will be "restored" by
813 	 * setting it on the new CPU.
814 	 */
815 	critical_enter();
816 
817 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
818 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
819 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
820 		/*
821 		 * Some virtual machines seems to set %cr0.TS at
822 		 * arbitrary moments.  Silently clear the TS bit
823 		 * regardless of the eager/lazy FPU context switch
824 		 * mode.
825 		 */
826 		stop_emulating();
827 	} else {
828 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
829 			panic(
830 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
831 			    PCPU_GET(fpcurthread),
832 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
833 		}
834 		restore_fpu_curthread(td);
835 	}
836 	critical_exit();
837 }
838 
839 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
840 void
841 fpu_activate_sw(struct thread *td)
842 {
843 
844 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
845 		PCPU_SET(fpcurthread, NULL);
846 		start_emulating();
847 	} else if (PCPU_GET(fpcurthread) != td) {
848 		restore_fpu_curthread(td);
849 	}
850 }
851 
852 void
853 fpudrop(void)
854 {
855 	struct thread *td;
856 
857 	td = PCPU_GET(fpcurthread);
858 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
859 	CRITICAL_ASSERT(td);
860 	PCPU_SET(fpcurthread, NULL);
861 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
862 	start_emulating();
863 }
864 
865 /*
866  * Get the user state of the FPU into pcb->pcb_user_save without
867  * dropping ownership (if possible).  It returns the FPU ownership
868  * status.
869  */
870 int
871 fpugetregs(struct thread *td)
872 {
873 	struct pcb *pcb;
874 	uint64_t *xstate_bv, bit;
875 	char *sa;
876 	int max_ext_n, i, owned;
877 
878 	pcb = td->td_pcb;
879 	critical_enter();
880 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
881 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
882 		    cpu_max_ext_state_size);
883 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
884 		    pcb->pcb_initial_fpucw;
885 		fpuuserinited(td);
886 		critical_exit();
887 		return (_MC_FPOWNED_PCB);
888 	}
889 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
890 		fpusave(get_pcb_user_save_pcb(pcb));
891 		owned = _MC_FPOWNED_FPU;
892 	} else {
893 		owned = _MC_FPOWNED_PCB;
894 	}
895 	if (use_xsave) {
896 		/*
897 		 * Handle partially saved state.
898 		 */
899 		sa = (char *)get_pcb_user_save_pcb(pcb);
900 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
901 		    offsetof(struct xstate_hdr, xstate_bv));
902 		max_ext_n = flsl(xsave_mask);
903 		for (i = 0; i < max_ext_n; i++) {
904 			bit = 1ULL << i;
905 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
906 				continue;
907 			bcopy((char *)fpu_initialstate +
908 			    xsave_area_desc[i].offset,
909 			    sa + xsave_area_desc[i].offset,
910 			    xsave_area_desc[i].size);
911 			*xstate_bv |= bit;
912 		}
913 	}
914 	critical_exit();
915 	return (owned);
916 }
917 
918 void
919 fpuuserinited(struct thread *td)
920 {
921 	struct pcb *pcb;
922 
923 	CRITICAL_ASSERT(td);
924 	pcb = td->td_pcb;
925 	if (PCB_USER_FPU(pcb))
926 		set_pcb_flags(pcb,
927 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
928 	else
929 		set_pcb_flags(pcb, PCB_FPUINITDONE);
930 }
931 
932 int
933 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
934 {
935 	struct xstate_hdr *hdr, *ehdr;
936 	size_t len, max_len;
937 	uint64_t bv;
938 
939 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
940 	if (xfpustate == NULL)
941 		return (0);
942 	if (!use_xsave)
943 		return (EOPNOTSUPP);
944 
945 	len = xfpustate_size;
946 	if (len < sizeof(struct xstate_hdr))
947 		return (EINVAL);
948 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
949 	if (len > max_len)
950 		return (EINVAL);
951 
952 	ehdr = (struct xstate_hdr *)xfpustate;
953 	bv = ehdr->xstate_bv;
954 
955 	/*
956 	 * Avoid #gp.
957 	 */
958 	if (bv & ~xsave_mask)
959 		return (EINVAL);
960 
961 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
962 
963 	hdr->xstate_bv = bv;
964 	bcopy(xfpustate + sizeof(struct xstate_hdr),
965 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
966 
967 	return (0);
968 }
969 
970 /*
971  * Set the state of the FPU.
972  */
973 int
974 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
975     size_t xfpustate_size)
976 {
977 	struct pcb *pcb;
978 	int error;
979 
980 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
981 	pcb = td->td_pcb;
982 	error = 0;
983 	critical_enter();
984 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
985 		error = fpusetxstate(td, xfpustate, xfpustate_size);
986 		if (error == 0) {
987 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
988 			fpurestore(get_pcb_user_save_td(td));
989 			set_pcb_flags(pcb, PCB_FPUINITDONE |
990 			    PCB_USERFPUINITDONE);
991 		}
992 	} else {
993 		error = fpusetxstate(td, xfpustate, xfpustate_size);
994 		if (error == 0) {
995 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
996 			fpuuserinited(td);
997 		}
998 	}
999 	critical_exit();
1000 	return (error);
1001 }
1002 
1003 /*
1004  * On AuthenticAMD processors, the fxrstor instruction does not restore
1005  * the x87's stored last instruction pointer, last data pointer, and last
1006  * opcode values, except in the rare case in which the exception summary
1007  * (ES) bit in the x87 status word is set to 1.
1008  *
1009  * In order to avoid leaking this information across processes, we clean
1010  * these values by performing a dummy load before executing fxrstor().
1011  */
1012 static void
1013 fpu_clean_state(void)
1014 {
1015 	static float dummy_variable = 0.0;
1016 	u_short status;
1017 
1018 	/*
1019 	 * Clear the ES bit in the x87 status word if it is currently
1020 	 * set, in order to avoid causing a fault in the upcoming load.
1021 	 */
1022 	fnstsw(&status);
1023 	if (status & 0x80)
1024 		fnclex();
1025 
1026 	/*
1027 	 * Load the dummy variable into the x87 stack.  This mangles
1028 	 * the x87 stack, but we don't care since we're about to call
1029 	 * fxrstor() anyway.
1030 	 */
1031 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1032 }
1033 
1034 /*
1035  * This really sucks.  We want the acpi version only, but it requires
1036  * the isa_if.h file in order to get the definitions.
1037  */
1038 #include "opt_isa.h"
1039 #ifdef DEV_ISA
1040 #include <isa/isavar.h>
1041 /*
1042  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1043  */
1044 static struct isa_pnp_id fpupnp_ids[] = {
1045 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1046 	{ 0 }
1047 };
1048 
1049 static int
1050 fpupnp_probe(device_t dev)
1051 {
1052 	int result;
1053 
1054 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1055 	if (result <= 0)
1056 		device_quiet(dev);
1057 	return (result);
1058 }
1059 
1060 static int
1061 fpupnp_attach(device_t dev)
1062 {
1063 
1064 	return (0);
1065 }
1066 
1067 static device_method_t fpupnp_methods[] = {
1068 	/* Device interface */
1069 	DEVMETHOD(device_probe,		fpupnp_probe),
1070 	DEVMETHOD(device_attach,	fpupnp_attach),
1071 	DEVMETHOD(device_detach,	bus_generic_detach),
1072 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1073 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1074 	DEVMETHOD(device_resume,	bus_generic_resume),
1075 	{ 0, 0 }
1076 };
1077 
1078 static driver_t fpupnp_driver = {
1079 	"fpupnp",
1080 	fpupnp_methods,
1081 	1,			/* no softc */
1082 };
1083 
1084 static devclass_t fpupnp_devclass;
1085 
1086 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1087 ISA_PNP_INFO(fpupnp_ids);
1088 #endif	/* DEV_ISA */
1089 
1090 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1091     "Kernel contexts for FPU state");
1092 
1093 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1094 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1095 #define	FPU_KERN_CTX_INUSE	 0x04
1096 
1097 struct fpu_kern_ctx {
1098 	struct savefpu *prev;
1099 	uint32_t flags;
1100 	char hwstate1[];
1101 };
1102 
1103 static inline size_t __pure2
1104 fpu_kern_alloc_sz(u_int max_est)
1105 {
1106 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1107 }
1108 
1109 static inline int __pure2
1110 fpu_kern_malloc_flags(u_int fpflags)
1111 {
1112 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1113 }
1114 
1115 struct fpu_kern_ctx *
1116 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1117 {
1118 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1119 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1120 	    fpu_kern_malloc_flags(flags)));
1121 }
1122 
1123 struct fpu_kern_ctx *
1124 fpu_kern_alloc_ctx(u_int flags)
1125 {
1126 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1127 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1128 }
1129 
1130 void
1131 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1132 {
1133 
1134 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1135 	/* XXXKIB clear the memory ? */
1136 	free(ctx, M_FPUKERN_CTX);
1137 }
1138 
1139 static struct savefpu *
1140 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1141 {
1142 	vm_offset_t p;
1143 
1144 	p = (vm_offset_t)&ctx->hwstate1;
1145 	p = roundup2(p, XSAVE_AREA_ALIGN);
1146 	return ((struct savefpu *)p);
1147 }
1148 
1149 void
1150 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1151 {
1152 	struct pcb *pcb;
1153 
1154 	pcb = td->td_pcb;
1155 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1156 	    ("ctx is required when !FPU_KERN_NOCTX"));
1157 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1158 	    ("using inuse ctx"));
1159 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1160 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1161 
1162 	if ((flags & FPU_KERN_NOCTX) != 0) {
1163 		critical_enter();
1164 		stop_emulating();
1165 		if (curthread == PCPU_GET(fpcurthread)) {
1166 			fpusave(curpcb->pcb_save);
1167 			PCPU_SET(fpcurthread, NULL);
1168 		} else {
1169 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1170 			    ("invalid fpcurthread"));
1171 		}
1172 
1173 		/*
1174 		 * This breaks XSAVEOPT tracker, but
1175 		 * PCB_FPUNOSAVE state is supposed to never need to
1176 		 * save FPU context at all.
1177 		 */
1178 		fpurestore(fpu_initialstate);
1179 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1180 		    PCB_FPUINITDONE);
1181 		return;
1182 	}
1183 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1184 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1185 		return;
1186 	}
1187 	critical_enter();
1188 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1189 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1190 	ctx->flags = FPU_KERN_CTX_INUSE;
1191 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1192 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1193 	fpuexit(td);
1194 	ctx->prev = pcb->pcb_save;
1195 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1196 	set_pcb_flags(pcb, PCB_KERNFPU);
1197 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1198 	critical_exit();
1199 }
1200 
1201 int
1202 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1203 {
1204 	struct pcb *pcb;
1205 
1206 	pcb = td->td_pcb;
1207 
1208 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1209 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1210 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1211 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1212 		CRITICAL_ASSERT(td);
1213 
1214 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1215 		start_emulating();
1216 	} else {
1217 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1218 		    ("leaving not inuse ctx"));
1219 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1220 
1221 		if (is_fpu_kern_thread(0) &&
1222 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1223 			return (0);
1224 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1225 		    ("dummy ctx"));
1226 		critical_enter();
1227 		if (curthread == PCPU_GET(fpcurthread))
1228 			fpudrop();
1229 		pcb->pcb_save = ctx->prev;
1230 	}
1231 
1232 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1233 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1234 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1235 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1236 				clear_pcb_flags(pcb, PCB_KERNFPU);
1237 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1238 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1239 	} else {
1240 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1241 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1242 		else
1243 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1244 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1245 	}
1246 	critical_exit();
1247 	return (0);
1248 }
1249 
1250 int
1251 fpu_kern_thread(u_int flags)
1252 {
1253 
1254 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1255 	    ("Only kthread may use fpu_kern_thread"));
1256 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1257 	    ("mangled pcb_save"));
1258 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1259 
1260 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1261 	return (0);
1262 }
1263 
1264 int
1265 is_fpu_kern_thread(u_int flags)
1266 {
1267 
1268 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1269 		return (0);
1270 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1271 }
1272 
1273 /*
1274  * FPU save area alloc/free/init utility routines
1275  */
1276 struct savefpu *
1277 fpu_save_area_alloc(void)
1278 {
1279 
1280 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1281 }
1282 
1283 void
1284 fpu_save_area_free(struct savefpu *fsa)
1285 {
1286 
1287 	uma_zfree(fpu_save_area_zone, fsa);
1288 }
1289 
1290 void
1291 fpu_save_area_reset(struct savefpu *fsa)
1292 {
1293 
1294 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1295 }
1296